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Abstract

Background: Automatically detecting falls with mobile phones provides an opportunity for rapid response to injuries and better
knowledge of what precipitated the fall and its consequences. This is beneficial for populations that are prone to falling, such as
people with lower limb amputations. Prior studies have focused on fall detection in able-bodied individuals using data from a
laboratory setting. Such approaches may provide a limited ability to detect falls in amputees and in real-world scenarios.

Objective: The aim was to develop a classifier that uses data from able-bodied individuals to detect falls in individuals with a
lower limb amputation, while they freely carry the mobile phone in different locations and during free-living.

Methods: We obtained 861 simulated indoor and outdoor falls from 10 young control (non-amputee) individuals and 6 individuals
with a lower limb amputation. In addition, we recorded a broad database of activities of daily living, including data from three
participants’ free-living routines. Sensor readings (accelerometer and gyroscope) from a mobile phone were recorded as participants
freely carried it in three common locations—on the waist, in a pocket, and in the hand. A set of 40 features were computed from
the sensors data and four classifiers were trained and combined through stacking to detect falls. We compared the performance
of two population-specific models, trained and tested on either able-bodied or amputee participants, with that of a model trained
on able-bodied participants and tested on amputees. A simple threshold-based classifier was used to benchmark our machine-learning
classifier.

Results: The accuracy of fall detection in amputees for a model trained on control individuals (sensitivity: mean 0.989,
1.96*standard error of the mean [SEM] 0.017; specificity: mean 0.968, SEM 0.025) was not statistically different (P=.69) from
that of a model trained on the amputee population (sensitivity: mean 0.984, SEM 0.016; specificity: mean 0.965, SEM 0.022).
Detection of falls in control individuals yielded similar results (sensitivity: mean 0.979, SEM 0.022; specificity: mean 0.991,
SEM 0.012). A mean 2.2 (SD 1.7) false alarms per day were obtained when evaluating the model (vs mean 122.1, SD 166.1 based
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on thresholds) on data recorded as participants carried the phone during their daily routine for two or more days. Machine-learning
classifiers outperformed the threshold-based one (P<.001).

Conclusions: A mobile phone-based fall detection model can use data from non-amputee individuals to detect falls in individuals
walking with a prosthesis. We successfully detected falls when the mobile phone was carried across multiple locations and without
a predetermined orientation. Furthermore, the number of false alarms yielded by the model over a longer period of time was
reasonably low. This moves the application of mobile phone-based fall detection systems closer to a real-world use case scenario.

(JMIR Mhealth Uhealth 2017;5(10):e151) doi: 10.2196/mhealth.8201
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Introduction

Falls are a common occurrence in the elderly and in people with
lower limb amputations. In the elderly, they are the primary
cause of injury-related deaths [1], and for people older than 75
years, the estimated percentage who fall is more than 30% per
year [2]. Individuals with an amputation, especially elderly with
an amputation due to vascular disease, are at a similar or higher
risk for falls, with studies reporting that more than 50% of
individuals with a unilateral lower limb amputation had fallen
in the previous 12 months [3,4]. As such, detecting,
understanding, and reacting to falls are of very high importance.

Decreasing response time after a fall and improving fall
prevention strategies can dramatically enhance the quality of
life for people with lower limb amputations, as well as decrease
health care costs. Getting help following an immobilizing fall
improves the chance of survival by approximately 50% and
increases the likelihood of a return to independent living [5].
Therefore, detecting falls and understanding the environmental
circumstances that led to it is crucial for both timely assistance
and evaluation of prevention strategies.

Data from real-world fall events are essential for such analyses.
However, capturing data from real-world falls is difficult without
long-term continuous monitoring [6]. Mobile phones can provide
an inexpensive way to detect and measure falls over long time
periods [7-10]. All modern mobile phones are equipped with
multiple sensors—most notably accelerometers, gyroscopes,
barometer, and Global Positioning System (GPS)—which
generate a wide range of information regarding the user’s
movements and location. Furthermore, mobile phones include
memory, computing, and transmission capabilities, which makes
them a convenient platform to process the sensors’ data and
detect falls [11]. Mobile phones then promise a relatively
straightforward generation of large datasets because they can
unobtrusively record all the time.

Sensor-based fall-detection algorithms have shown encouraging
results in previous studies using young, unimpaired participants
performing simulated falls [12,13]. Many of these studies
employed threshold-based algorithms, such that a fall is detected
if one or more statistical measures (features) computed from
the acceleration exceeded a predefined threshold [6,14], whereas
some approaches employed machine-learning algorithms, either
supervised [15-18] or unsupervised [19]. Such studies showed
that simulated falls can be successfully distinguished from daily

activities with high accuracy under laboratory-controlled
conditions.

Traditionally, studies have used unimpaired individuals for
training and testing fall-detection systems. However, a large
difference exists between movement patterns of individuals
with and without lower limb amputations [20]. Furthermore,
most studies have fixed the phone to a specific orientation and
location on the body, although phones are carried in multiple
locations during everyday use. Common movements, such as
taking the phone out of a pocket, could cause large accelerations
that may be confused with falls. Therefore, we do not know
whether these factors affect the accuracy of a fall-detection
algorithm when used with individuals with an amputation.

In this study, we developed a fall-detection classifier that is
robust to the previously mentioned sources of error (population,
location of the phone, environment) and successfully detect
falls in both control (non-amputee) and amputee populations.
We collected data from simulated falls and activities from both
control volunteers and individuals with transfemoral amputations
(TFAs) or above-the-knee amputations in both a laboratory and
outdoor environment. To account for the influence of phone
location, we collected simulated falls and activities data with
the mobile phone carried in three different common locations:
in a pouch at the waist, in a pocket, and in the participant’s hand.

Methods

Study Design
Data representative of typical activities of daily living and falls
was collected from both control participants and participants
with a unilateral TFA using a prosthesis. Participants with a
TFA were included in the study if they had a unilateral
amputation of the lower limb, above or below the knee, within
at least 6 months, and if they used either a mechanical or
microprocessor-controlled prosthesis on a daily basis. The study
was approved by Northwestern University Institutional review
board. Written informed consent was obtained from all
participants.

Data were collected from the accelerometer and gyroscope
sensor of a mobile phone (Samsung Galaxy S4) using the Purple
Robot app [21] running on Android 4.4.4. Purple Robot was
developed as a research platform for collecting data through
hardware sensors on an Android mobile phone. Data from the
selected sensors are compiled and transmitted to a remote server
for storage and future analysis via Wi-Fi or cellular data
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connection. The app also allows for some data processing to
occur on the phone.

The data sampling rate was approximately 50 Hz and could
vary depending on the phone central processing unit usage.
Participants carried the phone in three different locations during
the data collection: in a pouch worn on the waist, in a pants
pocket, or in their hand. Participants were asked to carry the
phone in these locations as they would carry their own phone
during daily use; as a result, there was some variation in the
precise placement of the device (eg, the pocket location included
both front and back pockets based on individual preference).
During data collection, a researcher annotated the start and end
time of each activity or fall with a second mobile phone running
Purple Robot.

All participants performed four types of simulated falls: forward
(trip), backward (slip), left, and right. Non-amputee participants
performed both indoor and outdoor falls, whereas participants
with amputation only fell indoors. During all simulated falls,
participants fell onto a padded mat (indoor) or grass (outdoor),
and wore several layers of padding and guards over the wrists,
elbows, knees, and shins to prevent injury. During simulated
trips, participants were asked to walk toward the mat and then
stumble on the edge as if tripping, then falling forward onto the
mat. For slips, participants were instructed to slide one foot out
from under them as if slipping and fall backward onto the mat
(Figure 1). For lateral falls (left and right), participants were

asked to close their eyes and a researcher provided a push to
cause the participant to lose their balance and fall onto the mat.
The TFA participants were instructed to use whatever protective
strategies they might employ in a real fall event, such as turning
to avoid landing on their prosthesis. Participants performed each
fall type three times for each phone location, for a total of 36
simulated falls.

After completing the falls, participants performed a series of
daily activities, again with the phone varied between the three
different locations (see Multimedia Appendix 1 for a full list
of activities). The different activities performed were sitting,
standing, walking, stairs ascent/descent, and lying. During still
activities with the phone in hand, participants were asked to use
the phone as they usually would (eg, browsing the Internet,
checking text messages). In total, approximately 17 hours of
labeled data from falls and activities were obtained. In addition,
three participants with TFA carried the phone with them for a
period between two and seven days, so as to quantify the number
of false alarms per day generated by the fall-detection model.
No specific instructions were given to the participants, beyond
that of carrying the phone in either their pocket or in a pouch
around the waist for the majority of their daily routine. All three
participants chose to carry the phone in a pants pocket. Over
the entire recording period, a mean 213 (SD 182) clips per day
(total 2251) exceeded the 2 g threshold and were subsequently
analyzed.
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Figure 1. Experimental setup for capturing falls data and detecting falls. A non-amputee volunteer performed a series of falls, including trips (left) and
slips (right). A phone was carried in a pouch secured around the waist with a strap belt and in a pants pocket or in hand (not shown). The graphs show
example data captured by the phone accelerometer during the two types of falls over a 5 second window.

Data Preprocessing and Feature Extraction
Data collected by Purple Robot was transmitted to an external
server and downloaded for analysis using Matlab 2016b
(MathWorks) and Python 2.7. All data were organized into
5-second clips of data for feature extraction. For each fall event,
a 10-second long data clip centered on the peak acceleration
magnitude (ie, the impact) was extracted; from these clips, ten
5-second long windows were extracted based on a uniform
random distribution, such that the beginning of the fall in each
5-second window (clip) can occur with uniform probability in
the interval (0 s, 3 s). This was done to provide variety in the
location of the falls within a 5-second window.

Activities data were generated by taking all data from the
beginning to the end of the activities protocol and dividing it
into nonoverlapping 5-second windows. Thus, our activity data
included postural transitions (eg, sit-to-stand) and phone
transitions (eg, pocket-to-hand) that may be confounded with
falls by a classifier. We then selected activity clips whose total

acceleration (x2+y2+z2) was higher than 2 g, which corresponded
to the first percentile of the acceleration distribution within the
falls (Figure 2). Therefore, only activity clips that included high
accelerations and could thus resemble a fall were included in
the dataset. In total, 6637 clips (6337 falls, 300 non-falls) of

data were obtained from the non-amputee control group and
1815 clips (1537 falls, 278 non-falls) from the TFA group.

After organizing data into the 5-second windows, the
accelerometer and gyroscope signals were interpolated to 50
Hz with a cubic polynomial. A total of 40 features were then
computed on each axis (x, y, z) and on the resultant vectors

(x2+y2+z2) for both the accelerometer and gyroscope signals
(Table 1). In training and testing our fall-detection models, all
feature vectors derived from activities were labeled as
“non-falls” and those derived from simulated falls as “falls.”

Model Training and Evaluation
We combined the predictions of four different classifiers through
stacking [22]: random forest (100 trees), support vector machine
[23] (linear kernel, C=1), gradient boosting (100 trees, maximum
depth=2), and extreme gradient boosting (XGBoost [24], 150
trees, maximum depth=2, learning rate=0.5, feature subsampling
rate=0.6). Each classifier (C1,...,C4) predicts the probability
Pi(fall|x) that the current clip x corresponds to a fall, and all the
probabilities are combined into a feature vector:

x meta=[P 1(fall|x),...,P 4(fall|x),σ(P i)]

where i=1,...,4, and these probabilities and their standard
deviation (σ) are used as input features to a meta-level classifier
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(logistic regression [25,26]), which learns to combine the
individual predictions and outputs the final probability of the
clip x being a fall (Figure 3).

Classifier performance was evaluated either by
leave-one-subject-out cross-validation (LOSOCV) or with an
external validation set (see next section). Hyperparameters of
the base-level classifiers were tuned using a cross-validated grid
search. The primary measures chosen to summarize model
performance were sensitivity, specificity, and area under the
curve (AUC). Specificity and sensitivity values are reported
from the optimal point from the receiver-operator characteristic
(ROC) curve, or the point with the greatest sum of sensitivity

and specificity. LOSOCV was used for determining the
threshold when evaluating the control-to-control model.

As a comparison, we evaluated the performance obtained when
using a threshold on a single feature, the maximum acceleration
magnitude. This was chosen as a high-performing representative
of threshold-based methods because the acceleration magnitude
is one the strongest single predictors of a fall and is frequently
used [27]. An ROC curve was obtained by measuring the
sensitivity and specificity as the threshold on maximum
acceleration magnitude was changed, from which we obtained
values for AUC, sensitivity, and specificity for this
single-feature approach.

Table 1. Features computed on each 5-second clip of sensor data (accelerometer and gyroscope) on either the vector resultant or on each axis (x, y, z).

Number of featuresFeature name

1Mean

1Median

1Standard deviation

1Skewness

1Kurtosis

2IQR and derivative of IQR

2Minimum and derivative of minimum

2Maximum and derivative of maximum

9Maximum, minimum, and IQR on each axis (x, y, z)

20Total per sensor

Figure 2. The distribution of maximum acceleration values for falls and non-fall data clips. Values for non-amputee (left) and individuals with TFA
(right). Only activity (non-fall) clips with an acceleration greater than 2g were used in the analysis. Peak accelerations from participants’ daily routine
(home trial) are also shown for the TFA group. Boxes indicate interquartile (IQR) range; midlines and whiskers represent median and 1.5 IQR, respectively.
Individual points denote outliers.
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Figure 3. Five-second data clips are recorded from the mobile phone sensors (accelerometer and gyroscope), with each clip yielding a matrix of
dimension (3 channels × 250 samples) per sensor. A set of 40 features were calculated from a data clip, and the resulting feature vector x was input to
four different classifiers, which were combined through stacking to output the probability of the clip being a fall (see text for details).

Effect of Training Population and Phone Location
To determine whether data collected from control (non-amputee)
individuals will be effective to detect falls in amputees, we
trained and tested models under three training conditions: a
model trained and evaluated on control participants using
LOSOCV (control to control), a model trained using data from
all control participants and evaluated on data from the TFA
group (control to amputee), and a model trained and evaluated
on TFA participants using LOSOCV (amputee to amputee).
Each model was trained and evaluated using data collected in
all three phone locations. Furthermore, we assessed the
performance of the control-to-amputee model at detecting falls
from each individual location (waist, pocket, or hand). Each
model was also compared to its corresponding threshold-based
version, which represented the baseline performance.

Measuring Performance at Home
Our model is intended for real-time use on a mobile phone;
therefore, we also collected data from TFA participants while

they carried the phone in a pocket for at least 2 days. No
participant fell during this data collection, so the data represents
only non-fall events. This dataset was filtered as before,
generating a total of 2467 data clips above the 2 g threshold.
Resampling and feature extraction were performed as previously
to prepare the data for model evaluation. The preceding analysis
procedure was repeated, using data collected at home to
represent non-falls, rather than daily activities performed in the
laboratory.

Results

A total of 7 amputees (mean 47.4, SD 12.0 years) and 10 control
non-amputee participants (mean 24.2, SD 2.2 years) took part
to the study. One amputee participant withdrew before
performing the outdoor falls protocol and their data was
therefore excluded from the analysis. Also, two amputee
participants could not complete the entire set of falls because
of fatigue. Table 2 describes participant demographics for both
groups.
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Table 2. Demographic information of participants.

Type of prosthesisAmputation rea-
son

Amputation
side

Weight (lbs)Height (ft/in)GenderAge (years)Subject ID

Amputee participants

MechanicalTraumaLeft2035'10“Male58AF004

MicroprocessorCancerRight1605'5”Female51AF005

MicroprocessorCancerRight2055'10“Male24AF006

HydraulicTraumaLeft2406'1”Male54AF007

MechanicalCongenitalRight1025'3“Female37AF008

HydraulicTraumaLeft2675'11”Male61AF010

MicroprocessorAccidentLeft2245'9“Male47AF011

Control participants

1405'8”Female23CF023

1556'3“Female24CF024

1505'8”Female24CF025

1305'6“Female23CF026

1285'2”Female23CF027

2306'1“Male25CF028

1005'0”Female27CF029

1055'3“Female29CF030

2605'9”Male21CF031

1455'10“Male23CF032

We compared the performance of a fall-detection model trained
on data from control individuals with that of a model trained
on data from the TFA population. We examined how carrying
the mobile phone in different locations affected the accuracy
of fall detection. To evaluate false positives during everyday
life, we assessed the performance of the model when three
individuals with TFA carried the phone for a minimum of 48
hours during their daily routine.

Effect of Population
Our results indicated that a fall-detection classifier trained using
data from control participants was able to reliably separate falls
from daily activities in individuals with TFA (Figure 4). The
performance of this model (control to amputee: AUC mean

0.996, 1.96*standard error of the mean [SEM] 0.004) was not
significantly lower than that of a model trained on TFA
individuals (amputee to amputee: AUC mean 0.995, SEM 0.004)
(Wilcoxon rank-sum test, z=.40, P=.69). Fall-detection accuracy
for a model trained and tested on non-amputee individuals
yielded similar performance (control to control: AUC mean
0.997, SEM 0.003) (z=.65, P=.52). Stacking classifiers
outperformed the threshold-based classification models in both
populations (control to control: z=3.63, P<.001; amputee to
amputee: z=1.92, P=.06; control to amputee: z=2.08, P=.04).
Table 3 summarizes the fall detection results obtained with each
model. Therefore, detecting falls in individuals with TFA could
be achieved by only using training falls and activity data from
non-amputee individuals.
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Table 3. Summary results for models trained and tested on each population (control or amputee). Sensitivity and specificity values represent the optimal
point of the ROC curve.

Model, mean (1.96 SEM)Method and performance metric

Amputee-amputeeControl-amputeeControl-control

Stacking

0.995 (0.004)0.996 (0.004)0.997 (0.003)AUC

0.984 (0.016)0.989 (0.017)0.979 (0.022)Sensitivity

0.965 (0.022)0.968 (0.025)0.991 (0.012)Specificity

Threshold-based

0.939 (0.059)0.939 (0.059)0.960 (0.020)AUC

0.878 (0.097)0.878 (0.097)0.915 (0.040)Sensitivity

0.922 (0.045)0.922 (0.045)0.927 (0.045)Specificity

Figure 4. Effect of population on model accuracy. Receiver-operator characteristic curves of fall-detection models based on threshold (blue) or using
stacked classifiers (green) trained and tested on data from non-amputee individuals (control-control) and individuals with TFA (amputee-amputee), and
trained on non-amputee individuals and tested on TFA data (control-amputee). Shaded areas are 95% confidence intervals from bootstrapping.

Effect of Location
To assess how the location where the phone was carried affected
fall-detection accuracy, we examined the performance of the
control-amputee model for each location separately (Figure 5).
Carrying the phone in the pocket yielded the highest AUC (mean
1.000, SEM 0.000) followed by hand (mean 0.997, SEM 0.003)

and waist (mean 0.992, SEM 0.012); however, no statistically
significant differences were found between these values
(z=0.37-1.47, P=.14-.72). Our stacked classifier model showed
less intersubject variability than threshold approaches. A
summary of results is reported in Table 4. Regardless of the
location, the AUC values suggest good algorithm performance
for the stacked classifiers.

Table 4. Summary results for the control-to-amputee model tested on in-laboratory data organized by phone location.

Mobile phone location, mean (1.96 SEM)Method and performance
metric

AllHandPocketWaist

Stacked classifiers

0.996 (0.004)0.997 (0.003)1.000 (0.000)0.992 (0.012)AUC

0.989 (0.017)0.989 (0.013)1.000 (0.000)0.990 (0.017)Sensitivity

0.968 (0.025)0.980 (0.036)1.000 (0.000)0.982 (0.033)Specificity

Threshold

0.939 (0.059)0.984 (0.027)0.948 (0.065)0.929 (0.097)AUC

0.878 (0.097)0.995 (0.010)0.979 (0.036)0.932 (0.087)Sensitivity

0.922 (0.045)0.939 (0.092)0.934(0.115)0.915 (0.112)Specificity
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Figure 5. Effect of phone location on fall-classification accuracy. Receiver-operator characteristic curves for the control-amputee model organized by
test location (green: stacked classifiers; blue: threshold model). Shaded areas are 95% confidence intervals.

Home Data Analysis
A fall-detection model can be effectively deployed outside of
a laboratory setting if the number of false alarms generated is
small. Therefore, we tested our model on data from three
individuals with TFA who, following the experimental session,
carried the mobile phone with them during their daily routine
for a period between 2 and 7 days. All participants chose to
carry the phone in their pocket and were not given any indication
on how to carry the phone otherwise. The participants did not
experience a fall during the recording period. Testing the model
during the home period allowed us to meaningfully assess the
false positive rate.

Performance of our model on the home data was comparable
to performance obtained on laboratory data (control-to-amputee

model, Figure 6 and Table 5; z=1.03, P=.30), with a mean AUC
across the three participants of 0.992 (SEM 0.001); sensitivity:
mean 0.970, SEM 0.021; specificity: mean 0.950, SEM 0.016.
The stacked classifiers model also performed better than the
threshold method (z=1.96, P=.05), with all results reported in
Table 5. We also calculated the false alarms rates for these three
participants: at a sensitivity of 90%, there were 1.0, 4.6, and 1.1
false alarms per day (mean 2.2, SD 1.7), whereas for the
threshold approach, the false alarm rates were 4.9, 357.0, and
4.4 per day (mean 122.1, SD 166.1), respectively. The high
false positive rate for the second participant appears to be the
result of both low acceleration magnitude during simulated falls
and high acceleration magnitude during at-home activities. Thus,
our model can effectively detect falls while keeping its false
alarm rate to a reasonable low value when deployed outside of
a laboratory-controlled scenario.

Table 5. Summary results for each model on home data.

Method, mean (1.96 SEM)Performance metric

ThresholdStacked classifiers

0.879 (0.121)0.992 (0.001)AUC

0.842 (0.188)0.970 (0.021)Sensitivity

0.844 (0.011)0.950 (0.016)Specificity
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Figure 6. Fall-detection performance on home data. Receiver-operator characteristic curve averaged across the three amputee participants. Data include
both the participants’ daily routine data and the in-laboratory falls. Shaded areas are 95% confidence intervals.

Discussion

Principal Results
We developed a fall-detection classifier using data collected
from the inertial sensors of a mobile phone, carried by
non-amputee individuals and by individuals with a TFA. In
order to mimic a naturalistic setting, phones were carried in
three common locations (pouch, pocket, or hand) and without
standardizing the orientation of the phone. We observed no
significant effect of the population used for training the model
on the fall detection accuracy; a model trained on non-amputee
data was as accurate as one trained on our pool of individuals
with TFA. Therefore, fall detection can be reliably performed
in amputee participants using data from non-amputee
participants.

Previous studies have generally used validation on non-amputee
participants despite the fact that the clinical population is the
real target. However, participants with mobility impairments
display different movement patterns from unimpaired
individuals, which can affect the accuracy of activity recognition
classifiers [28-30]. We pursued the possibility that amputee
movements during activities and simulated fall events may have
been unique enough to suggest population-specific model
training. Our results did not show such a dependency, thus
suggesting that a fall-detection model trained on non-amputee
individuals can generalize to other clinical populations prone
to falls.

We collected falls and activity data as the phone was carried
across common locations to mimic a naturalistic scenario.
Nevertheless, we observed that the peak acceleration from
real-world data exceeded the range of accelerations of the
in-laboratory activities. This is not surprising because prior
studies also found that in-laboratory activities look different
from real-world unstructured behaviors [30]. Thus, falls and
activity data during natural use of the phone must be collected

to build a fall-detection system that can be deployed in an
everyday scenario.

We compared a machine-learning model based on 40 features
to a threshold-based approach, which used a single feature
(maximum acceleration) to detect whether the motion of the
phone constituted a fall event. Our model yielded an average
of two false alarms per day versus approximately 122 produced
by the threshold model. This result is at least as good as current
state-of-the-art fall-detection systems based on a waist-mounted
wearable accelerometer [6]. Therefore, combining multiple
features through machine learning confers a significant
advantage to build a robust phone-based fall detection system.

The purpose of this work was to develop a system that can
capture real-world falls with high probability, while reducing
the number of false alarms. In addition to the inertial
measurement unit (accelerometer, gyroscope) data used for the
study, mobile phones can also collect location and weather data,
as well as responses to survey questions sent to the participants.
This data could be uploaded to a remote server for further
analysis, including classification of fall types and the activity
preceding the fall. This host of information can be used to build
better fall monitoring systems, as well as understanding the
context where real falls can occur in amputees.

Limitations
One limitation of this study is the fact that we did not
incorporate real-world falls, but rather falls in a controlled
setting either initiated by the participant (for slips and trips) or
induced by pushing (for lateral falls). Our goal was to collect
falls data that approximate real falls, while being practical and
safe for our participants. Real falls may have a different
movement pattern than simulated falls [31], and algorithms
developed on simulated falls can fail when tested on real falls
[6]. We will acquire real-world falls data for future work by
letting participants carry the mobile phones and report the
natural falls when they occur using the Purple Robot app; this

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 10 | e151 | p. 10http://mhealth.jmir.org/2017/10/e151/
(page number not for citation purposes)

Shawen et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


data could then be used to refine the detection algorithm and
improve the system reliability over time.

Although two false alarms per day is a reasonably low value,
this result might still produce a large number of false positives
relative to the total number of falls that can be expected to
capture. Additional analysis is necessary to differentiate false
positives from actual falls. This could be done by analyzing
other sources of information surrounding the fall, such as GPS
and activity data. For example, this would distinguish someone
who fell and remained on the ground from someone who lost
their balance but continued to walk afterwards, or a phone
dropped on the ground and then picked up. Such an analysis
could be performed either on the phone or on a remote server,
depending on its complexity.

A larger feature set or larger clip lengths could also be used to
further reduce the number of false positives, and remains to be
explored. For example, previous models have used features
describing posture and frequency domain features [6,15].
However, the computational complexity has to be balanced

against the need for real-time continuous monitoring.
Alternatively, a more complex analysis could be also run on a
remote server, with the phone filtering for probable falls.

Conclusions
We developed a machine-learning classifier to detect falls in
people with lower limb amputations using data from mobile
phone inertial sensors. Our results demonstrate that a classifier
trained on falls from non-amputee participants can reliably
generalize to other populations while the mobile phone is
naturally carried in multiple locations. Our approach yields a
significant advantage over a threshold-based classifier because
it drastically reduces the number of false alarms, which is
arguably necessary for fall-detection system to be of practical
use. By applying the techniques used here, along with
improvements in battery management, we believe that fall
detection comes one step closer to improving the interventions
performed after individuals with disabilities experience a fall.
Currently, we are in the process of collecting real-world falls
in individuals with lower limb amputations to test our
fall-detection system in everyday life.
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Abbreviations
AUC: area under the curve
GPS: Global Positioning System
LOSOCV: leave-one-subject-out cross-validation
ROC: receiver-operator characteristic
SEM: standard error of the mean
TFA: transfemoral amputation
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