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Abstract

Background: Personalized blood glucose (BG) prediction for diabetes patients is an important goal that is pursued by many
researchers worldwide. Despite many proposals, only a few projects are dedicated to the development of complete recommender
system infrastructures that incorporate BG prediction algorithms for diabetes patients. The development and implementation of
such a system aided by mobile technology is of particular interest to patients with gestational diabetes mellitus (GDM), especially
considering the significant importance of quickly achieving adequate BG control for these patients in a short period (ie, during
pregnancy) and a typically higher acceptance rate for mobile health (mHealth) solutions for short- to midterm usage.

Objective: This study was conducted with the objective of developing infrastructure comprising data processing algorithms,
BG prediction models, and an appropriate mobile app for patients’ electronic record management to guide BG prediction-based
personalized recommendations for patients with GDM.

Methods: A mobile app for electronic diary management was developed along with data exchange and continuous BG signal
processing software. Both components were coupled to obtain the necessary data for use in the personalized BG prediction system.
Necessary data on meals, BG measurements, and other events were collected via the implemented mobile app and continuous
glucose monitoring (CGM) system processing software. These data were used to tune and evaluate the BG prediction model,
which included an algorithm for dynamic coefficients tuning. In the clinical study, 62 participants (GDM: n=49; control: n=13)
took part in a 1-week monitoring trial during which they used the mobile app to track their meals and self-measurements of BG
and CGM system for continuous BG monitoring. The data on 909 food intakes and corresponding postprandial BG curves as
well as the set of patients’ characteristics (eg, glycated hemoglobin, body mass index [BMI], age, and lifestyle parameters) were
selected as inputs for the BG prediction models.

Results: The prediction results by the models for BG levels 1 hour after food intake were root mean square error=0.87 mmol/L,
mean absolute error=0.69 mmol/L, and mean absolute percentage error=12.8%, which correspond to an adequate prediction
accuracy for BG control decisions.

Conclusions: The mobile app for the collection and processing of relevant data, appropriate software for CGM system signals
processing, and BG prediction models were developed for a recommender system. The developed system may help improve BG
control in patients with GDM; this will be the subject of evaluation in a subsequent study.
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Introduction

Gestational diabetes mellitus (GDM) is one of most common
endocrine disorders during gestation, affecting up to 17.8% of
pregnancies [1]. It is associated with short-term obstetric and
perinatal complications such as preeclampsia, increased cesarean
delivery rates, macrosomia, and birth injury [1], as well as
long-term future metabolic health implications for the mother
and the offspring (ie, increased risk of obesity and type 2
diabetes) [2]. Thus, maintaining normal blood glucose (BG)
levels during pregnancy is critical for preventing adverse
pregnancy outcomes and to stop the cycle that perpetuates the
transmission of metabolic disease to the offspring [3].

The timeframe for effective interventions to prevent
complications from GDM is usually limited to the third trimester
of pregnancy and the physiology of pregnancy is rapidly
changing (eg, increasing insulin resistance); therefore, women
with GDM require frequent visits to health care providers to
ensure good glycemic control (usually every 2-4 weeks on diet
and every 1-2 weeks when treated with insulin). These frequent
antenatal visits are both a considerable burden to the patients
and, considering the increasing incidence of GDM, may also
place significant stress on health care systems and their
often-limited resources.

The technology used to remotely deliver health
care—specifically, via an electronic means of communication
(eg, mobile health [mHealth])—offers an appealing solution to
this problem. Currently, an increasing number of articles are
reporting on mobile apps for patients with different types of
diabetes. Several involve mobile phone-based randomized
controlled trials (RCTs) that show promising results for the
self-management of diabetes [4-6].

To the best of our knowledge, no completed RCTs that assessed
the effectiveness of mobile apps in GDM patients have been
published, although there are several ongoing trials [7].
Approximately 70% to 85% of GDM patients can control GDM
with lifestyle modification alone [8]; consequently, an effective
tool for making appropriate food choices to prevent high BG
levels as postprandial glucose (PPG) responses would be of
particular importance for women with GDM.

The current methods for predicting PPG responses to food,
albeit important in the context, are limited and imprecise. Basing
predictions on meal carbohydrate content is the most common
method [9], but it is not sufficiently precise in predicting PPG
response [10].

Other methods of estimating PPG responses are glycemic index
and glycemic load [11]. However, because both methods are
based on the assessment of PPG response to the consumption
of certain kinds of food, it is difficult to apply them in clinical
practice when there are different food combinations and
proportions [12]. Furthermore, reliable databases describing the

glycemic index of different foods are absent in many countries.
Moreover, several studies have found high variability in
individuals’ glycemic responses to meals with identical
nutritional composition [10,13], but the reasons for this
variability are not yet sufficiently clear. PPG responses may
depend on individual lifestyle [14], genetics [15], glucose
transporter activity levels [16], and gut microbiota [10].

Zeevi et al [10] developed a machine learning algorithm that
integrates multidimensional data on blood parameters,
anthropometrics, physical activity, self-reported lifestyle
behaviors, and gut microbiota composition to predict
personalized PPG responses in healthy individuals. However,
adoption of their algorithm in clinical practice may be limited
by its complexity and the high cost of microbiota analyses.
Further, it has not been validated on pregnant women and its
usability for prediction of PPG responses during pregnancy is
not known.

To the best of our knowledge, little work has been conducted
on the development of PPG response prediction models for
GDM patients, as the primary task for researchers remains
prediction of BG levels for patients with type 1 diabetes. Further,
although numerous BG prediction algorithms have been
proposed, only a few projects are dedicated to the development
of complete recommender system infrastructures that incorporate
BG prediction algorithms for diabetes patients [17]. The
development and implementation of such a system might be
particularly important for patients with GDM, especially
considering the high importance of BG control for these patients
during pregnancy and a typically higher acceptance rate for
mHealth solutions for short- to midterm usage.

Therefore, the goal of this study was to develop an infrastructure
that incorporates data processing algorithms, BG prediction
models, and an appropriate mobile app for patients’ electronic
record management to guide BG prediction-based personalized
recommendations for GDM patients.

Methods

Analysis
Following analysis of the literature on the available apps for
diabetes management [18], main design functions for diabetes
apps [19,20], app evaluations [21], and user reviews of the top
diabetes apps available in the Google Play and Apple Store
markets, we defined the most important points to consider within
our project. For a mobile monitoring system, we derived the
following core features: (1) systematic collection and persistence
of patient data locally on the user device and centrally on a
server, (2) data export into commonly used formats for
assessment by patient and doctor, and (3) personalized
recommendations based on evaluation of PPG response. Further,
for the system to be sufficient for long-term monitoring, the
following requirements must be satisfied: the system must be
based on a commonly used architecture (in terms of devices,
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software, etc), the system must be sufficiently simple to use by
patients without prior computer literacy, and the process of data

collection and exchange should be as simple as possible.

Figure 1. Conceptual scheme of the gestational diabetes mellitus recommender system. BG: blood glucose; CGM: continuous glucose monitoring.

The conceptual scheme of the GDM recommender system is
shown in Figure 1. The core of the recommender system
comprises dynamically changing BG predicting models, which
are used for personalized recommendations. The architecture
utilizes the data collected from different sources for all patients
to constantly improve its BG predictions. The patient state is a
vector in multidimensional space and contains data on preceding
events (eg, meals and insulin injections) and information on
BG levels collected within the continuous glucose monitoring
(CGM) system signal. The patient state is combined with data
prototyping patients (with the data relevant to BG regulation,
such as glycated hemoglobin A1c [HbA1c] and oral glucose
tolerance test [OGTT] parameters) and the data for all patients
in a centralized database that is used to train the BG prediction
models. The models are dynamically retrained as new data are
uploaded making their predictions more sustainable when they
are used by new patients for whom only a limited amount of
data has so far been recorded.

Design
In the first step of the system design, we formulated a list of
parameters for the BG predicting algorithm (Textbox 1).
Because it was not feasible to track these records in a traditional
paper diary and there were no solutions matching our
requirements, such as apps for recording meals in a simple and
hassle-free (mobile) manner and corresponding software to
acquire the records of these electronic diaries alongside CGM
system signals, we developed our own app to obtain the
necessary records for the BG prediction algorithm.

From a technical viewpoint, the developed GDM advisory
system contained the following elements: (1) a mobile app for
data collection and presentation on the side of the patient, (2)
a CGM system for continuous BG monitoring, and (3) a
centralized server with appropriate software for data
aggregation, processing, and training of BG prediction models.

Textbox 1. Groups and subgroups of parameters necessary for the BG prediction algorithm.

Biomedical signals (implemented by devices)

• Continuous glucose monitoring system signal features describing postprandial glucose response

Electronic diaries records (implemented by mobile app)

• Blood glucose measurements, meals, insulin injections, physical activity, sleep duration

Individual patient characteristics

• Biometric characteristics, medical history and survey data, biochemical parameters
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Development

Mobile and Desktop Diary App
The mobile app was developed using the Java programming
language and it supports devices running Android OS 2.3 and
higher. The desktop app was also developed using the Java
programming language. It supports devices running Java 7.0
and higher. The app includes a food database created based on
reference books of the Russian Academy of Medical Sciences
and the US Department of Agriculture (USDA) Food
Composition Databases (Release 28) [22]. Complex dishes
included into the database were supplemented by recipes from
reference books of the Russian Academy of Medical Sciences
[23].

The development process comprised several iterations and app
usability was evaluated with the help of 36 GDM patients. The
patients were asked to provide feedback on app usability,
evaluate its core features, indicate limitations they encountered,
and possible ways to improve the app. Seven major corrections
were made before the study, including improving the ergonomic
aspects of the app, increasing the size of the built-in food
database, and enhancement of app functionality, including
respective functions for modifying previously recorded data,
combining existing food items in the built-in food database into
new recipes, and marking particular food items as favorites. All
the preceding corrections were made before commencing the
study.

Data Processing Software
The centralized software component was based on programs
that operate in an automatic sequence, evoked by a script. The

complete data processing algorithm, which transforms the raw
data of the electronic reports from the patients and the CGM
system signals of the iPro device, comprises the following five
steps.

Step 1

The initial signal data was recorded by the CGM system
(Medtronic iPro was used in this study) and uploaded to the
CareLink server used by the Medtronic iPro system, where the
signals for patients were stored. For the purpose of this study,
the data of the participants were retrieved from the Medtronic
server in the form of CSV files by our software and processed
by an automatic script.

Step 2

Electronic diaries, exported from the mobile app and collected
on the centralized server, were processed in such a manner that
every meal was stored together with the parameters
characterizing previous events (eg, any meal 3 hours before the
current meal and any physical exercise or sleep).

Step 3

Records from the electronic diaries were matched with
appropriate CGM system signals for each patient: for every
food intake in a diary, 3 hours of BG signals before and after
the meal were collected. The information on the BG curve was
stored together with food records collected in step 2. Figure 2
shows an ensemble of resulting BG curves 3 hours before and
after meals, collected over the span of a week.

Figure 2. Ensemble of blood glucose (BG) curves collected 3 hours before and after meals for one of the patients. Different colors represent different
meals.

JMIR Mhealth Uhealth 2018 | vol. 6 | iss. 1 | e6 | p. 4http://mhealth.jmir.org/2018/1/e6/
(page number not for citation purposes)

Pustozerov et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Step 4

Based on the postprandial BG curve, a set of parameters
characterizing PPG response were calculated:

1. AUC60: area under the glycemic curve 1 hour after the start
of the meal ([mmol/L]/hour);

2. AUC120: area under the glycemic curve 2 hours after the
start of the meal ([mmol/L]/hour);

3. BG60: blood glucose level 1 hour after the start of the meal
(mmol/L); and

4. Peak BG: peak value on a postprandial BG curve (mmol/L).

Step 5

The resulting data were supplemented by the data used to
prototype the patients (medical history data, survey data,
biochemical parameters). The data from different patients were
combined in an integral data frame, which was the prepared
input data for the BG prediction models.

Recruitment and Enrollment
This study was part of the ongoing clinical trial “Genetic and
Epigenetic Mechanisms of Developing Gestational Diabetes
Mellitus and its Effects on the Fetus” (GEM GDM; trial
registration number: АААА-А16-116012210374-0), which
started in July 2015. Participation in this study using the CGM
system was optional for the participants of the GEM GDM trial.
Pregnant women were invited to take part in this study if they
were using our mobile app or our desktop app and provided
accurate information concerning their food intake and BG
measurements. Those who had pregestational diabetes and other
diseases affecting carbohydrate metabolism were excluded.
None of the participants were treated with insulin prior to or
during this study. The study was approved by the ethical
committee of the National Almazov Medical Research Centre,
Saint-Petersburg, Russia (protocol no 119), and the participants
gave their consent in writing.

In total, 66 of 158 women agreed to participate. Four women
were excluded from the analysis because they provided
inaccurate information on food intake during the week they
wore the CGM system (see “Control of the Accuracy of
Self-Reports”). As a result, 62 participants (48 pregnant women
with GDM and 14 women with normal glucose tolerance) were
included in the study.

The diagnosis of GDM was based on the Russian National
Consensus [24] and the recommendations of the International
Association of Diabetes and Pregnancy Study Groups (IADPSG)
[25] based on the results of 2 hour OGTT performed during the
24th to 28th week of gestation. Pregnant women without
diabetes were included as controls.

Measures
Glucose was measured for 7 days using the iPro2 CGM with
Enlite sensors (Medtronic, Minneapolis, MN, USA) and
independently calibrated with the Accu-Check Performa Nano
blood glucose meter (Roche Diabetes Care, Indianapolis, IN,
USA) for a minimum of four measurements per day.

During that week, participants were instructed to record all daily
activities, including meals with exact components and weights,
using our mobile app or our desktop app.

Prior to the study, the women were questioned about their
clinical characteristics and completed a special questionnaire
under supervision. The questionnaire consisted of the following
sections: frequency of consumption of basic products in a week,
physical activity, and smoking before and during pregnancy.
The sections of the form were defined in a semiquantitative
manner, reflecting different frequency levels of consuming
certain products and performing physical activity (low, medium,
and high). The description of these semiquantitative variables
is presented in Multimedia Appendix 1. This questionnaire was
previously reported [26].

Control of the Accuracy of Self-Reports
To avoid biases resulting from inaccurate self-reports about
daily activities, especially meals, we took several precautions.
The women were provided with kitchen scales to measure the
weight of each kind of food consumed at home (in grams) and
were asked to check the weight of meal components consumed
in restaurants and other public catering places. The reports
resulting from the collection of data on food intake were
analyzed by endocrinologists and discussed with the participants
in detail. If the BG curves collected via the iPro2 CGM showed
that two or more food intakes per week were not documented
in the app or that two or more BG measurements checked in
the glucometer memory differed from the BG levels reported
by a participant, the data were excluded from the analysis (four
women).

Statistical Analysis
Data were statistically processed with SPSS 22.0 [27],
MATLAB 2016r [28], R 3.4.0 [29], and Python 2.7.14 [30].
The data are presented as the mean and standard deviation.
Differences in the quantitative characteristics of the groups were
assessed with Student t test. The chi-square criterion was used
to compare the distribution of qualitative characteristics. The
differences were considered significant at P<.05.

Blood Glucose Prediction Model
After the data processing phase, the data were used to create
the BG prediction model. We developed linear regression
models with the use of lasso regularization for feature selection
and coefficient tuning [31] to avoid overfitting. Linear regression
was chosen because of its good interpretability, simplicity, rapid
tuning, and adequate accuracy in comparison with other methods
performing the task.

Participants were separated into training and test sets in the
proportion of 80%:20% and 20-fold cross-validation was used
for parameter tuning.

The optimization task for lasso regularization was

║y–Xω║2+λ║ω║→minω, λ≥0, where y is a vector of output
values, ω is a vector of weights, X=[x1,...,xn] is a set of input
values for all objects in the dataset, and λ is the tunable
regularization coefficient (double vertical bars stand for a norm
of a vector/matrix).
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As a dependent indicator, the features of PPG response (AUC60,
AUC120, BG60, and peak BG) were determined for appropriate
models. The following parameters were imputed in the dataset
as potential predictors of the features of PPG response:

1. Anthropometric parameters (eg, age, weight, body mass
index [BMI], gestational age, and systolic and diastolic
blood pressure),

2. Medical history data (impaired glucose tolerance; polycystic
ovary syndrome; family history of diabetes; number of
pregnancies, abortions, deliveries, and miscarriages; arterial
hypertension; the use of combined oral contraceptive pills
before pregnancy; and GDM in history), biochemical
parameters (fasting, 1-hour and 2-hour BG levels at OGTT,
fasting insulin, HbA1c, total cholesterol level, very low
density and high density lipoproteins, and triglycerides at
the time of OGTT).

3. Survey data: 11 parameters associated with the consumption
of certain product groups (fruits, pastries, skimmed dairy
products, legumes, meat, sausage products, dried fruits,
fish, whole grain bread, sauces, and vegetables), three
parameters related to beverages (alcohol, sweet drinks, and
coffee), and three parameters characterizing physical
activity (walking, climbing the stairs, and performing
sports). For each listed parameter, the intensity was
estimated on an ordinal scale of three levels: low, medium,
and high. Smoking was marked as “yes” or “no.” Smoking,
alcohol intake, and physical activity parameters were
assessed separately before and during pregnancy. Because
none of the participants reported the highest category of
activity for frequency of sports activities (>3 days/week),
frequency of climbing the stairs (>16 flights/day), and
legume consumption (>2 portions/week) at the time of
glucose self-monitoring, we recorded the remaining two
categories into binary variants (“yes”: medium category;
“no”: the lowest category of activity) for statistical analyses.
Walking duration and coffee consumption were coded as
variables with three levels: (0 for low, 1 for medium, and
2 for high).

4. Current and preceding meal: 33 parameters including type
of food intake (1=breakfast, 2=lunch, 3=dinner, 4=snack);
macronutrient and micronutrient content (water [g],
energetic value [kcal], fats [g], carbohydrates [g], dietary
fibers [g], sugars [g], calcium [mg], iron [mg], phosphorus
[mg], zinc [mg], copper [mg], vitamin С [mg], riboflavin
[mg], niacin [mg], thiamin [mg], vitamin B6 [mg], folate
[mcg], folic acid [mcg], retinol [mcg], retinol equivalent
[mcg], alpha-carotene [mcg], beta-carotene [mcg], vitamin
E [mg], vitamin D [mg]); the presence of a preceding meal
within 3 hours before the index meal (yes/no); and the
amount and percentage of carbohydrates in the preceding
meal.

The coefficients were tuned via a coordinate descent
optimization algorithm (using the glmnet package for R) [32].
The λ coefficient for each model was chosen in such a manner
as to obtain the smallest number of nonzero coefficients, at
which the mean squared error, estimated during cross-validation,
was in the range of one standard deviation from the best model
fit. This allowed us to obtain a simple, yet sufficiently accurate
model.

Results

Mobile App
The mobile app for data collection and exchange was developed
for the Android OS. A desktop app with the same functionality
was also developed for users not in possession of an Android
device (both are referred to simply as “app”).

The app contains 18 different screens, including the main menu,
user input forms, record management and information, user
settings, data export form, and help. Some of these screens are
presented in the animation included in Multimedia Appendix
2.

The SQLite database in the app consisted of 13 tables (tables
for records on BG, insulin, physical activity, sleep, ketones,
meals, and meal items; tables with built-in and user food
databases and user data) containing the data for different types
of user records as well as the built-in food database. The built-in
food database, collected from open sources (including the
Scientific Research Institute of Nutrition of the Russian
Academy of Medical Sciences and the USDA food databases),
made it possible to track 27 food parameters (macronutrients
and micronutrients) without patient input, because involving
the patients could lead to mistakes and additional burden from
the patients’ perspective.

The app allowed the users to export data in Excel spreadsheets
and store them on their devices as well as to send them remotely
to physicians (Figure 3).

The Data Processing Algorithm
Using the preceding methods, an algorithm transformed the
data for the amount and kind of consumed food, the start time
of food intake, physical activity, duration of sleep, and current
BG level (received from the CGM system) into a BG prediction
parameter used to establish a recommender system. An example
of the results of data matching between the CGM system signal
and the electronic diary is shown in Figure 4 and more examples
are shown in Multimedia Appendix 3.

Participants’ Characteristics
The main characteristics of the participants are presented in
Table 1. The women with GDM had higher BMI and higher
levels of HbA1c and plasma glucose (PG) during OGTT than
the controls.
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Figure 3. Example of a standardized report exported from the app.
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Figure 4. Result of data matching between the continuous glucose monitoring system signal and the electronic diary.
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Table 1. Characteristics of the participants (N=62).

P (two-sided test)Control (n=14)GDM (n=48)Characteristic

.0629.8 (2.9)32.1 (4.0)Age (years), mean (SDa)

.00621.1 (3.4)26.4 (6.4)Prepregnancy BMIb (kg/m2), mean (SD)

.034.84 (0.40)5.13 (0.40)HbA1c
c (%), mean (SD)

>.9931.4 (2.8)31.4 (3.0)Gestational age (weeks), mean (SD)

.70117.5 (13.9)118.9 (10.6)BPd systolic (mm Hg), mean (SD)

.9074.8 (14.9)75.1 (7.9)BP diastolic (mm Hg), mean (SD)

.775 (36)20 (42)Arterial hypertension, n (%)

<.0014.2 (0.5)5.0 (0.7)OGTTe fasting PGf (mmol/L), mean (SD)

<.0016.3 (1.6)9.6 (2.3)OGTT 1-h PG (mmol/L), mean (SD)

<.0015.5 (1.4)8.4 (2.4)OGTT 2-h PG (mmol/L), mean (SD)

.9193.9 (81.9)96.4 (52.8)Fasting serum insulin (pmol/L), mean (SD)

aSD: standard deviation.
bBMI: body mass index.
cHbA1c: glycated hemoglobin A1c.
dBP: blood pressure.
eOGTT: oral glucose tolerance test.
fPG: plasma glucose.

Table 2. Glycemic response and meal characteristics for gestational diabetes mellitus (GDM) and control patients.

P (two-sided test)Control, mean (SD)GDM, mean (SDa)Characteristic

<.0015.0 (0.6)5.1 (0.7)Fasting BGb (mmol/L)

<.0015.9 (0.9)6.2 (1.0)BG60c (mmol/L)

.025.62 (0.74)5.77 (0.80)AUC60d (mmol/L*hour)

<.0015.68 (0.70)5.86 (0.78)AUC120e (mmol/L*hour)

.661.6 (1.0)1.5 (1.0)BG Rise 1h after meal (mmol/L)

.026.5 (1.0)6.6 (1.0)Postprandial peak BG (mmol/L)

.6873.6 (46.0)75.0 (43.7)Time to peak BG (minutes)

<.00151.5 (31.5)31.8 (22.2)Carbohydrates per meal (g)

.7222.9 (15.7)22.5 (15.1)Proteins per meal (g)

<.00125.2 (17.0)19.6 (15.1)Fats per meal (g)

<.001530 (279)398 (209)Energy per meal (kcal)

aSD: standard deviation.
bBP: blood pressure.
cBG60: blood glucose level 60 minutes after the meal.
dAUC60: area under the postprandial blood glucose curve 60 minutes after the meal
eAUC120: area under the postprandial blood glucose curve 120 minutes after the meal.

Characteristics of Meals and Glycemic Responses
The average characteristics of meals and glycemic responses
are presented in Table 2. Patients with GDM consumed
significantly lower amounts of carbohydrates and fats in their
meals; therefore, the energy content of their meals was
considerably lower than that of the control group. Fasting and

postprandial BG levels were significantly higher in patients
with GDM than in those in the control group, whereas the actual
rise in BG level after meals did not vary significantly in these
groups owing to lower average carbohydrate consumption in
the GDM group. The area under the curve (AUC) for BG level
1 and 2 hours after the beginning of the meal was also larger
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for patients in the GDM group, even considering the lower
average carbohydrate consumption in this group.

Blood Glucose Prediction Models
The significant model coefficients are presented in Table 3. The
BG level 2 hours after OGTT was a heightening factor for all
the variables describing glycemic response, corresponding to
worse BG regulation in participants with GDM. Some of the
parameters describing lifestyle during pregnancy were
significant in predicting PPG response: reported physical activity
was a lowering factor for all the variables describing glycemic
response, where they were found to be significant, as well as

reported high consumption of legumes, although high
consumption of coffee appeared to be a heightening factor.

Despite their simplicity, the developed linear regression models
proved to be highly efficient in their prediction of the PPG
response feature. Model performance was estimated using
standardized metrics. The correlation between real and predicted
values (R), root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) were
estimated for each of the proposed models (Table 4). The
resulting table shows only marginally worse results for the test
set, which may be due to overfitting. When comparing the
MAPE of the presented models, it might be considered that the
models predicting AUC on a postprandial curve perform better.

Table 3. Coefficients of the linear regression models predicting different features of postprandial glucose (PPG) response.

Peak BGdBG60cAUC120bAUC60aParameter

3.45902.18602.56501.6246Intercept

0.59590.41160.60330.68771. BG level before meal (mmol/L)

0.28320.27460.23370.29272. Breakfast (yes/no)

0.00930.00720.00340.00303. Carbohydrates (g)

0.0024—0.0017—4. Starch (g)

—0.09020.02890.19515. Carbohydrates (%)

–0.4503———6. Proteins (%)

–0.0730–0.1570–0.0539—7. Preceding meal (yes/no)

–0.0029———8. Carbohydrates in preceding meal (g)

—0.2974——9. OGTTe fasting BG (mmol/L)

0.10360.03560.03970.048410. OGTT 2h BG (mmol/L)

0,0021———11. Fasting serum insulin (pmol/L)f

———–0.141612. Sports (≥2 days/week, yes/no)g

–0.0364–0.1860–0.1938–0.049713. Climbing stairs (≥4 flights/day, yes/no)g

–0.3349–0.0864–0.1062—14. Walking (≤30, 31-60, ≥61 min/day for 0, 1, 2)g

–0.2184———15. Legumes >1/week ( (yes/no)g

0.03110.07380.11730.002516. Coffee (0-1, 2-3, >3 cups/day for 0, 1, 2)g

aAUC60: area under the postprandial blood glucose curve 60 minutes after the meal.
bAUC120: area under the postprandial blood glucose curve 120 minutes after the meal.
cBG60: blood glucose level 60 minutes after the meal.
dBP: blood pressure. Peak BG: peak BG level on a 3-hour postprandial BG curve.
eOGTT: oral glucose tolerance test.
fMeasured at the day of OGTT.
gDuring pregnancy.
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Table 4. Estimation of model performance.

Mean absolute percentage errorMean absolute errorRoot mean square errorRCharacteristic and set

AUC60 a

9.3%0.520.62.79Test

6.8%0.400.51.78Training

AUC120 b

9.1%0.480.61.75Test

6.6%0.390.51.75Training

BG60 c

12.0%0.660.81.69Test

8.9%0.560.75.66Training

Peak BG d

12.2%0.771.00.48Test

8.0%0.530.68.74Training

aAUC60: area under the postprandial blood glucose curve 60 minutes after the meal.
bAUC120: area under the postprandial blood glucose curve 120 minutes after the meal.
cBG60: blood glucose level 60 minutes after the meal.
dBP: blood pressure. Peak BG: peak BG level on a 3-hour postprandial BG curve.

Discussion

Principal Results
Our infrastructure, including the mobile app for patients’
electronic record management and data processing algorithms
for matching of the CGM system signal and electronic diary,
enabled the collection and analysis of data on 909 food intakes
and corresponding postprandial BG curves from 62 pregnant
women. Combining these data with patients’characteristics (eg,
HbA1c, BMI, age, and lifestyle parameters) facilitated the
development of models that accurately predict PPG response
for real-life meals and can be implemented in our app for
personalized prediction of PPG response and subsequent
decision-making support.

To the best of our knowledge, no previous study has developed
a tool for personalized prediction of PPG response in pregnant
women. As the physiology of pregnancy differs significantly
from that of the nonpregnant state, models created on
nonpregnant participants have no potential to be applied to the
management of pregnant women.

A unique feature of our app is the ability to integrate food
choices based on our PPG response models in a decision-making
algorithm. This will enable the app to give personalized advice
concerning each upcoming meal in order to achieve desired BG
levels. To adapt the personalized model to her specific
requirements, a woman simply needs to fill in a short
questionnaire when the app is first started (the questionnaire
covers parameters 9-16 listed in Table 3). In order to receive
on-site personalized nutrition advice, participants have to enter
the desired food components with exact weights before meals.
The app will calculate the predicted PPG response and, in case
the recommended levels are exceeded, will suggest how to

reduce the carbohydrate content of the desired meal by reducing
the amount of carbohydrate-rich products or by suggesting
variants of products for replacement.

The significant potential of our app lies in the ability to capture
data, provide decision support, and share data with health care
providers, thus promoting communication. Although the efficacy
in terms of use of our app is yet to be tested in an RCT, we
believe that it already has potential for supplementing traditional
care, especially between visits to the clinic, when patients can
be provided with on-site personalized recommendations and
education. Our app may also be helpful for the collection of
large datasets for future statistical analyses.

For short-term use (eg, pregnancy), mHealth solutions might
be more widely accepted and there will potentially be less app
attrition compared to patients with chronic diseases.

To test and train PPG response prediction models, we used data
of women with normal glucose tolerance in line with the data
from GDM patients. We consider this approach appropriate
because the postprandial BG levels of women with normal
glucose tolerance and GDM diagnosed under the new IADPSG
criteria often overlap, as shown in Table 2. Because women
with normal glucose tolerance are not required to adhere to a
diet, they consume much more carbohydrates. Consequently,
they often have BG levels similar to GDM patients, thus
enabling us to assess the impact on PPG response of products
with a more variable carbohydrate content.

Our approach of making patients select foodstuff from a prebuilt
database is a good way to standardize and ease the procedure
of food tracking as well as to increase data reliability. On the
other hand, this created an additional problem for patients who
had to search for their desired food items.
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We provided patients with the possibility to create their own
food items by combining existing items, but only a few people
found this feature useful. There are two main reasons why we
refrained from allowing users to add food items to the app
database on their own. Firstly, there is virtually no way to find
a comprehensive list of all the nutritional characteristics we
would like to track (previous 25 features) for potential food
items. Secondly, there is a concern with the quality of data
available on publicly available Internet sources. Allowing users
to add new items into the database might lead to mistakes and
incomplete data, which might in turn cause bias in the statistical
analyses.

The most important predictors of PPG response that remained
significant for all models were BG level before meal, quantity
of carbohydrates in the meal, type of food (breakfast was a
heightening factor), 2-hour BG level at OGTT, frequency of
coffee consumption as a heightening factor, and the level of
physical activity expressed as climbing stairs during pregnancy,
which lowered PPG response. All these parameters are expected
with regard to physiology and are in line with the results of
previous studies addressing factors determining glucose
metabolism [33-35].

Comparison With Prior Work
Table 5 compares the prediction quality of the developed
predicting models to that of BG predicting models of different
types presented in the literature. All models exhibit adequate
accuracy that allows them to be used for patient assistance. The
predictive power of the developed models and those presented
in recent scientific papers is of equal quality in terms of R,
RMSE, MAE, and MAPE. Considering that the developed model
is simple, interpretable, and requires little time to tune its
parameters, in which it fulfills the requirement for dynamical

coefficient updates, the model must be stated as adequate for
the pursued goal.

Limitations
Our study has several limitations. Because the data on food
intake were self-reported by participants through the app, there
is the potential for biases due to inaccurate reports. For example,
women who are overweight or gain excessive weight during
pregnancy often underestimate their actual consumption of
foods that are considered harmful. This is a typical drawback
of any epidemiological study assessing nutrition. However, we
used hints found in the data to reduce this kind of bias, as
described previously (see Control of the Accuracy of
Self-Reports section).

In addition, the PPG response prediction models are based on
data from a relatively small sample size. However, the resulting
PPG response prediction models have predictive power of equal
quality to those presented in recent scientific papers [10,36-39].
Overall, we believe that the developed PPG response prediction
models are sufficiently accurate to form the basis for a
subsequent self-management intervention.

There are several concerns limiting the current use of the
developed app with the built-in decision-making algorithm. Our
app is so far only available for Android devices and PCs;
unfortunately, this prevents iPhone users from accessing the
app using their mobile phone (they can access it only using their
desktop computer). We plan to increase the number of potential
users by implementing an app for iPhone users as well. We are
also considering implementing a responsive Web app to allow
usage of a wide range of platforms and form factors.

This study did not include insulin treatment. Thus, the current
models are not designed to predict PPG response after insulin
injections. This will need to be evaluated in the future.

Table 5. Comparison between the proposed model and prior developed models.

Mean absolute percentage
error (%)

Root mean square error
(mmol/L*hour; mmol/L)

RMathematical modelValue and author(s)

AUC120 a

6.80.62.71Linear regressionPustozerov et alb

——.70Boosted decision treesZeevi et al [10]

BG60 c

12.00.82.69Linear regressionPustozerov et alb

—1.97—Support vector regressionPlis et al [36]

5.1-16.60.53-1.29—Autoregression, support vector machines,
and neural network

Wang et al [37]

—1.38-1.60—Neural networkPerez-Gandia et al [38]

—1.67-2.17—AutoregressionPerez-Gandia et al [38]

—1.24-1.73—Lehmann and Deutsch, Dalla ManStahl [39]

aAUC60: area under the postprandial blood glucose curve 60 minutes after the meal.
bOur model.
cBG60: blood glucose level 60 minutes after the meal.
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Our app currently lacks the ability to wirelessly upload BG
readings. We also plan to overcome this inconvenience in the
future.

The algorithm used for data processing is currently only
semiautomatic and requires the intervention of the researcher
in the final data processing steps. In the future, all the system
software should conceivably be rewritten in a high-level
programming language.

The developed PPG response prediction models are based and
validated on the data of women in the third trimester of
pregnancy. Therefore, it should not be used in the first and
second trimesters. However, GDM is usually diagnosed in the
third trimester and, according to the recommendations of some
diabetes associations, can be diagnosed only in the third
trimester [8]. Because Russian guidelines suggest diagnosing
GDM at any time during pregnancy [24], we are planning an

additional study to validate the PPG response prediction models
for the first and second trimesters.

To improve BG control, as well as maternal and fetal outcomes,
the efficacy of this app for the management of women with
GDM needs confirmation in an RCT and we plan to perform
such an RCT.

Conclusions
This infrastructure comprising the data processing algorithms,
the BG prediction models, and the mobile app for patients’
electronic record management can be useful for guiding BG
prediction-based personalized recommendations for GDM
patients. The accuracy of the prediction models was validated
on training sets of patients with 20-fold cross-validation for
parameters tuning. The efficacy of the implementation in terms
of providing health care to women with GDM to reduce BG
levels and pregnancy complications will be evaluated in a future
RCT.
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Abbreviations
AUC: area under the curve
AUC60: area under the postprandial blood glucose curve 60 minutes after the meal
AUC120: area under the postprandial blood glucose curve 120 minutes after the meal
BG: blood glucose
BG60: postprandial blood glucose 60 minutes after the meal
BMI: body mass index
CGM: continuous glucose monitoring
GDM: gestational diabetes mellitus
HbA1c: glycated hemoglobin A1c

MAE: mean absolute error
MAPE: mean absolute percentage error
mHealth: mobile health
OGTT: oral glucose tolerance test
Peak BG: peak blood glucose value on a 3-hour postprandial blood glucose
PG: plasma glucose
PPG: postprandial glucose
RCT: randomized controlled trial
RMSE: root mean square error
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