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Abstract

Background: Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD).
Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an
open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity.
Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in
order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward
key elements of his or her indoor environment.

Objective: The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient
sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application
of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system,
and (4) evaluate two different methods for human orientation estimation.

Methods: We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a
context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position
and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were
asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the
marked area captured by two Kinect cameras with non-overlapping fields of view.

Results: We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking
algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed
human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment
position, when the fusion of both vision and inertial information was used.

Conclusions: The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application
with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation
even when the inertial wearable sensor device is put into an a priori unknown position.

(JMIR Mhealth Uhealth 2013;1(2):e14) doi: 10.2196/mhealth.2539
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Introduction

Background
Freezing of Gait (FoG) is a temporary, involuntary inability to
initiate or continue movement lasting just a few seconds, or on
some occasions, several minutes [1]. FoG is experienced by
approximately 50% of patients with advanced Parkinson disease
(PD) [2]. It is described by the patients as a feeling of having
the feet glued to the ground and being temporarily unable to
start walking again. FoG usually depends on the walking
situation. It often occurs at turns, start of walking, upon reaching
the destination, and in open spaces [3]. It can also occur when
people approach narrow spaces, such as doors, and when people
are in crowded places [4]. In a home environment, freezing
episodes are usually reported by patients to occur at the same
location every day.

In cognitive psychology, attention set-shifting is defined as the
ability to move back and forth between tasks, operations, or
mental sets in response to the changing internal goals or the
changes in the environment perceived through senses. According
to Naismith et al [5], the ability to keep different tasks, motor
and cognitive, active at the same time is reduced in persons with
FoG. The flexibility to shift from one response set to another
is therefore impaired which may trigger episodes of FoG.
Additionally, this behavior may be emphasized by other
provoking features such as increased cognitive load, dual-tasking
[6], stress, anxiety, and depression [7]. Irrespective of what
causes it, FoG is mostly characterized by a decrease in stride
length, an increase in stepping frequency preceding the episode,
and the presence of a highly abnormal frequency of leg
movements during the episodes [8].

The usual pharmacological way of treating FoG is the same as
the general treatment of PD. Research has shown that dopamine
treatment helps in reducing the number of occurrences of the
symptom, but that it cannot eliminate the symptom completely
[9]. Some of the patients developed different ways to deal with
FoG on their own. These involved various techniques for solving
start hesitation, such as lateral swaying, stepping over someone’s
foot, and stepping over lines on the floor. Observations of these
techniques led to the development of a theory of sensory cueing
as a feasible therapeutic option. Evidence was found that
external sensor “cues” (visual, auditory, or haptic) may
compensate for the defective internal “cueing system” for
initiating and maintaining movement [10]. The research of
cueing techniques led to the development of several commercial
products intended to help FoG sufferers to improve their gait
performance (eg, PDGlasses [11]). The disadvantage of existing
commercial products is that they are not adaptable to the walking
rhythm of each patient, so that the offered permanent stimulation
is not optimally effective [12].

Wearable Systems and Gait Monitoring
Active monitoring technology has the potential to alleviate FoG
through timely episode detection and sensory stimulation.

Timely detection is based on online data acquisition of motor
symptoms of PD. The usual approach is to use wearable inertial
sensors in order to obtain kinematic parameters of the
movements of body segments. As already mentioned, gait
alterations like short shuffling steps and festinations are
characteristic of FoG. Therefore, the analysis of gait parameters
is a good indicator of the patient’s state. The foundation of the
work on adaptive systems for ambulatory monitoring of FoG
was established with the offline detection algorithm based on
frequency analysis of leg movements proposed by Moore et al
[13]. The authors used accelerometer located at the ankle to
take measurements, and associated a frequency band between
3 and 8 Hz with the leg movements when a patient suffered
from FoG. Moore's algorithm for FoG was later successfully
applied in an online wearable gait assistant for PD patients
developed at ETH Zurich [14]. This system used a three-axial
accelerometer fixed on the shank and one unique threshold for
all patients. Sensor position on the thigh above the knee and at
the hip was also tried.

So far, there has been no consensus on the best inertial sensor
combination/position for the ambulatory analysis of human gait.
The system for FoG detection and gait unfreezing presented by
Jovanov et al [15] used an inertial platform consisting of a
three-axial accelerometer and two-axial gyroscope placed on
the knee. Zabaleta et al [16] performed a pilot study with two
PD patients, using sensors to measure acceleration in three axes
and angular velocity in two axes. In this study, sensors were
used to monitor foot, shank, and thigh movements. The majority
of existing systems demonstrate that the best results in FoG
detection can be expected when using inertial sensors placed
directly at the lower extremities. However, one big drawback
of this approach is that strapping sensors on the legs is not
optimal for use in daily life.

In the area of assistive technology, user acceptance of
technological solutions is crucial. It has been proposed that
using one light inertial measurement unit (IMU) fixed on the
lateral side of the waist of the user is the most user-friendly
position, which also gives satisfying results in gait analysis [17].
The proposal for the sensor placement on the hip can be further
supported by the recent results presented by Mazilu et al [18].
Using one sensor fixed at the hip and training a machine learning
algorithm specifically for a patient with that patient's data, they
achieved excellent results for specificity and sensitivity (both
above 98%). However, the presented approach is patient-specific
and based on data from a controlled environment. At the
moment, the best reported detection accuracy with the sensor
placed on the waist and the algorithm targeted at the general
PD population is still around 70% to 80% in terms of both
specificity and sensitivity.

The amount of information that can be extracted from one sensor
device is finite, and it is reasonable to expect that the overall
detection accuracy of such a system cannot be higher than the
accuracy of a system composed of multiple sensors.
Furthermore, wearable inertial sensors currently used for gait
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analysis are able to sense only physical context of the user,
while it is known that the FoG episode onset can also be under
direct influence of other types of context (situation, location,
and/or cognitive load). It would be nice to keep the ease-of-use
of the gait monitoring system composed of only one wearable
sensor, and at the same time to enhance its reliability. One way
to achieve this improvement is through the use of spatial context,
which is the term used to describe a combination of the patient's
location and his relation toward elements triggering FoG in his
environment.

Spatial Context in Freezing of Gait
In their home environment, PD patients are likely to encounter
narrow passages such as doorways or dynamically changing
spaces created by the presence of other people and movable
objects such as chairs. When PD patients perceive the space as
too narrow for the dimensions of their body, adaptive postural
changes during locomotion may be needed to achieve
collision-free passage [19]. Experiments with PD patients show
that there might be a direct correlation between the width of the
narrow space and the tendency for a FoG episode [20]. It has
been reported that freeze-like events were successfully provoked
near a doorway and that their prevalence significantly increases
with the narrowness of the doorway [21]. Furthermore, the
measurements of gait based on objective criteria showed that a
decreasing door width caused progression velocity to drop
approximately 20% in the region preceding the doorway, or
immediately after it.

When inferring spatial context in FoG, we are primarily
interested in the locomotion behavior of the patients. Examples
from literature show that a two-dimensional (2D) point
representation on a floor map is sufficient for this kind of task
[10]. Contextual triggers of FoG that can be identified from 2D
motion in a robust and efficient way under realistic conditions
are starting of walking, approaching the destination, approaching
narrow spaces, and being near locations where FoG occurs every
day. Additionally, many affected people are experiencing FoG
during turns. Wider turns seem to be easier for them to perform
than axial turns on the spot, and slow turns are easier to perform
than rapid turns [22]. A rapid turn on the spot is hard to track
using only a 2D point as the representation of the tracking target.
The observation of on-the-spot turns can be achieved only by
precisely estimating angular velocity of the person, which
requires additional tracking of the heading angle. This is the
reason why we propose the 2D pose, expressed by two floor
position coordinates (x, y) and one heading angle (θ), as the
minimal tracking representation to be used in the spatial context
inference process for FoG detection.

Position and Orientation Tracking for Freezing of Gait
Detection
One of the main objectives of our research is to discover if
spatial context and the principle of direct geometric correlation
can effectively be used to improve automatic detection of FoG
in a home environment. This objective requires design and
development of a technical system that is able to observe people
and their environment, along with the ability to apply correct
contextual rules using the observed data. The hypothesis of the
direct correlation between geometry of the surrounding

environment and FoG episodes has so far been tested only in
controlled laboratory environments. There is a need for
behavioral data of FoG patients from homes, because a clinical
environment is not perceived by people in the same way as their
natural environment. As a result, freezing episodes do not
happen in the artificial setting in the same way that they would
happen at home. The lack of domestic behavioral and
environmental data of FoG patients is a significant obstacle that
must be taken into account during the analysis of requirements
for the design of a future context-aware system.

We divided the development process of the system into two
principal stages. The goal of the first stage is to establish a
people-tracking system for the collection of behavioral data in
the homes of people with FoG. Collected data will be used to
build the needed contextual model of FoG. In the second stage,
the contextual inference part will be added to the existing
tracking system with the goal of testing the finalized system
through long term deployment. During the first stage, short
term, one day long experimental sessions are expected in both
clinical settings and home environments. Because of this, the
position and orientation tracking system being developed needs
to have the properties of a portable system, allowing for fast
installation and setup. Besides reliability and accuracy in
tracking people's position and orientation, the system also needs
to be modular allowing for scalability in the coverage of an
indoor space. Additional requirements for permanent
deployment are the ability to identify the FoG patient among
members of a household, usability on a daily basis, and
ultimately, affordability.

Taking into account the above requirements, we have designed
a solution for an improved, pervasive context-aware home-based
system for PD patients based on distributed sensing. In the
development process, we have come to the end of the first stage,
where we have obtained a prototype of the indoor position and
orientation tracking system. The prototype consists of a network
of Microsoft Kinect [23] cameras and one smartphone worn by
the patient, and it needs to be tested for accuracy before starting
behavioral data collection in the home environment.

The main objective of this paper is to present a functional and
architectural solution for the ubiquitous context aware system
for FoG detection, with special attention given to the accuracy
evaluation of the developed prototype system for indoor position
and orientation tracking.

Methods

Ubiquitous Monitoring System for Freezing of Gait
In the concept of a ubiquitous FoG monitoring system [24,25],
a wearable assistive system is used to monitor gait with inertial
sensors and to treat the FoG patient via a cueing device at any
time or place during the day. REMPARK (Personal Health
Device for the Remote and Autonomous Management of
Parkinson Disease) is an example of one such system [26]. The
sensing capacity and detection capabilities of the wearable
assistive system are expanded with a network of vision sensors
installed in the patient’s home environment, placed in the least
sensitive areas concerning privacy, such as the living room,
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kitchen, and hall. The vision system runs image-based tracking,
environment mapping, and context inference on a dedicated

home gateway server. The concept and the components of the
system are presented in the block diagram in Figure 1.

Figure 1. Block diagram for the concept of the ubiquitous monitoring system. The wearable system independently detects FoG based on inertial data
(blue rectangle). Gait-based detection is complemented by the user's spatial context from the vision sensor system (red rectangle) in the areas of the
home where such a system is present.

Distributed Home Vision System
Video cameras and video processing are often used in smart
environments for event detection and context inference. Cameras
enable the observation of changes in the environment, and at
the same time, they are able to provide sub-meter accuracy of
indoor localization. Limitations of the usual color (RGB) camera
system are its sensitivity to changing lighting conditions,
shadows, and occlusions. Active range cameras, such as the
Kinect's depth sensor can be applied to overcome the drawbacks
of color cameras. Furthermore, one depth sensor is enough to
retrieve the three-dimensional (3D) information about the
environment compared to a setup of multiple calibrated color
cameras usually required for the same task.

To achieve the maximum spatial coverage for each Kinect sensor
in an indoor environment with normal ceiling height, we decided
to use these sensors in an over-head mounting position. Also,
to achieve the most effective coverage inside a home with a
minimum number of vision sensors, we decided to use

non-overlapping scene coverage with only one or two Kinect
sensors per room. An example of the intended spatial coverage
is given in Figure 2.

Multiple person tracking and identification should be included
in the system since the majority of PD patients live with at least
one other person (see Multimedia Appendix 1). Each color and
depth (RGB-D) camera in the system is intended to work as an
independent vision node in terms of positional tracking. This
means that each camera should have the map of the scene in
front of it and that it should track people in the coordinates of
its own frame. Context rules will be evaluated only for the
camera that is tracking the patient. The intended application in
unpredictable home environments brings a series of
requirements. Besides support for multiple people tracking and
patient identification, the vision system should have near
real-time performance with at least 15 Hz frequency rate,
robustness to dynamic backgrounds, and lighting changes and
sub-meter position tracking accuracy.
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Figure 2. Example of a test bed with two scenes being independently covered by Kinect sensors. Mock-up of a living room on the left and a dining
room on the right. Images in the top row depict the point-of-view of the cameras when they are mounted in the overhead position. The bottom row
displays colored point clouds of scenes that are obtained from depth sensing. Green trapezoid indicates the area in which it is possible to track people.

Context Inference Process and Freezing of Gait
Detection
The workflow diagram of the system is given in Figure 3. The
diagram shows how one RGB-D camera is paired with a
wearable sensor in order to achieve improved FoG detection
and cueing actuation. This process can be executed for each
RGB-D camera.

Independent elements of the process include 2D position
tracking and 2D scene map calculation using RGB-D image,
3D orientation calculation using inertial data from the wearable
sensor, and gait-based detection of FoG from inertial signals.
These elements have to work independently, so that FoG
detection can be achieved using the wearable sensor even when
the patient is not in front of the camera.

The main prerequisite for position tracking is background
subtraction in each frame. Background subtraction is based
solely on the depth image. The background model for
subtraction is set by periodic updates of the 3D point cloud of
the whole observed scene. These periodic updates are done
every few minutes on occasions when no tracked objects are
present in the field of view. Furthermore, this background model
is used to build the 2D map of the scene, which is used as one
of the inputs for spatial context inference.

The foreground image obtained after background subtraction
is used to build point clouds for updating the positions of the
persons being tracked and to detect any new person in front of
the camera. After the detection of new persons, positions of all
tracked persons are updated. We are only interested in the
position of the patient. If the track of the patient is not identified,
the process of matching all known track histories against inertial
sensor data is executed. If the match is successful and the
patient's track is known, the position of the matched track is
used in the calculation of the patient's pose. If none of the tracks
in front of the camera are identified as the patient, the camera
data is excluded from FoG detection.

Pose calculation involves a combination of the position obtained
from the vision tracker and the 2D heading obtained from the
wearable sensor. The estimated 2D pose is combined with the
2D map information and history of FoG detections to infer
contextual probability of a FoG episode. This probability is
published over a wireless network and read by the FoG State
Interpreter (FSI) module running on a smartphone device. The
FSI module conducts a high level probabilistic fusion of spatial
context and gait detector outputs and produces the final system
output which can be used to activate cueing.
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Figure 3. Workflow diagram for FoG detection using the distributed sensor system.

System Prototype
The hardware prototype of our distributed sensing system
consists of two static Kinect devices and one Samsung Galaxy
Nexus smartphone, worn by the user. Each Kinect is connected

to its own notebook computer, which acts as a processing unit
for data acquisition and also runs one instance of the vision
tracking algorithm. The notebooks are connected in a dedicated
local area network (LAN) and they are synchronized with
respect to time. Each Kinect acquires a depth and color image
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of resolution 640×480 pixels at a frequency of 30 Hz. The
smartphone has connectivity with the dedicated wired LAN
over a software access point running on one of the notebook
computers. The smartphone reads data from its internal inertial
sensors, three-axial accelerometers, gyroscopes, and
magnetometers with the frequency of 100 Hz.

After the investigation of available middleware systems for
intelligent environments, we chose an open source,
community-supported middleware from the robotics domain to
develop our distributed sensor system. The Robot Operating
System (ROS) [27] is a meta-operating system that runs on top
of the real operating system (Linux Ubuntu). A great advantage
of using ROS in our project is that ROS program packages
provide automatic hardware support and integrated access to
various open source processing libraries. The main libraries we
use are the Open Source Computer Vision Library [28] and the
Point Cloud Library [29]. The algorithms for the vision tracking
system were developed in C/C++. The Galaxy Nexus
smartphone with Android OS runs the ROS node application,
which shares raw inertial data with other nodes in the ROS
framework. Image compression and data recording tool packages
provided by ROS enable the efficient and synchronized
recording of the entire raw sensor data produced in the
distributed system.

Position Estimation
Although the nominal operation range of the Kinect depth sensor
is 0.8-3.5 m, our goal was to apply the sensor in the extended
range up to 6 m, which more than doubles the area coverage.
At the distances greater than 3 m, the quality of Kinect depth
sensor data degrades due to noise and low resolution of
measurements [30]. The requirement of having a uniform
tracking method, which is equally applicable at all distances
from the camera, motivated our use of a probabilistic approach
to tracking.

Plan-view tracking is a computer vision approach that uses 3D
data as input and combines geometric analysis, appearance
models, and probabilistic methods to track people on the 2D
floor plane [31]. The main prerequisite for successful
implementation of any plan-view tracking algorithm is to define
the 3D pose of the camera in relation to the floor plane. For our
application, we developed a semi-automatic procedure to detect
the floor plane with minimal input from the user during the
setup of the system. After calculating the floor plane equation
in the camera image frame, we define the coordinate frame for
2D position tracking which is set at the base of the camera, on
the ground floor level. The known transformation between the
camera image frame and its referent 2D tracking frame is used
to project a colored point cloud of the foreground onto the floor
plane. The projected points are used to calculate three plan-view
feature maps (height, occupancy, and color), which are used as
observations in the tracking algorithm. Our adaptation of the
plan-view tracking algorithm for the Kinect sensor is based on
the work of Muñoz-Salinas [32]. This tracking approach uses
multiple particle filters, one for each person. A first order linear
dynamic model with Gaussian noise is used in the filter's
prediction step. The correction step uses a Gaussian mixture of
the three feature maps as the observation support.

For FoG detection, it is sufficient to track people when they
stand. This can be a mitigating circumstance under real world
conditions. When detecting people who are standing, it is
sufficient for the system to observe only the 3D environment
above a certain height. Setting a height cut-off threshold at
around 1.0 m solves two frequent problems in indoor tracking,
which are static object occlusions by furniture like chairs and
tables, and background updates. Using such a threshold implies
that changes in the scene below the height of the threshold do
not have any influence, which results in a more robust tracking
algorithm.

Person Orientation Estimation
The combination of the accelerometer, gyroscope, and
magnetometer signals from the smartphone allows the estimation
of the absolute 3D orientation of the device toward the fixed
global coordinate system defined by directions of gravity and
magnetic North. The focus of our work in people orientation
estimation is not on the development of new fusion algorithms
for inertial devices, but it is on the development of methods for
the use of existing inertial fusion orientation algorithms in the
context of our distributed system.

There are two reasons why the measured orientation of the
device cannot be used without adaptation in our tracking system.
First, the estimation of the user's (patient's) orientation is needed
in the distributed system only when the user is viewed by any
of RGB-D cameras. Each camera in the system has its own
coordinate system. Therefore, the orientation of the user at the
given moment needs to be expressed as the angle in the
coordinate system of the camera which performs the tracking,
instead of global magnetic-North-referenced world frame.
Second, we must strictly differentiate between the orientation
of the inertial device and the orientation of the user, and
emphasize that they cannot be considered equal. When the
inertial device estimating orientation in reference to the global
frame is fixed on the body of the user, its orientation in reference
to the user's body must be exactly known in order to be able to
correctly calculate the user's orientation toward the global frame
of reference. In the real-world, every-day scenario, there are no
means to exactly know the device orientation in reference to
the user, even if the sensor is fixed in the correct position. When
the smartphone is placed in a horizontal belt case by the user,
there is an uncertainty because the device is not fixed directly
on the user. The belt case could actually be positioned anywhere
on the belt around the waist.

We have developed two methods for transforming the
orientation of the inertial device into the 2D heading of the user,
expressed in the referent camera coordinate system. In our
methods, we use the very good and proven device orientation
estimation algorithm introduced by Madgwick [33]. The
algorithm uses numerical integration of the orientation data in
the quaternion representation. There are two versions of the
algorithm depending on the number and the type of sensors
available in the inertial sensor system where it is applied. The
basic version of the algorithm is suitable for IMU devices
consisting only of gyroscopes and accelerometers, enabling the
tracking of rotational and translational movement. This basic
version of the algorithm uses gradient descent optimization,
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which makes it possible to obtain the relative orientation of the
device toward the gravity field based on accelerometer input.
When referring to this version of the algorithm in the rest of the
paper, we will use the name Gravity Relative Orientation
Estimation (GROE) algorithm. This basic algorithm is not able
to give absolute 3D orientation, since there is no absolute
reference in the plane perpendicular to the gravity vector. To
achieve complete measurement of 3D orientation in the gravity
field, Earth's magnetic North reference system, it is necessary
to have the ability to sense the Earth's magnetic field. A MARG
(Magnetic, Angular rate, and Gravity) sensor is an extension of
IMU, which also incorporates a tri-axis magnetometer. An
extended version of the algorithm that can be applied on MARG
sensory platform computes its result by numerically integrating
changes of orientation measured by gyroscopes, and then
correcting gyroscopic measurement errors using a compensation
component obtained from the combination of accelerometer
and magnetometer measurements. The gradient descent
algorithm that uses the combination of accelerometer and
magnetometer data takes care of achieving absolute 3D
orientation in several iterations after the algorithm initialization.
We will refer to this version of the algorithm as the Absolute
Orientation Estimation (AOE) algorithm. Both versions of the
algorithm are stable, computationally inexpensive, and effective
at low sampling rates.

The first method we developed for person orientation estimation
uses data only from wearable inertial sensor. The method
employs AOE algorithm to obtain absolute 3D orientation of
the device and relies on the following three assumptions: (1)
the sensor device is worn in the predetermined orientation and
at the predetermined position relative to the body of the user,
(2) the heading is estimated only when the user is standing, and
(3) the angle between the magnetic North frame and ground
camera frame is known in advance.

We defined the user's orientation as a vector along his
dorsoventral axis with the direction from the dorsal to the ventral
side of the body. As the predetermined position for placing the
smartphone, we chose the left hip. As the reference coordinate
system orientation for the smartphone, we set the x-axis facing
upward along the anteroposterior axis of the body, the y-axis
parallel to dorsoventral axis, and the z-axis facing left from the
body along the left-right axis. Expected smartphone positioning
is depicted in Figure 4b.

When the smartphone is in the expected ideal position and
orientation on the user's body, the vector of gravity will be along
its negative x-axis, while y-axis and z-axis define the plane
parallel with the floor (see Figure 4b). Thus, we can obtain the
2D heading of the device in the floor plane by measuring the
angle between the y-axis of the smartphone and the axis of
magnetic North (α) with AOE algorithm. Since there is no
difference between the presumed direction of the y-axis of the
smartphone and the user's heading vector (δ = 0), angle α also
gives the heading of the user in reference to the magnetic North,
as shown in Figure 5. Our final goal is to obtain the heading of
the user in the camera frame (θ). Two corrections with known
static angle values are necessary. To get the user's heading θ,
first the measurement of the smartphone (α) is corrected for
angle (ψ) between the yc-axis of the camera coordinate system

and the ym-axis of pointing to magnetic North. This gives angle
φ, which defines the user's heading in reference to the yc-axis
of the camera coordinate frame. Since user's heading θ is always
expressed as the angle toward xc-axis, a final correction is
executed by adding 90° to angle φ.

Our second person orientation estimation method uses wearable
inertial sensor data in combination with the classification of the
person's orientation conducted in the vision tracking system.
The goal of the method is to eliminate the set of assumptions
used in the first method, making it more robust and applicable
for use in uncontrolled home environments. The method uses
the previously-introduced GROE algorithm, which estimates
the 3D orientation of the device relative only to gravity. As the
algorithm can align just two of the inertial device's axes with
the plane perpendicular to the gravity (presumed floor plane),
this leaves the final angle of the device unknown. To calculate
the device's heading in the floor plane, an external reference
angle is needed. If, instead of the gravity-magnetic North, we
use as the referent frame for the external reference angle the
frame in which the camera is currently tracking the user's
position, we can eliminate the need for finding the angle between
the camera tracking frame and the gravity-magnetic North frame.
Furthermore, the assumption of having the wearable sensor in
the predetermined position can be eliminated if the external
heading reference angle given to the inertial sensor contains
information about the true heading of the user expressed in the
common frame of reference. Providing the necessary external
heading reference is therefore the task of the vision tracking
system, because of its ability to observe the user directly in the
camera reference system.

The implemented vision-based orientation classifier was inspired
by the work of Harville [34], where the person's plan-view
height templates are used to classify eight different headings in
the range between 0° and 360° with a 45° resolution for humans
standing upright (see Figure 6). Our neural network
classification algorithm was trained with the features of 4
persons of different heights. To achieve uniformity of the visual
orientation detection in the whole area covered by one camera,
training data was collected from people standing at different
distances and positions in relation to the camera. The positions
for data collection were set using a grid of 0.5×0.5 m rectangles
on the floor. People were asked to move horizontally, vertically,
and diagonally on the grid, akin to pieces in chess, and to stop
in the middle of each rectangle of the grid for one second.
During post-processing, a total of 6022 height templates for 4
persons were extracted and labeled with their pertaining classes.
The feature vector for classification consists of 443 attributes,
the first 441 being normalized pixel values coming from the
21×21 pixel height image template, and the last two being height
normalization constant and the number of non-zero elements
in the template image. The neural network has an input layer
with 443 neurons, a hidden layer with 25 neurons and an output
layer with 8 neurons. Classic back-propagation training
algorithm with symmetric sigmoid activation function was
utilized.

The classification accuracy test on 100 height templates gave
92% correct classifications. During testing under real-world
circumstances (ie, when movement paths and poses of people
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were not in the strict consensus with the eight trained
orientations), a significantly higher amount of incorrect
classifications was observed. Errors were noticed in
classification between opposite directions and also in
classification of body poses that differ too much from upright
standing. This is the source of the possible error in the heading
reference.

When the classifier proposes the orientation reference for
wearable system, its accuracy needs to be ensured. A high
confidence level for the heading reference can be achieved with
the use of two additional sources of information: the quality
score of the classification result, and the position history of the
person. The quality score of the classification result is calculated
using values at output neurons. An eight class neural network
has eight output neurons, and the rule is that the output class of
the whole classifier is assigned to the neuron with the maximum
probability. The output neuron with the maximum probability
has a high value when the user's height template is similar to a
training template. This probability number can be used as the
quality indicator for classification. A high confidence level
using the classification quality score is achieved through a
temporal process, where the classifier output is tracked for
consistency to be above a certain threshold during several
consecutive frames. When this consistency holds, the orientation
angle represented by the class can be taken as the person's
heading proposition. We call this angle static heading. To further
strengthen the heading proposition and minimize the probability
of assigning the opposite direction, the kinematic properties of
the person's track are used. Using position history, the velocity
vector for the tracked 2D point is calculated. This vector in
relation to xc-axis of the referent coordinate frame gives the
angle called dynamic heading. Ultimately, when the angular
difference between the static and dynamic heading is inside a
specified error boundary (ie, +/- 15°) for 3 consecutive image
frames, the static heading is confirmed to be the external
heading reference for inertial system.

When the person is upright and wears the smartphone in the
belt case, one of the axes of the device points approximately
along the gravity vector, while the other two axes span the plane,
which is almost parallel with the floor. This can be seen in
Figure 4b, where the x-axis of the smartphone is pointing
upward and axes y and z are forming the specified “almost
parallel” plane. Since the GROE algorithm estimates the angle
of orientation of the smartphone toward the gravity, it measures
how much the plane formed by y and z axes is deviating from
being fully parallel with the floor plane. This angle can be used
to calculate the projection of y and z axes on the floor plane.
Axes y' and z' shown in Figure 7a are the result of such
projection.

The external heading reference angle θs is not always available,
but only when the vision tracker has a heading proposition of
sufficient quality. When the external heading reference angle
θs is known, it is possible to calculate the value of the correction
angle δc between the external heading reference vector and the
referent orientation axis of the inertial sensor system. In Figures
4b and 4c, the y-axis is set closer to the user's dorsoventral axis,
so we choose its projection y' to be the referent orientation axis
for the fusion. Figure 7a shows the relation between the x-y-z
coordinate frame of the smartphone, the xc-yc-zc coordinate
frame of the camera, and the linking zc-y'-z' frame used for the
fusion at the moment in time when the static heading is known.
Correction angle δc is calculated as the difference between the
angle θi of y'-axis and the external heading reference angle θs,
which at that moment also represents the person's true
orientation θ.

In the subsequent frames when no external heading reference
is available and there is the dependency only on the inertial
system orientation estimation, angle δc is subtracted from the
observed angle θi to get the person's true heading θ. This is
demonstrated in Figure 7b.

Figure 4. Frame definitions. a) Smartphone reference axes. b) Smartphone in the correct predetermined orientation at the expected position and
orientation on the waist. c) Smartphone in the non-expected position and orientation on the waist. There is an angle of error in the transverse body plane
between the device's real (green arrow) and expected (yellow arrow) orientation.
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Figure 5. Overhead view of the relations between the different frames in the system.

Figure 6. The top row shows eight headings for one person at the same position in reference to the camera. The bottom row contains examples of
related height templates used in orientation classification with neural network.
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Figure 7. Coordinate frames in the process of fusion of vision and inertial information for orientation estimation. a) The moment in time when the
external heading reference is available. b) Using the calculated correction angle to get person's heading at times when only the inertial orientation
estimation is available.

Experiment
The purpose of the experiment was to confirm the functionality
of the position and orientation tracking system for different
users, and to collect sufficient data for the statistical analysis
of the system accuracy. Additionally, we wanted to show that
the user's position can constantly be estimated within certain
statistical error limits irrespective of his distance from the
camera and his orientation. We chose the approach with the
known static ground truths for position and orientation to enable
an evaluation based on comparing with known referent values.
The smartphone position on the waist of the participant was
taken as a parameter in this experiment with the objective of
assessing how each of the two heading estimation methods
adapts to a change in the sensor attachment position.

The experiment had 12 participants (9 male, 3 female), who
were recruited from among the staff and graduate students of
the Industrial Design Department of Eindhoven University of
Technology. The average height of the participants was 174.2
+/- 8.8 cm. None of the participants had gait problems. The area
used for walking had dimensions 8×5 m, and it was covered
with a green carpet which had a visible grid of squares of size
0.5×0.5 m. Two Kinect devices were set at a height of 2.25 m
facing downward with a pitch angle of approximately 25°. The
devices were placed to cover the walking area in a
non-overlapping manner. A unique world frame for the
experiment was set at the corner of the walking area, with its
orientation equal to the base frame orientation of Kinect 1. To
confirm the uniformity of the magnetic field in the walking area,
we executed control measurements of its quality at approximate
waist height (1.0 m) before and after the experiment.

On the green carpet surface, markers were placed to indicate
points on the floor, where the participants are supposed to stop
in predefined orientations (see Figure 8). For each designated
pose, two parallel lines of 0.5 m length were drawn on the floor
at the mutual distance of 0.25 m. As the reference for measuring
the marker position, the center point between two lines was
taken.

The experimental condition was the sensor attachment position
with two possibilities, Position1 with the smartphone fixed at

the iliac crest on the left hip (see Figure 4b) and Position2 with
the smartphone rotated between 50° and 60° around the waist
and put on the frontal left side under the belly (see Figure 4c).
Position1 is the expected sensor position for the method using
the AOE algorithm, while Position2 is substantially deviating
from the expected position for the same method. The second
method using the GROE algorithm and video orientation
classifier has no expected sensor position. The test for each
sensor position was split into two walks, one walk with
predominantly left turns (see Figure 9) and the other one with
predominantly right turns (see Figure 10). Walks were designed
with multiple consecutive turns in the same direction in order
to induce possible orientation bias. Participants were instructed
to walk to each marked position, where they were told to stand
still for 3 seconds before continuing toward the next marked
point (see Multimedia Appendix 2). The procedure was repeated
for each subsequent point. Each test walk lasted around one
minute. Each participant first did two walks for condition
Position1, followed by two walks for condition Position2.

During the experiment, color images and depth data of each
Kinect were recorded along with the data from the smartphone
which encompassed raw accelerations, orientation,
magnetometer measurements and calculated orientations for
GROE and AOE algorithms. Estimation of the positions obtained
from the video tracking algorithm along with the absolute
heading estimation angle for the two orientation estimation
methods were stored in a SQL database. Post-processing
consisted of annotation of frames when participants were
standing still on the marked floor positions and calculation of
the average position coordinates and heading angles from sensor
data. A video segment of around one second was extracted each
time a participant stood still at a reference point.

The vision-based position tracking algorithm gives a new
estimation of the position for each frame. With a 30 Hz frame
rate, approximately 30 position estimations were available to
calculate the average value of the x and y coordinates during a
one second video. Average values with a sufficiently small
standard deviation (<0.04) were taken as the measured position
coordinates. In total, 288 pairs of position coordinates were
obtained (12 participants × 12 reference points × 2 sensor
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attachment positions). The average value of the heading angle
was calculated using temporal alignment of inertial signals with
video segments. For the first method using AOE approximately
80-100 orientation estimation values were extracted for each 1
second video segment to calculate average angle value. In total,
288 average angle values were calculated. For the second
method using GROE, the combination of vision-based

orientation classification information and smartphone inertial
information was collected at the smallest common denominator
update rate, which is the rate of the video tracking algorithm.
Around 30 orientation estimates were produced each time a
person stood on a reference point. The total of 288 average angle
values was expected, but orientation was not registered due to
an algorithm failure, in 11 out of 288 cases.

Figure 8. The experiment venue. Markers on the floor indicate the start and end points and numbered reference points for standing in a predefined
orientation. Additional markers also show which part of the area is covered by which Kinect device.
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Figure 9. Schematic of marker positions and numbering for walks starting from the left side.

Figure 10. Schematic of marker positions and numbering for walks starting from the right side.
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Results

Position Estimation
Calculated position values from all test walks were aggregated
on a per point basis to enable comparison with reference values.
Statistical results (see Table 1) include average value, average
error, and root-mean-square error (RMSE) for each of the two
position coordinates at each stopping point. Under the
presumption of normal distribution, the average error value is
an indicator of the presence of a bias in the measurement. In
our experiments, the overall randomness of the error values
does not point to any significant positive or negative bias, or
bias in any of the coordinates. The RMSE, which is a good
measure of accuracy, indicates that the estimated position was
on average in the majority of points 0.16 m or less from the true
position.

Person Orientation Estimation
The results of the estimation of person orientation closest to the
ground truth were expected for tests with the sensor in Position1
when all assumptions needed to get the correct result were
satisfied. The results for Method1 (AOE algorithm) with the
smartphone in Position1 are reported in Table 2. The average
angle value for a stopping point (each row in Table 2) was
calculated from the set of direction angles estimated for each
of the 12 participants. The average angle was compared with
the point's reference angle value to give the average error and
RMSE. We also added the observation of the maximal error,
extracting a single case when the participant's orientation was
furthest away from the ground truth.

The average error values do not point to the existence of any
specific bias. We took the highest observed value of the RMSE
as the reference for error. Statistically, an average error of 17°
can be expected if the initially assumed conditions about
smartphone placement and upright walking posture hold.

Table 3 provides the data for the comparison of the two different
smartphone attachment positions when Method1 (AOE
algorithm) was used. The data in the table was obtained by
aggregating on a per participant basis. This means that to get
the data of one row in the table statistics were based on a set of
12 different orientations calculated for the stops of one person.
The most notable observation is the uniformly negative angle
of the average orientation error obtained for Position2. This
negative angle is anticipated considering the orientation change
of the smartphone performed for the tests with Position2. The
average error values in each row of Table 3 indicate how much
the smartphone was rotated around the anteroposterior axis for
each participant. Negative angle values of the average error for
Position2 closely match values of the RMSE.

Evaluation results of the person orientation using Method2 (see
Table 4) are similar to those achieved in Method1 (see Table
2), with the exception of bigger RMSE values maximum errors,
which indicate worse behavior of Method2 at certain moments.

Our expectation is that Method2 is able to compensate for the
unknown orientation change of the attachment point of the
smartphone. The adaptive nature of the method is visible in
Table 5 from the fact that there is no significant difference in
the observed average errors and RMSE between the two
attachment positions.
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Table 1. Statistical results for position measurements of reference points.

RMSE [m]Mean error [m]Avg. value [m]Ref. value [m]CoordinatePoint ID

0.07-0.042.212.25x1

0.06-0.011.741.75y 

0.16-0.113.143.25x2

0.13-0.091.661.75y 

0.15-0.105.655.75x3

0.050.023.023.00y 

0.09-0.023.233.25x4

0.10-0.064.194.25y 

0.06-0.031.221.25x5

0.100.064.314.25y 

0.16-0.111.641.75x6

0.060.022.772.75y 

0.07-0.056.206.25x7

0.200.141.891.75y 

0.080.044.794.75x8

0.250.181.931.75y 

0.07-0.021.731.75x9

0.06-0.032.722.75y 

0.16-0.111.141.25x10

0.08-0.044.214.25y 

0.13-0.083.173.25x11

0.10-0.064.194.25y 

0.08-0.046.716.75x12

0.060.022.272.25y 

Table 2. Statistical results aggregated per marker point for person orientation estimation method using AOE algorithm (Method1) with the smartphone
on the hip (Position1).

Max. error [°]RMES [°]Avg. error [°]Avg. angle [°]Ref. angle [°]Point ID

241182782701

208-2-202

2413737303

13711811804

191062312255

13733333306

2610-12692707

16911811808

17901501509

2212-4414510

2313-8-8011

2212133133012
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Table 3. Statistical results aggregated per participant for the orientation estimation method using AOE algorithm (Method1) with two sensor attachment
positions.

 Position2 Position1 

RMSE [°]Avg. error [°]RMSE [°]Avg. error [°]Participant

66-669-81

42-4113-72

62-60833

60-60534

43-43535

55-55876

63-628-87

57-5714-68

50-50889

47-47111110

58-58151311

40-397512

Table 4. Statistical results aggregated per marker point for orientation estimation using vision based classification and the GROE algorithm (Method2)
with the smartphone on the hip (Position1).

Max. error [°]RMSE [°]Avg. error[°]Avg. angle [°]Ref. angle [°]Point ID

471562762701

44152202

32212050303

151081881804

3717112362255

331343343306

271422722707

351671871808

3224-71431509

3217-5404510

2213-6-6011

2818-1731333012

JMIR Mhealth Uhealth 2013 | vol. 1 | iss. 2 | e14 | p. 16http://mhealth.jmir.org/2013/2/e14/
(page number not for citation purposes)

Takač et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Statistical results aggregated per participant for the person orientation estimation method using vision based classification and GROE algorithm
(Method2) with two sensor attachment positions.

 Position2 Position1 

RMSE [°]Avg. error [°]RMSE [°]Avg. error [°]Participant

13528111

14319-22

21420-43

221314104

14415-35

1661746

1411307

17111248

13012-39

18-613010

121314011

16912812

Discussion

Technical Properties
The final goal of the experimental measurements of the position
orientation tracking subsystem is to properly model its output
as a virtual sensor that senses 2D poses and has known
characteristics in terms of accuracy and noise. This will enable
the output of the patient localization subsystem to be combined
with environment mapping data using probabilistic principles,
similar to the ones already developed in robotics [35].

The position estimation errors in Table 1 have two principal
sources. The first source is the tracking algorithm based on the
noisy depth sensor data. The second source is the random nature
in which participants arrived at marked points, since during the
experiment they were allowed to stop anywhere along the 0.5
m marker line inside a target square. With the current
experimental design, it is impossible to separate the contribution
of each source to the obtained position errors, so we will impose
a strict rule and assign the whole error to the tracking algorithm.

The RMSE is equal or less to 0.16 m for all the measurement
points in Table 1, except for points 7 and 8. A greater error in
these points can be explained by the combination of body
position, camera placement, and depth sensor characteristics.
When a person is sensed by a depth camera, depth measurements
are taken only on the side of the body directly exposed to the
camera. Close to the camera in the overhead position (points 1
and 2), a depth sensor will collect more 3D points from the head
and upper shoulder, which are the parts closer to the vertical
body center. At the middle distances (2-4 m) from the camera
(points 7 and 8), the depth sensor will collect the majority of
points from the exposed side of the body. In point 7 this part of
the body is at the back, and in point 8 at the right side of the
body. This anomaly happens only when people are exposed to
the camera under orientation angles close to 0°, 90°, 180°, 270°,
and 360°. When a person is oriented diagonally toward camera,
more depth points are taken from the body center. At the bigger

distances (after 4 m), depth sensor noise and smaller occupancy
values influence the tracking algorithm to give more significance
to height values, estimating a position more toward the true
center of the person.

The comparison of the average orientation errors for the same
points across Tables 2 and 4 implies that there was no significant
magnetically-caused bias at any marker position. The accuracy
comparison based on the maximum RMSE and maximum errors
in the same tables reveals that the first method with AOE
algorithm performed better when the sensor was in Position1.
The RMSE values, and especially the maximum error values,
presented in Table 4 indicate that Method2 in its current
implementation under-performs in terms of accuracy. The cause
for this is incorrect static orientation (45° left or right from true
value) registered as the external heading reference at certain
moments. This could be improved by decreasing the allowed
angle error between static and dynamic headings. However, this
decrease in error angle can prolong the time necessary to fulfill
conditions for registering the external heading reference after
entering the camera scene. With the current setup, the detection
time for the external reference of a person's heading can
sometimes be delayed for one second, depending on how close
the trajectory of the movement is aligned with the eight principal
orientations of the classifier. This delay is also the reason for
the algorithm failure in 11 of the recorded cases. On the positive
side, our adaptive vision-inertial sensor information fusion
method performed as predicted in conditions of unknown sensor
placement, evidently outperforming the non-adaptive method,
as seen in the results for Position2 in Tables 3 and 5.

Implications for Freezing of Gait Monitoring in a
Home Environment
For FoG detection based on location, it is of great importance
to achieve sufficient accuracy when measuring the distance
between the patient and an obstacle. For the case when the
system needs to observe that the patient is passing through a
door frame, necessary accuracy of location sensing is in the
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range of several decimeters. The same is true for the case when
the patient is standing next to an object, such as a chair.
Proximity to an object in a congested space can easily be
inferred when the person is standing at a very short distance
(<0.4-0.5 m). To set the criteria for sufficient accuracy, we can
use the literature about the minimal distance from objects that
was observed for people during locomotion behavior. According
to Weidmann [36], a person walking in a corridor keeps on
average a minimal distance of 0.25 m to a wall made of concrete
and 0.20 m to a wall made of metal. Obstacles in a general
environment are avoided with a gap of at least 0.10 m. The
achieved result of RMSE=0.16 m is acceptably close to the
given minimal distance values.

The heading of the patient should be observed with the goal of
inferring if he is facing any specific landmark on the map. When
observing the patient's relation with the landmark, such as
having the intention of going through a door or facing a kitchen
sink, the heading error of 15-20 degrees left or right from the
true angle is acceptable, because such an error cannot change
the perception about the patient being generally directed toward
the object. As the indicator of the orientation accuracy for each
method we took the worst RMSE value in its related table (Table
2 for Method1; Table 4 for Method2). For Method1 we obtained
RMSE=17°, which is satisfying in relation to the acceptable

error of 15-20o. Method2 gave RMSE=24°, which falls just
outside of the desired error range. Results in Table 5 show
similar RMSE for different attachment positions of the sensor
(28° vs 22°) which proves that Method2 is able to adapt to an
unknown sensor attachment situation.

In conclusion, for the orientation data collection from patients
in controlled conditions, the recommendation is to use the
smartphone and AOE algorithm, because it is the simplest
solution with acceptable accuracy. For uncontrolled conditions,
like a home environment, we propose to apply the method based
on the fusion of vision and inertial sensor information. A
successful real-world application of this method depends on the
improvement of the algorithm to achieve faster detection of the
person's true orientation after entering the camera scene.

Implications for Freezing of Gait Monitoring in a
Clinical Environment
We had a chance to deploy the prototype of the tracking system
in its current form in a clinical environment, where we observed
a rehabilitation session of one 80-year-old PD patient with a
13-year history of PD and high affinity toward FoG. The purpose
of the test was to confirm that the system can be used as a
portable system and to find out its applicability and value for
clinical rehabilitation. Two Kinects were set on special 2.5 m
high tripods and put in the corners of two rooms (both size
4.5×4.5 m) in the rehabilitation facility. The time necessary to
setup the system was around 15 minutes. The patient was
wearing the smartphone at the hip position. First, the usual
therapy protocol which included warm-up, Get-up and Go
exercise and walking with the visual and audio cues inside one
of the rooms was observed. Our first addition to this protocol
was the exercise for the patient which included quarter turns on
the marked position in front of the camera. The second addition
to the protocol was the exercise in which the patient started by

sitting on the chair in one room and then had to walk to the chair
in the other room passing two doorways and a hallway
in-between the rooms. Each Kinect covered a part of one room
with a doorway and a chair.

The quarter turns exercise gave us the opportunity to observe
the influence of the patient’s stooped posture on positional
tracking and visual orientation classification. We had been aware
that the change of the posture might influence the final tracking
output, although we are using a non-articulated tracking model.
Initial qualitative results indicate that the stooped posture has
minor influence on the positional tracking, while its influence
on the orientation classification is higher than expected, which
was manifested as an increase in the rate of incorrect
classifications.

The exercise with sitting and walking between the rooms was
a combination of Get-up and Go exercise, door passing, and
on-the-spot-turning, and it was very demanding for the observed
patient who experienced multiple FoG episodes. During the
exercise the system was able to track the patient when he was
standing, walking, and sitting. Taking this into account, we
envisage the use of this tracking system in the clinical setting.
We base the exploitation possibilities of the system on the idea
of the quantitative assessment of the effectiveness of the
therapeutic tests, in order to monitor the long-term advancement
of the patient. Since the system uses 3D data, it can measure
the height of the patient and give his temporal height profile.
Height is useful during a sit-to-stand test to measure posture
transition times. Furthermore, the system can collect positional
and velocity data to compare walking with and without applied
visual and audio cues, and to objectively measure the effect that
cues have on the patient when walking straight. By tracking
orientation, the same approach can also be applied to the
evaluation of the patient's response to cueing during turns.

Limitations of the Study and Future Work
There were several limitations to the presented experimental
study of the accuracy of this system. The main limitation is that
the study was conducted in healthy people, who were able to
maintain an upright posture. The usual posture of PD patients
is a stooped posture, and the future system should accommodate
for that. This is especially important for template based
recognition of static orientation. The next iteration of the
prototype will try to take this fact into account. The benefit of
developing the new specialized classifier is that by being able
to detect the stooped posture, the system will have additional
information to infer the general PD state of the patient.
Moreover, this information could be used to improve the
identification of the patient during long-term system
deployment. Additional data from real PD patients will be
needed in order to perform quantitative, statistical evaluation
of the posture change influence on the system accuracy.

Position accuracy was measured only for persons who were not
occluded. Position measurement with multiple persons would
offer better insight into position errors caused by partial
occlusions. Furthermore, positions and orientations were only
analyzed in static cases. Analysis of the dynamic properties
would offer better insight into the characteristics of the system.
For this kind of experiment, it would be necessary to have a
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tracking system with higher accuracy and adequate spatial
coverage. A comparison with the Vicon system [37] could be
a possible solution.

In the presented orientation tracking methods, the assumption
of upright posture needs to be upheld to obtain accurate results.
The final orientation algorithm should be aware of the current
posture of the person. This calls for the development of an even
more contextually aware system.

Conclusions
In this work, we presented a solution that rethinks the problem
of FoG detection and monitoring from the standpoint of
technology that could be offered in the context-aware homes
of the future. The most interesting novelty from the medical
aspect is that we decided to form technical prerequisites for the
collection of patient data about FoG which takes into account
external contextual factors regarding the symptom and the
relation of the patient to the environment.

We proposed using a combination of two technologies: 3D
vision and wearable sensing with smartphones, which have
developed a strong commercial presence in recent years. It is

expected that this trend will continue in the future with wearable
sensing offering smaller and more energy efficient devices, and
3D vision cameras offering better resolutions and smaller frame
factors.

The study of the characteristics of the system prototype showed
that at the current moment, we have a system that has sufficient
position tracking accuracy for use in the intended
FoG-monitoring application. The study of orientation algorithms
gave us the necessary insight into the properties of smartphones
for indoor orientation tracking in the context of FoG. The
proposed method of data fusion for orientation tracking showed
not only how it can improve usability, but also disclosed the
factors that need to be improved. Future work goes in the
direction of the improvement of the current system prototype
toward home deployment and pilot experiments with PD
patients. To enable the deployment of the system in real homes
with multiple people, long-term identification based on inertial
and vision sensor data matching needs to be implemented. In
addition, to collect the data for contextual modeling,
preparations are being made to undertake recordings of the daily
activities of people with FoG in their homes using the current
prototype of the system.
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Multimedia Appendix 1
An example scenario for multiple people tracking and re-identification. One camera covers the living room space, while the other
is installed in the dining room. The scenario depicts a caretaker and a patient at home with two visitors. The goal is to sustain
identities for all the subjects in spite of short term occlusions, pose changes, and changes between cameras.

[AVI File, 7MB-Multimedia Appendix 1]

Multimedia Appendix 2
An example of pose tracking during one test walk. Orientation is estimated using the proposed camera and wearable data fusion
algorithm. The red arrow shows the estimated orientation of the person. The purple arrow shows how the orientation would be
without correction from the vision-based system.
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