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Abstract

Background: Is someone at home, at their friend’s place, at a restaurant, or enjoying the outdoors? Knowing the semantic
location of an individual matters for delivering medical interventions, recommendations, and other context-aware services. This
knowledge is particularly useful in mental health care for monitoring relevant behavioral indicators to improve treatment delivery.
Local search-and-discovery services such as Foursquare can be used to detect semantic locations based on the global positioning
system (GPS) coordinates, but GPS alone is often inaccurate. Mobile phones can also sense other signals (such as movement,
light, and sound), and the use of these signals promises to lead to a better estimation of an individual’s semantic location.

Objective: We aimed to examine the ability of mobile phone sensors to estimate semantic locations, and to evaluate the
relationship between semantic location visit patterns and depression and anxiety.

Methods: A total of 208 participants across the United States were asked to log the type of locations they visited daily, using
their mobile phones for a period of 6 weeks, while their phone sensor data was recorded. Using the sensor data and Foursquare
queries based on GPS coordinates, we trained models to predict these logged locations, and evaluated their prediction accuracy
on participants that models had not seen during training. We also evaluated the relationship between the amount of time spent in
each semantic location and depression and anxiety assessed at baseline, in the middle, and at the end of the study.

Results: While Foursquare queries detected true semantic locations with an average area under the curve (AUC) of 0.62, using
phone sensor data alone increased the AUC to 0.84. When we used Foursquare and sensor data together, the AUC further increased
to 0.88. We found some significant relationships between the time spent in certain locations and depression and anxiety, although
these relationships were not consistent.

Conclusions: The accuracy of location services such as Foursquare can significantly benefit from using phone sensor data.
However, our results suggest that the nature of the places people visit explains only a small part of the variation in their anxiety
and depression symptoms.

(JMIR Mhealth Uhealth 2017;5(8):e112) doi: 10.2196/mhealth.7297
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Introduction

Passive and unobtrusive detection of the physical location of
individuals has been made possible over the years by embedding
global positioning system (GPS) systems into commonly used
devices, such as mobile phones. Physical location alone is
usually not very useful for understanding human activity, or the
motivations that underlie that activity. In contrast to physical
location, semantic location carries additional information about
the meaning of the location [1]. For example, semantic location
might tell us if a location is a home, place of work, dining
establishment, or place of worship, thereby infusing the
geographic location with human relevance.

A growing number of papers have shown that a variety of
location features, measured by GPS, can detect mental health
problems such as depression [2-6], bipolar disorder [7], and
social anxiety [8]. It is unclear at this point why these GPS
location features may be related to depression or anxiety. It may
be that the nature of the places and the meaning inherent in
different locations affect how we feel. Previous research has
shown that there is a relationship between mood and certain
activities, such as religious practice [9], participating in social
activity [10], and spending excess sedentary time at home [11].
Improving the ability to detect locations affiliated with these
activities could offer not just a greater understanding of the
behavioral and environmental contributors to depression and
anxiety, but also unique methods for prompting just-in-time
adaptive interventions (JITAIs) using mobile technologies. This
approach could add value beyond that gathered using other
JITAI triggers (eg, self-reported difficulties, GPS location, and
electro-cardiogram signals), and may enable us to determine if
a person with a history of depression is relapsing, or if a person
is about to have a panic attack [12].

Local search-and-discovery services, such as Foursquare, can
estimate semantic locations based on GPS coordinates and the
data they have globally collected from populated areas in the
world. When these services are embedded in a mobile app using
an application programming interface (API), they can passively
provide location-specific information for the locations that users
visit. Since its launch in 2009, Foursquare has been used in
research applications to accomplish diverse tasks, ranging from
the analysis of individuals’ food and drink habits across cultures
[13] to the examination of the popularity of venues and
identifying factors contributing to venue popularity [14].
Foursquare has tapped into a new model of location-based
advertising such that users can be notified of businesses in their
immediate vicinity, and can receive benefits such as discounts
and coupons for “checking in” to these businesses.

However, asking search-and-discovery services such as
Foursquare about semantic locations, based on a given GPS
coordinates, has limitations. First, GPS can be inaccurate, and
particularly in denser urban environments, variability in GPS
may lead to the detection of false locations. For example, one
might be at a restaurant within a shopping mall, and the
search-and-discovery service may classify the person as at a
shop rather than a restaurant. Second, although these services
can detect “residential” locations, they cannot distinguish a

person’s home from another home they are visiting. These
limitations prevent such services from being a reliable source
of information, especially for behavioral sensing and
intervention, where it is crucial to know exactly when a person
is at home, work, a friend’s home, or other locations.

In addition to GPS, mobile phones can sense many more
variables in the environment, such as light, sound, and Wi-Fi
signals. Using a mobile phone, we can also determine what type
of physical activity an individual is performing, how much time
they spend in a location, and how they interact with their phones.
Semantic locations may have distinct signatures, such as the
length of time a person spends at a location, time of the day and
day of the week that they visit, type of activities that they
perform, and the sound and light conditions in the environment.
These features may help us to determine if the place is home,
a grocery store, place of worship, or a library. As an obvious
example, a place that a person spends time over night is most
likely home, and a bright place visited during the day, with
intermittent walks and stops, is likely a store. Therefore,
detection of semantic locations using mobile phone sensors
seems feasible.

The aim of this paper was first to develop methods for improving
mobile phone-based detection of semantic locations by
incorporating sensors beyond the simple GPS. We developed
methods for detecting semantic locations, and compared their
accuracy to that of Foursquare. While improving semantic
location detection is worthwhile and could further serve clinical
and consumer-driven purposes, our second aim was to explore
the relationship between semantic location detection and
depression and anxiety. We specifically investigated the
relationship between semantic location visits and the severity
of depression and anxiety symptoms, as well as the differences
between individuals with and without those symptoms.

Methods

Participant Recruitment
We recruited participants between October 28, 2015 and
February 12, 2016. The recruitment was done in collaboration
with Focus Pointe Global (FPG), a company that specializes in
market and scientific research strategies and participant
recruitment and retention [15]. FPG maintains a panel of 1.5
million potential participants from the general population. For
our study, FPG sent out emails to potential participants with
links to the screener questionnaire. Additionally, FPG used
phone calls to contact potential participants from their in-house
registries.

Interested individuals from the general population of the United
States contacted FPG and were screened for eligibility using a
brief questionnaire. Individuals were eligible for our study if
they were at least 18 years old, able to read and understand
English, owned a mobile phone with Android 4.4 through 5.1,
and had access to Wi-Fi for at least one 3-hour period per day.
We excluded individuals who indicated on self-report that they
were diagnosed with any psychotic disorders, were unable to
walk more than half a mile (4 city blocks), or had positive
screens for alcohol abuse (Alcohol Use Disorders Identification
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Test [16] score >16), drug abuse (Drug Abuse Screening Test-10
[17] score >6), suicidal ideation (Beck Depression Inventory-II
[18] item 9 rating >2), or bipolar disorder (Mood Disorder
Questionnaire [19] question 1 score 7, an endorsement of
question 2, and a response of 2 or 3 for question 3). We also
excluded individuals who shared their phone with others.

Depressive symptoms were measured using the Patient Health
Questionnaire, 9-item (PHQ-9) [20]. On the PHQ-9, participants
are prompted to indicate how frequently they have experienced
specific symptoms over the past two weeks, such as “feeling
down, depressed, or hopeless” and “feeling tired or having little
energy”. Participants respond on a four-point Likert-type scale,
ranging from 0 indicating “not at all” to 4 indicating “nearly
every day.” PHQ-9 scores range between 0-27. We also used
the cut-off point of 10 to divide participants into those who
screened positive for depression (PHQ-9 >10; termed depressed
in this paper) and those screened negative (PHQ-9 <10; termed
nondepressed). This cut-off point has been shown to maximize
the sum of sensitivity and specificity for depression diagnosis
[20].

For anxiety assessment, we used the Generalized Anxiety
Disorder, 7-item (GAD-7) [21]. The GAD-7 is structured
similarly to the PHQ-9, and participants are prompted to indicate
how frequently they have experienced symptoms such as,
“feeling nervous, anxious, or on edge” and, “being so restless
that it’s hard to sit still” over the past two weeks on the same
four-point Likert-type scale. GAD-7 scores range between 0-21.
We used the cut-off point of 10 to separate those participants
who screened positive for GAD (GAD-7 >10; termed anxious
in this paper) from those who screened negative (GAD-7 <10;
termed nonanxious). At this cut-off point, the sum of sensitivity
and specificity is maximized [21].

We wanted to have a wide range of depression and anxiety
symptoms in our sample, and therefore we selected roughly
equal numbers of participants in four groups, based on their
screening assessments: depressed and anxious, depressed and
nonanxious, nondepressed and anxious, and nondepressed and
nonanxious. In addition to assessment at baseline, we also
assessed each participant’s depression and anxiety at week 3
and week 6.

Participant Enrollment
Eligible participants were consented using procedures approved
by the Northwestern University Institutional Review Board.
Consenting was done using a website: participants were directed
to a webpage that contained information about the study
procedures, benefits, and potential risks. Specifically,
participants were informed about the sensor data that were going
to be collected from their mobile phones, the types of questions
that would be asked throughout the study, and the procedures
undertaken to protect their private information. After digitally
signing the consent form, participants were enrolled in our study.

Each participant was enrolled for a period of 6 weeks. First, a
study identification (ID) number was assigned to the participant
by FPG. Participants were then asked to complete an online
questionnaire regarding their demographic information, which
consisted of their age, gender, race, and ethnicity, along with

their US state of residence, and information about various aspect
of their lives that could impact movement patterns (eg, health
difficulties, number of jobs, and job locations). Finally,
participants downloaded two apps: Purple Robot [22], which
collected sensor data from their phones; and EMA app, which
asked them questions about the places they visited. Participants
were compensated between US $25 and $270.40 depending on
how long they stayed in the study and how many of the daily
questionnaires they answered.

Mobile Phone Data Collection
After participants were enrolled, we started collecting two
categories of data from their mobile phones: (1) sensor data,
which contained data from the physical sensors as well as
software services such as phone and short message service
(SMS) communications; and (2) ecological momentary
assessment (EMA) data, which consisted of daily questions that
showed up on participants’ phones asking them about the
locations they visited throughout the day.

The phone sensor data were captured using the Purple Robot
[22] app. Purple Robot is a multi-purpose, open-source Android
app that we have developed for passive collection of mobile
phone sensor data [3]. This app gathers data from the sensors
and services available on the phone, including light, sound,
GPS, accelerometer, phone and SMS communications, screen,
and Wi-Fi. The app initially stores sensor data on the device,
and then transmits them as network connectivity becomes
available. This strategy allows us to collect data in a variety of
wireless connectivity scenarios with the confidence that
intermittent network access does not affect the nature, quality,
or quantity of the collected data.

For the collection of EMA data, we used a second Android app,
EMA app, which asked participants questions about the locations
they visited throughout the day. The app was specifically
developed for this study. Each evening, the app analyzed the
GPS data collected over the previous 24 hours. The EMA app
first clustered the GPS data using an adaptive k-means clustering
method [3], considering a maximum radius of 100 meters for
each cluster, and then removed the clusters that the user visited
for a duration of less than 10 minutes. This second step removed
clusters that were not actual locations, but were generated
because the user was moving slowly (eg, they were stuck in the
traffic). After detecting the visited locations, the EMA app
provided the participant with a map identifying each location,
the time they were at the location, and asked the following
questions: “What is the name of this place?” and, “What kind
of place is this?”

What is the Name of This Place?
A list of likely location names was provided to the user to
choose from. This list was obtained from the Foursquare location
API. The participant could also enter their own location name
if it was not provided.

What Kind of Place is This?
This list was adapted from Foursquare venue categories, and
included Arts & Entertainment, Food, Nightlife Spot, Outdoors
& Recreation, Professional or Medical Office, Spiritual, Shop
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or Store, Travel or Transport, and Home. In addition, we added
Work, Another's Home, and Other. If the participant answered
Other, they were asked to enter the location type. The EMA app
saved the cluster center corresponding to each detected location,

the visit times, and the participant’s answers to the questions
regarding that location. Table 1 lists the location categories we
used in the EMA app, and how they matched Foursquare’s
high-level location categories.

Table 1. Location category labels reported by our study participants (left) and their corresponding high-level Foursquare location categories.

Foursquare Location CategoryEMA app Location Category

Nightlife SpotNightlife Spot (Bar, Club)

Outdoors & RecreationOutdoors & Recreation

Arts & EntertainmentArts & Entertainment (Theater, Music Venue, Etc.)

Professional & Other PlacesProfessional or Medical Office

FoodFood (Restaurant, Cafe)

ResidenceHome

Shop & ServiceShop or Store

Travel & TransportTravel or Transport (Airport, Bus Stop, Train Station, Etc.)

-Work

-Another’s Home

Purple Robot and EMA app anonymized any sensitive
information before storage and transmission. Specifically, the
apps used an MD5 hashing algorithm [23] to anonymize the
study participant identifiers. Once the data was anonymized, it
was transmitted to the data collection server, and the local copy
was deleted from the device. The data residing on the server
could be linked with other information gathered during the study
only if the unique identifiers used by the participants and the
study-specific keys used to encrypt the data were known.

Foursquare Evaluation
We wanted to assess how well Foursquare could predict the
type of locations that users reported daily. To do so, we used
the Foursquare wrapper library [24] in Python, and queried the
type of location for each location that participants visited. These
queries used 4 parameters: latitude, longitude, database version
date, and limit. For latitude and longitude, we used the GPS
coordinates of the visited location that was saved by the EMA
app. For the database version date, we used the current date at

the time of the query, which was 2016/8/10, so that we had the
latest version of the data. The limit parameter indicated the
number of guesses, for which we used 1, so that it returned the
best match. We performed these queries for each of the visited
locations recorded by EMA app.

Foursquare’s response to our queries was in JavaScript object
notation (JSON) format [25], and contained the place ID, name,
contact information, address, distance from the queried
coordinates, and the location category. From this information,
we only saved location category and distance.

The location category returned by the Foursquare website was
too specific, being as detailed as “Cambodian Restaurant” or
“College Math Building”. Since we did not need this level of
detail in our study, we used Foursquare’s Category Hierarchy
[26] to translate these low-level categories into high-level ones.
This category hierarchy can be obtained in JSON format using
the HTTPS query detailed in Textbox 1. The response contains
the whole category hierarchy.

Textbox 1. HTTPS query for category hierarchy.

https://api.foursquare.com/v2/venues/categories?oauth_token=<TOKEN>&v=<VERSION>

Where TOKEN can be obtained from Foursquare’s developers’ website, and VERSION is the database version date
in YYYYMMDD format

After querying the Foursquare category for each location cluster,
we compared it to the category reported by the participant, and
calculated the accuracy (see section: Classifier Evaluation). We
skipped locations reported as Work, Another’s Home, or
Spiritual for this comparison, since these did not exist in
Foursquare categories. The calculated accuracy gave us the
performance of Foursquare in predicting semantic locations.

Detecting Semantic Location from Phone Sensor Data

Sensor Features
To classify semantic locations from phone sensor data, we first
calculated their features. These features were extracted from all
sensor data that were gathered during a visit to a location. In
this way, for every location visit, we obtained one feature vector.
This vector consisted of 45 features, which will be described
in the following sections.
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Light Features

Light features were calculated from light intensity, in lux,
sampled by the light sensor at 10 Hz. This sampling frequency
could vary from device to device, so light features were designed
such that they did not depend on the sampling frequency. These
features consisted of basic statistics including mean, variance,
skewness, and kurtosis. In addition, we calculated the percentage
of time the light sensor output was zero, and the number of
times that it crossed its mean value in 1 second.

Sound Features

Sound features captured different aspects of the sound in the
environment. Specifically, we sampled the audio using the
phone’s microphone every 5 minutes, each time for 15 seconds.
From each 15 second audio recording, we extracted the power
and the dominant frequency. Power was calculated as described
in Figure 1.

To calculate the dominant frequency, we obtained the amplitude
of the fast Fourier transform of the audio signal, and found the
frequency that maximized the amplitude.

Screen Features

We used screen activity to measure the amount of participants’
interaction with their phones. We calculated the number of times
the screen state transitioned from OFF to ON, as well as the
average and the standard deviation (SD) of the duration that the
screen was ON each time.

Activity Features

We used the physical activity states provided by the Android
Activity Recognition API. We sampled this API every 10
seconds. The Physical Activity API uses the accelerometer
sensor to detect the following physical activities: Still, Walking,
Running, Tilting, On Bike, In Vehicle, Unknown. We calculated
the percentage of time that the participant was in Still, Tilting,
Walking, and Unknown states. In addition, we calculated the
percentage of transitions for a number of state transitions that
we expected to be informative about the type of location the
participant was visiting. These transitions included Still to
Walking, Still to Tilting, Still to Unknown, and Walking to
Unknown.

Communication Features

Communication features consisted of the total number of
incoming, outgoing, and missed phone calls. In addition, we
derived the number of incoming and outgoing SMS text
messages.

GPS Features

These features were calculated from the latitude and longitude
values provided by the GPS sensor, sampled every 5 minutes.
GPS features included average latitude, average longitude, and
location variance defined as the equation in Figure 2.

In addition to these features, by filtering out the data points that
were outside the 50-meter radius of a location’s average latitude
and longitude during a visit, we approximated the visit frequency
to that location, and the mean time interval between the visits.

Wi-Fi Features

We sampled the current access point’s media access control
address and the number of available Wi-Fi networks every 5
minutes. We only used the number of Wi-Fi networks as a
feature.

Time Features

We calculated the visit duration, the timespan of the visit, the
visit mid-time in hour, and the day of the week at the start and
the end time of the visit. Visit duration was defined as the total
time a participant spent at a location on a given day, while visit
timespan was the time from when they entered that location
first on a given day to the time they left it on the same day.

Weather Features

We obtained the weather conditions at the location and time of
visits. For this data, we used the Weather Underground service
[27]. For each detected location, we queried Weather
Underground for the history of weather data in that location,
which returned those data for the past year from the date of
query. The responses were in JSON format, with each entry
corresponding to one weather report. We searched for the report
that was closest to the time the user visited that location, and
used the temperature, dew point, and weather condition as
features.

Classifier Architecture
We wanted to see how successfully we could detect semantic
locations, reported by the participants, using the sensor features
that were passively collected from their mobile phones. For this
classification problem, we used ensembles of decision trees
with the gradient boosting optimization method [28], also known
as extreme gradient boost (XGBoost). These classifiers have
been shown to outperform other classification methods in
high-dimensional machine learning problems [29]. In this study,
we particularly chose XGBoost because these classifiers perform
well when the dimensionality of the data relative to the number
of samples is large [30], and that they can deal with missing
values.

A decision tree, shown in Figure 3, determines the class of a
feature vector by making sequential, individual decisions on
the elements of that vector. Each decision is made at a node,
where the value of one feature is compared to a threshold value.
The node has two outgoing branches that reach next-level nodes.
Depending on whether the feature value is larger or smaller than
the threshold, one of the branches is chosen. One branch is also
designated to the condition where the feature value is missing.

Each decision tree in the ensemble is assigned to one class, and
provides a prediction score at its leaf node (Figure 3, boxes)
for the class it belongs to. The ensemble’s prediction score for
each class is calculated by summing over the prediction scores
of all trees in that class, as detailed in Figure 4.

The final class probabilities are calculated as a softmax function
of the predictions scores using the equation shown in Figure 5.

Therefore, for each given feature vector, the ensemble provides
a probability distribution over the classes.
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Figure 1. Sound power calculation; where S(n) is the sound amplitude (dB) at sample n, and N is the total number of samples.

Figure 2. Location variance feature; calculated as the logarithm of the sum of variances in latitude and longitude values.

Figure 3. An example of a single decision tree in the ensemble of decision trees. Each circle is a tree node, where a decision is made by comparing a
feature value fxx to a threshold. For a given feature vector, depending on which path is taken, a single prediction score is generated, shown in the boxes.
Note that one of the outgoing branches of each node is also dedicated to the situation where the data is missing.

Figure 4. Aggregation of prediction scores made by individual trees; where gk,m represents the decision tree k in class m, that maps a feature vector
x to a prediction score gk,m(x), and ym is the ensemble prediction score for class m. K is the total number of trees for each class.

Classifier Training
The goal of training is to push the class probabilities pm (Figure
5) as close as possible to the true classes in the training data.
However, we also wanted to avoid overfitting to the training
data. Therefore, our training objective should also prevent the
model from becoming too complex. Accounting for these two

objectives, the XGBoost optimization algorithm uses the cost
function explained in Figure 6.

While the logistic loss term in Figure 6 (leftmost term) penalizes
the discrepancy between the ensemble’s prediction and the
ground truth, the rest of the terms prevent trees from overfitting
by penalizing the number of nodes (T) as well as the magnitude
of their prediction scores (y).

Figure 5. Class probability calculation; where pm represents the probability for class m, ym is the ensemble prediction score for class m, and M is the
number of classes.
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Figure 6. General form of the cost function; where l(yi,yi*) is the logarithmic loss [31] between the prediction scores yi and the true prediction scores
yi*, T is the number of nodes in a tree, N is the number of training samples, γ, λ, and α are constants, and ‖.‖1 and ‖.‖2 are L1 and L2 norms,
respectively.

Figure 7. Cost function for training a new tree added at iteration t; where gt(.) is the prediction score provided by the new tree. See Figure 6 caption
for more details on the parameters.

In the gradient boosting method, trees are added to the ensemble
one by one. The ensemble starts with one tree, which is fit to
the training data using the cost function in Figure 6. At each
iteration, a new tree is added to the ensemble such that it fits to
the residual error of the existing trees on the training data.
Concisely, the new tree complements the existing trees such
that, at iteration t, the cost function in Figure7 is minimized.

The parameters of the new tree are chosen such that L(t) is
minimized. In this way, the ensemble gradually fits to the
training data. To find out when to stop adding new trees to the
ensemble, we calculated the cross-validation error within the
training dataset at each iteration. As the number of trees
increase, this error decreases. However, after a certain point,
the error starts to increase due to overfitting. We stopped adding
new trees at that point, and evaluated the resulting classifier on
the test set (see Classifier Evaluation).

Hyperparameter Tuning
We tuned the hyperparameters of the XGBoost classifier by
grid search, and used data from 10% of participants. Within this
subset of data, we performed a 10-fold cross-validation to
estimate the area under the curve (AUC; see Classifier
Evaluation). We chose the set of parameters on the grid that
maximized this AUC.

The parameters included in hyperparameter tuning were γ, L1
regularization weight (α), L2 regularization weight (λ), learning
rate, maximum tree depth, subsampling fraction (r), and feature
subsampling fraction (s). Subsampling fraction, r ∈ (0,1),
determines the fraction of training data samples that are seen
by each tree during training, while features subsampling fraction,
s ∈ (0,1), is the fraction of features that are seen by each tree
node. After finding the optimal value of these hyperparameters,
we trained and evaluated classifiers on the whole dataset.

Classifier Evaluation
Our goal was to create algorithms that could determine the
semantic locations for unseen individuals, so we trained and
evaluated the classifiers using a subject-wise cross-validation
scheme. Specifically, we randomly selected 70% of the subjects
to train the classifier, and used the remaining 30% to evaluate
its prediction accuracy. We repeated this procedure 100 times.
The distribution of prediction errors on held-out participants
used as test provides an unbiased estimate of the prediction
error of the algorithm for the population from which our dataset
is sampled [32]. Therefore, we could tell how well our classifier
would generalize to new, unseen individuals.

To calculate the prediction error in each round of
cross-validation, we estimated the receiver operating
characteristic curve, and calculated the AUC. The AUC ranges
between 0 and 1, with 0.5 indicating chance level performance.
The advantage of using AUC is that it is robust to the imbalance
in the number of samples in the classes. Therefore, by iterating
over all participants as test, we obtained a good estimate of the
classifier’s accuracy.

Relationship Between Semantic Location and
Depression and Anxiety
We evaluated the relationship between the amount of time
participants spent at each semantic location and their level of
depressive and anxious symptoms, measured by PHQ-9 and
GAD-7, respectively. We performed two analyses. First, we
calculated Pearson’s correlation between the scores and the time
spent in each location, across all participants. For the second
analysis, we divided participants into depressed and
nondepressed, as well as anxious and nonanxious, based on
their scores. For depression, we defined the two groups by
considering participants who consistently had PHQ-9 <10
(termed nondepressed) or PHQ-9 >10 (termed depressed) across
all three assessment time points. Likewise, for anxiety, we
defined the two groups by considering participants who
consistently had GAD-7 <10 (termed nonanxious) or GAD-7
>10 (termed anxious). Therefore, in both analyses, we excluded
the participants who crossed the PHQ-9=10 or GAD-7=10
thresholds. The main reason was that these participants could
not be reliably classified. Furthermore, if we had included them,
it would have added two additional categories (those who
improved and those who got worse), which would have reduced
power. It is also unclear how we would interpret any
relationships with participants transitioning from one clinical
state to another. After dividing subjects into these groups, we
compared the duration of time that participants spent at each
semantic location between the groups, using two-sample t-tests.

Results

Participant Statistics
A total of 208 individuals passed the eligibility criteria for
participating in our study, and were recruited. One participant
did not install the software on their phone, and another had
invalid GPS data. These two participants were removed from
all analyses. Of the remaining 206 participants, 22 (10.7%)
stopped providing data before the end of the 6-week period.
However, many continued to send data after the end of 6 weeks,
with 27 (13.1%) providing more than 60 days of data.

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 8 | e112 | p. 7http://mhealth.jmir.org/2017/8/e112/
(page number not for citation purposes)

Saeb et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The 206 participants included in the analyses were 170 females
(82.5%) and 36 males (17.5%). Participants’ ages ranged
between 18 and 66 years, with a mean of 39.3 (SD 10.3). The
participants’ locations were diverse, covering most of the
populated states and major cities in the United States. Most of
these locations (86.8%, 178/206) were in “mostly urban” areas,
as defined by the United States Census Bureau [33], while
12.1% (25/206) were in “mostly rural” areas. The rural or urban
condition for the location of the remaining 3 participants could
not be determined. The average depression score (PHQ-9) was
9.72 (SD 5.10), and the anxiety score (GAD-7) was 9.01 (SD
5.41). These values show that our participants had a wide
distribution of depression and anxiety symptoms.

In response to a question on employment status, 61.2%
(126/206) indicated that they were employed, 20.9% (43/206)
were unemployed, 8.3% (17/206) had a disability which
prevented them from working, and 1.9% (4/206) were retired.
Sixteen participants (7.8%, 16/206) did not specify their
employment status. Of the 126 employed participants, 98
(77.8%) had one, 23 (18.3%) had two, 4 (3.2%) had three, and
one (0.8%) had four jobs. In addition, of these 126 participants,
36 (28.6%) worked in more than one location.

Semantic Location Self-Reports
The semantic locations reported by the participants were diverse.
While most participants reported the predefined locations in
Purple Robot, as the example in Figure 8 A shows for one
participant, many participants defined their own semantic
locations by selecting “Other” and typing in their desired
semantic location name. The total number of distinct location
types reported by all participants was 370; however, only a
small fraction of these locations was consistently reported by

most participants (Figure 8 B). Therefore, apart from a few
categories which need to be considered for future studies (eg,
School and Library), most of the visited locations were among
the locations that we had considered in the initial design of our
mobile app.

Classifier Hyperparameters
The optimized hyperparameters for the XGBoost classifier were
the following: for sensor-only classification, we set the number
of trees to 200, the fraction of samples seen by each tree to 0.2,
and the fraction of features to 0.5. For classification based on
both sensor and Foursquare features, these three parameters
were set to 300, 0.25, and 0.2, respectively. In both scenarios,
we set γ=0.4, λ=1, α=0, the maximum depth of decision trees
to 4, and learning rate to 0.025. Given these parameter values,
our training procedure was substantially regularized.

Predicting Semantic Location
We first measured how accurately Foursquare could detect the
semantic locations reported by participants. To obtain the
locations detected by Foursquare, we used the GPS coordinates
of that location, and queried Foursquare about its closest match
to that location. We then compared the results to the locations
reported by participants, and calculated the AUC for each
category. The results are shown in the left column of Table 2.
While Foursquare could detect Shop or Store with an average
AUC 0.76, its AUC for Home was close to the chance level.
Foursquare did not have location categories equivalent to Work,
Another’s Home, or Spiritual, and therefore the AUCs for these
categories could not be calculated. On average, the accuracy of
Foursquare in detecting 8 semantic locations was approximately
0.62.

Table 2. Mean area under the curve (AUC) in detecting each location category, using Foursquare only, mobile phone sensor features only, and both.
Note that we could not use Foursquare to detect Work, Another’s Home, or Spiritual locations; hence there are no results.

Sensor+FoursquareSensorFoursquareSemantic Location

0.84 (0.78-0.91)0.79 (0.72-0.86)0.54 (0.49-0.60)Travel or Transport, mean (CI)

0.89 (0.79-0.95)0.87 (0.78-0.94)0.61 (0.53-0.72)Nightlife Spot, mean (CI)

0.87 (0.80-0.92)0.82 (0.75-0.88)N/ASpiritual, mean (CI)

0.86 (0.75-0.92)0.81 (0.71-0.88)0.59 (0.53-0.64)Outdoors & Recreation, mean (CI)

0.92 (0.88-0.95)0.88 (0.85-0.91)0.67 (0.61-0.73)Arts & Entertainment, mean (CI)

0.87 (0.83-0.91)0.86 (0.82-0.90)N/AWork, mean (CI)

0.88 (0.83-0.93)0.85 (0.80-0.91)0.65 (0.58-0.73)Professional or Medical Office, mean (CI)

0.83 (0.75-0.89)0.77 (0.69-0.82)N/AAnother's Home, mean (CI)

0.83 (0.78-0.87)0.79 (0.74-0.83)0.64 (0.59-0.68)Food, mean (CI)

0.96 (0.95-0.97)0.96 (0.95-0.97)0.53 (0.51-0.56)Home, mean (CI)

0.89 (0.85-0.92)0.86 (0.82-0.90)0.76 (0.73-0.79)Shop or Store, mean (CI)

0.880.840.62Mean AUC
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Figure 8. (A) Location report data from one example participant, collected between 11/07/2015 and 11/28/2015. Each rectangle shows the period of
time the participant has been in a specific location. The sensor data during that time period is used to create a feature vector, which is then used to detect
that semantic location. (B) Top locations visited by all participants, sorted by how many participants visited them. As the total number of unique reported
locations was 370, we only included the ones that had been visited by at least two participants.

We wanted to determine whether mobile phone sensors alone
could detect the semantic location of participants. We used 45
features that were extracted from a variety of sensors during
the time that the participant was visiting a location (see section:
Sensor Features). We trained the XGBoost classifiers to map
these features to semantic locations, and tested these classifiers
on participants that they had not seen during training. Compared
to Foursquare, the AUC of detecting certain locations was
considerably higher (Table 2, middle column). Specifically,
using the sensors instead of Foursquare yielded AUCs that were
on average more than 20% greater (Table 2, middle column).
This increase was mostly evident for Home, Nightlife Spot, and
Travel or Transport categories. Overall, the average AUC for
all semantic locations increased to 0.84. Therefore, not only
could we use phone sensors alone to detect semantic locations,
but their performance was considerably better than Foursquare.

Next, we used both Foursquare and phone sensor data to see if
this approach could further increase the accuracy of our
classifiers. To this end, we added two extra features to the 45
features that we previously used for training the classifiers: the
Foursquare location type, which was represented by a binary
vector with 9 elements (each corresponding to one category);
and the distance to the nearest Foursquare location. Therefore,
the total number of features increased to 55. Using this new
feature set further increased the average AUC to 0.88 (Table 2,
right column). This increase was mostly evident in detecting
Food, Shop or Store, Art & Entertainment, and Spiritual
categories. Therefore, augmenting mobile phone sensor features
with Foursquare data made our classifiers better at detecting
semantic locations.

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 8 | e112 | p. 9http://mhealth.jmir.org/2017/8/e112/
(page number not for citation purposes)

Saeb et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Finally, we asked which features contributed the most to
detecting semantic locations by estimating their importance.
To obtain feature importance for each feature, we removed that
feature from the training data and calculated the resulting change
in the cross-validated AUC. The results are shown in Figure 9,
with features sorted by their importance. While features such
as Visit Timespan, Location Variance, Latitude, Number of
Wi-Fi Networks, Visit Duration, and Visit Frequency have the
highest importance, several features have close to zero or
negative importance, meaning that their removal does not affect
(or even slightly improves) the performance of the classifiers.
These features include some of the sensor features as well as
Foursquare features. However, one should note that each of
these effects are generated by removing only one feature from
the feature set, and the collective effect of removing multiple
features might be different. Nevertheless, it seems that most
sensor and Foursquare features are useful in distinguishing
semantic locations.

Relationship Between Semantic Location and
Depression and Anxiety
We evaluated the relationship between the time spent at different
semantic locations and the level of depression and anxiety
symptoms, measured by PHQ-9 and GAD-7, respectively. First,
we evaluated the linear correlation between these two groups
of variables (Table 3). When considering individual correlations,
some were statistically significant (P<.05). Notably, the duration
of time spent at Spiritual locations is negatively correlated with
depression and anxiety scores, for 3 of 6 assessments. When
we consider the total number of 66 comparisons between all
semantic locations and depression and anxiety scores, we cannot
rule out the possibility that these significant correlations are
generated by chance. However, because these calculations are
not independent, conservative corrections (such as a Bonferroni
correction) may not be appropriate [34].

Table 3. Linear correlation coefficients (r) between time spent at semantic locations and depression (PHQ-9) and anxiety (GAD-7) scores. Values
show the median of 1000 bootstrap estimates of r. Italicized values indicate coefficients that are significantly (P&lt;.05) different from zero. However,
by correcting for multiple comparisons (66 comparisons here) we cannot rule out the possibility that these correlations are a result of chance.

GAD-7
Week 6

GAD-7
Week 3

GAD-7
Week 0

PHQ-9
Week 6

PHQ-9
Week 3

PHQ-9
Week 0

0.0970.1010.0830.0890.0730.057Home

-0.038-0.0300.001-0.0200.0183-0.010Shop or Store

-0.085-0.176-0.083-0.140-0.139-0.084Work

-0.115-0.086-0.089-0.152-0.093-0.088Food

0.000-0.003-0.016-0.064-0.0650.046Another's Home

0.0510.019-0.0690.0490.0960.029Professional or Medical Office

-0.109-0.131-0.065-0.101-0.1230.016Outdoors & Recreation

-0.057-0.055-0.044-0.090-0.092-0.172Arts & Entertainment

-0.0880.0120.082-0.113-0.037-0.070Travel or Transport

-0.168-0.143-0.094-0.147-0.078-0.041Spiritual

-0.045-0.0630.041-0.045-0.173-0.126Nightlife Spot

We also performed a group difference analysis, by dividing the
participants into two groups (once based on their depression
scores, and another time based on their anxiety scores). We
compared the duration of time participants spent at each
semantic location between these groups. For depression, the
nondepressed group consisted of 51 participants and the
depressed group consisted of 68 participants. The remaining 88
participants crossed the PHQ-9=10 threshold between the
assessments, and were excluded from this analysis because they
could not be clearly classified. For anxiety, the nonanxious
group consisted of 51 participants while the anxious group
consisted of 61 individuals. The remaining 96 participants
crossed the GAD-7=10 threshold and were excluded.

The results for depression are shown in Figure 10A. While the
depressed and nondepressed groups seemed to have different
distributions of time spent across locations, these differences
were significant (P<.05) only for two locations: the
nondepressed group spent significantly more time at Work,
while the depressed group had more time spent at a Professional
or Medical Office. For the anxious versus nonanxious
comparison (Figure 10B), the difference was only significant
for the Spiritual category, with the nonanxious group spending
more time in this location category, on average. Therefore, it
seems that time spent at semantic locations contains some
information about depression and anxiety, but these findings
are not consistent.
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Figure 9. Mobile phone sensor feature importance in detecting semantic locations. Features are sorted based on their importance, from top to bottom.
The importance of each feature is calculated by computing the decrease in the cross-validated area under the curve when that feature is removed from
the feature set. Negative values indicate an increase in performance. Each value is the mean feature importance across cross-validation folds, and error
bars show the standard error of the mean.
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Figure 10. The relationship between semantic location visit duration, depression, and anxiety. Each bar shows the average time spent at each location
by (A) depressed versus nondepressed and (B) anxious versus non-anxious groups, relative to the total time spent by all participants in that location.
Error bars show 95% CIs. Both mean and CIs are obtained by bootstrapping over 1000 iterations. Stars indicate significant difference between the
means, obtained using a 2-sample t-test at the P<.05 level. However, adjusting for multiple comparisons, these differences are all nonsignificant.

Discussion

Principal Results
In this paper, we were able to detect the type of locations that
individuals visited, using data passively collected from their
mobile phones. The phone sensor data were especially crucial
in detecting these semantic locations. Sensor features alone
produced accuracies that were more than 20% greater than those
reported by Foursquare, and combining the sensor features with
Foursquare produced even greater accuracy. This result is not
surprising since detecting semantic location based on GPS alone
is not necessarily accurate, especially in urban areas [35], and
can lead to detecting nearby locations instead of the actual

location. Sensors, which are available on most mobile phones,
can provide valuable information about the type of locations
phone users visit, and can significantly improve the accuracy
of these services.

The performance of the classifiers considerably varied across
the location types. While Home could be detected with an AUC
of above 0.95, the classification AUC for Another’s Home and
Food was 0.83. This variability may have multiple causes. First,
visits to certain locations, such as home or work, are more
regular in time, which makes them easier to detect based on the
time of visit. Another cause might be that some semantic
locations such as Travel or Transport were less represented in
the data, since participants visited those locations less often.

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 8 | e112 | p. 12http://mhealth.jmir.org/2017/8/e112/
(page number not for citation purposes)

Saeb et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


This factor has likely made it difficult for classifiers to find the
feature patterns that are distinct indicators of those locations.
Finally, while some locations (eh, Home) have a clear definition,
participants may have been confused about which location type
to report for some other locations. For example, a participant
might have had food in a store, and have reported that location
as either “Food” or “Shop or Store”. Overall, although
classification performance varied across different semantic
locations, it significantly benefited from incorporating mobile
phone sensor data.

While we could detect the types of locations, we found only
few significant relationships between the amount of time spent
in those locations and self-reported symptoms of depression
and anxiety. Furthermore, these few relationships were weak
and inconsistent. This failure may have multiple explanations.
First, our categorization of semantic locations was based largely
on Foursquare categories, which was not developed with mental
health or wellness in mind and may not be accurate, useful, or
relevant to mental health. These categories were also often
imprecise (eg, “Professional or Medical Office”). For mental
health research, we may need to create location categories that
are mostly relevant to the factors that influence mental health.

Second, the lack of a consistent relationship between semantic
location and depression or anxiety may reflect larger problems
in the literature. Past research has examined smaller, discrete
samples of participants, such as university students [2,4,8,36]
or residents of the same city [3,37]. This study sample was
geographically diverse, with a broader sample of the American
population. This diversity in location enriched our dataset by
including people from rural and urban areas, and different
climates, cultures, and lifestyles. While this diversity helped us
to obtain a better estimate of the accuracy of location detection
in real-world applications, it may also reflect problems with
increasing dimensionality, as this area of research moves
towards more generalizable samples.

It is possible that this finding is accurate: that the kinds of places
we go is not related to our level of depression or anxiety. This
theory would suggest that the relationship between movement
through geographic space and depression or anxiety [2-4,37]
may be related to some other aspect of mobility patterns. For
example, it may be that depression or anxiety is more related
to the processes of getting to various locations, such as physical
activity [10,38,39], than the actual locations themselves.
Furthermore, low motivation in depressed individuals may
decrease the likelihood of moving from a commonly visited
location (such as home or work) and a less frequently visited
place (such as a store or movie theater), but may have very little
to do with moving from a less frequently visited place to home
or work [40].

Limitations
There are a number of limitations that need to be mentioned.
First, when detecting semantic locations we did not consider
the transitions between locations. Knowing the transition
probabilities can be useful; for example, it may be more likely
to visit Home after Shop or Store. One reason for not
considering transitions was that we only considered the top 11
most-visited locations for the classification problem, and

therefore the sequence of semantic locations in the training data
were not necessarily consecutive in time. Another reason was
the existence of gaps in the data, which caused further separation
between consecutive visits. Incorporating transition probabilities
in detecting semantic locations, when possible, will likely
increase the classification accuracy of the resulting algorithms.

Second, semantic locations may have signatures that we failed
to capture through our phone sensors. For example, the type of
phone apps people use, or individuals who they contact, can be
a good distinguishing feature between locations. Using such
sources of information as features in future studies may improve
the performance of semantic location detection.

Third, our study participants differed from the general
population in a few aspects. Approximately 83% of the
participants were women, significantly different from 50.8%
in the general population of the United States [41]. Furthermore,
nearly 21% of the participants were unemployed, compared to
the nationwide estimate of 5% unemployment [42]. Finally, we
only included individuals who owned smartphones, while
approximately 28% of Americans do not own such phones [43].
In addition, our inclusion of people with only Android phones
excluded 41% of smartphone users who use phones with other
operating systems [44]. Census data shows that owing a
smartphone is associated with certain demographic variables
such as age, education, and income [43]. Therefore, our
inclusion criteria might have affected the study sample.

Fourth, the assessment of depression and anxiety in this study
was based on self-report, and therefore may not generalize to
assessments based on diagnostic interview. A clinical diagnosis
usually involves an in-depth interview and consideration of
confounding factors, based on the criteria in the Diagnostic and
Statistical Manual of Mental Disorders [45,46]. In our study,
the assessment was solely based on Web-based self-reported
PHQ-9 and GAD-7 scores, and therefore our study sample may
be different from a clinical sample. It is likely that we would
find a stronger relationship between mental health state and the
type of visited locations in a clinical sample, compared to what
we found in this study. Nevertheless, electronic assessment of
depression has been used and validated by many previous studies
[47,48].

Fifth, data collection took place from late October to early
February, and thus most participants were providing data during
the winter holiday season. While the geographic diversity of
the sample allows us to account for variations in weather (eg,
participants from Florida experienced a much different climate
than those in Minnesota), we recognize that holiday-related
travel, such as spending time at other family members’ homes,
and holiday-related time away from work presents a departure
from an individual’s typical behavior. The holiday season may
have served as a confounder, as participants may have been
engaged in activities not representative of how they would
behave during other times of the year. Furthermore, the 6-week
study period may not have been long enough to detect changes
or meaningful relationships between behavioral patterns and
mood. Ultimately, we aim to develop models to ascertain the
relative components of these factors. However, as this is a
relatively new field of inquiry, the timing and length of this
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study protocol may have interfered with our ability to detect
true signals.

Conclusions
In conclusion, mobile phone sensors promise considerably more
accurate estimations of individuals’ daily life behaviors. In this
study, we have shown that semantic location (the type of
locations that people visit) can be detected using a combination
of phone sensors and a mapping service such as Foursquare.
We performed this study in a sample that was diverse in terms
of geographic location, climate, education, employment, and

lifestyle. However, there were no consistent relationships
between the time spent at different locations and depression or
anxiety. Future research should focus on those semantic
locations that are more likely to be relevant to depression or
anxiety. In addition, longer studies that extend across seasons,
and larger studies that are more adequately powered to manage
the level of dimensionality in human subject data, will be better
positioned to investigate the relationships between semantic
locations and mental health. The advancement of mobile phone
technology will facilitate the design of these future studies.
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