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Abstract

Background: There is increasing interest in using smartphones as stand-alone physical activity monitors via their built-in
accelerometers, but there is presently limited data on the validity of this approach.

Objective: The purpose of this work was to determine the validity and reliability of 3 Android smartphones for measuring
physical activity among midlife and older adults.

Methods: A laboratory (study 1) and a free-living (study 2) protocol were conducted. In study 1, individuals engaged in prescribed
activities including sedentary (eg, sitting), light (sweeping), moderate (eg, walking 3 mph on a treadmill), and vigorous (eg,
jogging 5 mph on a treadmill) activity over a 2-hour period wearing both an ActiGraph and 3 Android smartphones (ie, HTC
MyTouch, Google Nexus One, and Motorola Cliq). In the free-living study, individuals engaged in usual daily activities over 7
days while wearing an Android smartphone (Google Nexus One) and an ActiGraph.

Results: Study 1 included 15 participants (age: mean 55.5, SD 6.6 years; women: 56%, 8/15). Correlations between the ActiGraph
and the 3 phones were strong to very strong (ρ=.77-.82). Further, after excluding bicycling and standing, cut-point derived
classifications of activities yielded a high percentage of activities classified correctly according to intensity level (eg, 78%-91%
by phone) that were similar to the ActiGraph’s percent correctly classified (ie, 91%). Study 2 included 23 participants (age: mean
57.0, SD 6.4 years; women: 74%, 17/23). Within the free-living context, results suggested a moderate correlation (ie, ρ=.59,
P<.001) between the raw ActiGraph counts/minute and the phone’s raw counts/minute and a strong correlation on minutes of
moderate-to-vigorous physical activity (MVPA; ie, ρ=.67, P<.001). Results from Bland-Altman plots suggested close mean
absolute estimates of sedentary (mean difference=–26 min/day of sedentary behavior) and MVPA (mean difference=–1.3 min/day
of MVPA) although there was large variation.

Conclusions: Overall, results suggest that an Android smartphone can provide comparable estimates of physical activity to an
ActiGraph in both a laboratory-based and free-living context for estimating sedentary and MVPA and that different Android
smartphones may reliably confer similar estimates.

(JMIR mHealth uHealth 2015;3(2):e36) doi: 10.2196/mhealth.3505
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Introduction

Reduced sitting time and increased moderate-to-vigorous
physical activity (MVPA) confers an array of health benefits
[1-3]. Identifying cost-efficient solutions for tracking physical
activity passively has become an important scientific objective
[4]. Previous research on activity monitoring has focused on
devices dedicated solely to this purpose, such as the ActiGraph
accelerometer (ActiGraph, Fort Walton, FL, USA). Indeed, this
trend of dedicated activity monitoring devices has continued
with consumer devices such as the Fitbit, Jawbone UP, and
Misfit Shine, among others. There is also increasing interest in
improving physical activity detection through multiple sensors
[5,6], but these added sensors (eg, heart rate, global positioning
systems) often impact the ability to enable long-term monitoring
[4] in context.

One potentially cost-efficient and low-burden mechanism for
tracking daily physical activity is the smartphone [6,7]. The
smartphone includes a variety of advantages that make it an
excellent stand-alone device. Specifically, smartphones include
a variety of sensors, such as built-in accelerometry and global
positioning system (GPS), increasingly powerful computing
capabilities, large data capacity, wireless connectivity to other
sensors (eg, connectivity to weight scales or blood pressure
monitors), and Internet access. These technical capabilities allow
smartphones to track, process, and send physical activity
information while also functioning as a “hub” for other health
information [7,8]. Beyond these technical capabilities,
smartphones often accompany individuals throughout the day
and, thus, easily fit into an individual’s daily routine.

At present, there is relatively little systematic research exploring
how accurately physical activity can be tracked via smartphones.
Some studies have explored the utility of ecological momentary
assessment (EMA) via smartphones [9], activity recognition
using machine learning/neural network analyses [10-13], and
activity classification via an iPod Touch for older adults [14].
There remain many unresolved questions related to tracking
physical activity via smartphones. For example, although there
was a study examining tracking among older adults, the vast
majority of research is conducted among younger cohorts. The
ActiGraph is a well-validated accelerometer commonly used in
epidemiological, surveillance, and intervention research to
quantify physical activity [1,15-18]. As such, a comparison of
physical activity estimates collected via smartphone versus
ActiGraph accelerometry would provide insights into whether
a common smartphone could provide estimates of physical
activity with similar levels of accuracy to this common
field-based assessment strategy. This would be valuable based
on the large body of research linking these cut-point-based
estimates of sedentary, light, and moderate-to-vigorous levels
of physical activity to health outcomes [1,15-18]. These data
are largely absent for more advanced machine learning
techniques of activity classification; thus, comparison to
cut-point-based estimates is a scientifically important question
until the health linkages to the more advanced analytic
techniques can be made.

The purpose of this work was to determine the validity and
reliability of Android smartphones for tracking physical activity
utilizing cut-point–based methods of activity classification. In
particular, we sought to determine the validity of Android
smartphones for categorizing physical activity into sedentary,
light physical activity, and moderate-to-vigorous levels of
physical activity in a laboratory setting. We also explored
interdevice reliability by comparing the estimates from 3
Android phones used simultaneously in the laboratory. Finally,
we sought to determine the validity of the smartphones by
comparing daily estimates of physical activity between the
ActiGraph and an Android smartphone in a free-living context.

Methods

Overview
We conducted both a laboratory-based and free-living study.
In the laboratory-based study (study 1), individuals engaged in
prescribed activities of various intensities over a 2-hour period
wearing both an ActiGraph and 3 Android smartphones (ie,
HTC MyTouch, Google [manufactured by HTC] Nexus One,
and Motorola Cliq) all worn both on the hip and in the pocket.
In the free-living study (study 2), individuals engaged in usual
daily activities that were tracked over a 7-day period via an
Android smartphone (Google Nexus One) and an ActiGraph.

Study 1: Laboratory Study

Participants
Participants were a convenience sample of 15 midlife and older
adults living in the San Francisco Bay area in California. Midlife
and older adults (ie, aged 40 or older) were chosen because they
represent an understudied population for activity classification
and because the algorithms developed were explicitly being
developed for a smartphone-based physical activity intervention
[8]. Participants were recruited via word of mouth,
advertisements, and email listservs. Participants completed the
Physical Activity Readiness Questionnaire (PAR-Q) to ensure
that they could safely engage in physical activity [19].

Procedures
The procedures for this study were similar to previously
published work conducted by the study investigators [20].
Specifically, all participants completed a written informed
consent that was approved by Stanford University’s Human
Use Committee. Participants were asked to wear an ActiGraph
GT3X+ accelerometer on their nondominant hip along with the
3 Android smartphone phones also on the nondominant hip.
Participants were asked to wear clothing to the laboratory
session that was suitable for exercise and had pockets.

The ActiGraph GT3X+ is a small, electronic, triaxial device
that is worn on the waist and measures activity “counts” (epoch
set to raw for the 3 axes for this study but converted to 1-minute
values with just the vertical axis for comparison with previously
validated cut-point calculations) [1,21,22]. The 3 smartphones
were chosen because at the time (2009) they were common
Android devices and because comparison between the 3 phones
would provide insights about reliability both within and between
manufacturers. The Android platform was chosen because it
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allowed the built-in accelerometer to run continuously and
because there is increased use of the Android phones,
particularly among lower income groups.

We chose to include 3 different Android smartphones to gauge
the reliability and validity across manufacturers (ie, Motorola
vs HTC) and within manufacturer by using different firmware
versions of Android (ie, Nexus One vs MyTouch). After
attaching the devices, participants were asked to engage in a
series of activities while wearing the ActiGraph and the Android
phones (see Figure 1 for a list of activities). Each activity was
conducted for 5 minutes followed by a transition period to the
next activity. The overall protocol lasted approximately 2 hours

per participant. For some activities, particularly running on the
treadmill at 5 mph, participants were given the option to opt
out if they were not able to accomplish it safely.

A conversion was required to translate the raw values gathered
from the smartphones into values similar to ActiGraph “counts.”
To calculate these phone-based counts, the first step was the
use of a low-pass filter to account for the effects of gravity,
followed by the calculation of an area under the curve
measurement that represented total movement detected by the
accelerometers. This technique is commensurate with previously
published work [20].

Figure 1. Phone to ActiGraph comparison across activities (laboratory study).

Data Processing
Standard data processing techniques for calculating
cut-point-derived estimates of sedentary, light physical activity,
and moderate/vigorous levels of physical activity were used for
processing the ActiGraph data based on previously published
work on meaningful cut-points among older adults for sedentary

(<100 counts) and moderate-to-vigorous intensity physical
activity (>1951) [1]. These included setting the sampling rate
for the ActiGraph to 80 Hz and gathering raw data across the 3
axes, which was then converted into counts using ActiLife 6.1
software (ActiGraph, Pensacola, FL, USA) based on the vertical
axis. For the phone data, a custom app was developed that
allowed for raw acceleration values similar to ActiGraph counts
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to be attained. For all phones, the custom app sampled at the
maximum rate allowed for each phone (ie, 20 Hz for the HTC
MyTouch and Google Nexus One; 80 Hz for the Motorola Cliq).

Statistical Analyses
We first calculated an intraclass coefficient (ICC) reflecting the
effect of individual variability on observed counts. Our analyses
found that the within-subject variance was effectively zero
across all possible comparisons using a leave-one-out
cross-validation method for each mixed model analysis
described subsequently. Based on this and that the counts were
not normally distributed, Spearman rank order correlations were
deemed an acceptable method for determining these
associations. Mixed model analyses [23] were conducted to
create a regression equation comparing each phone to the
ActiGraph. The regression equations were validated utilizing a
leave-one-out cross-validation procedure for each subject’s
activity as has been used in previous research [21]. Because the
cut-point-based classification via the ActiGraph is known to
have difficulties with properly estimating cycling activities and
standing [24], and because phones worn in the pocket would
likely affect the phone’s counts, a variety of datasets with
different filtering criterion were explored (eg, hip-only data, no
biking and standing activities included).

As previously mentioned, we used fairly standardized cut-point
values for ActiGraph counts of sedentary physical activity (ie,
ActiGraph counts <100) [1,25] and MVPA (ie, ActiGraph counts
>1952 [26]) because they have been validated among older
adults specifically [1]. We utilized our regression equation (ie,
phone cut-point values= beta*[imputed ActiGraph cut-point
values] + intercept) to convert the validated ActiGraph
cut-points into Android phone cut-points for the phone counts.
We then utilized these derived phone-based cut-points to then
label each minute of measured data via the phones as sedentary,
light physical activity, or moderate-to-vigorous levels of
physical activity.

We used standard conventions for labeling the strength of our
Spearman correlations (ie, very weak=0-.19, weak=.2-.39,
moderate=.4-.59, strong=.6-.79, and very strong=.8-1.0 [27]).
Within the laboratory study, we had known activities with
known metabolic equivalent (MET) values based on the
Compendium of Physical Activities [28]. We calculated the
percentage of total observations each phone correctly classified
each activity as sedentary, light, or moderate-to-vigorous. To
support interpretation of these percentages, we utilized the
percent correctly classified by the ActiGraph minus 5% as the
range for acceptable percent classification, similar to previous
work [15]. For example, if the ActiGraph correctly classified
70% of total activities, the comparable range for the phones
would be 65% or greater.

Study 2: Free-Living Study

Participants
Participants were a subsample from the previously reported
Mobile Interventions for Lifestyle Exercise and eating at
Stanford (MILES) study and, thus, recruitment procedures have
been reported previously [8]. In brief, the target population
consisted of community-dwelling adults in the San Francisco

Bay area aged 45 years and older who were insufficiently
physically active (ie, engaged in less than 60 minutes of
self-reported MVPA per week), self-reported typically sitting
for 10 or more hours per day, were able to participate safely in
a physical activity program based on the PAR-Q [19], and were
currently using a mobile phone but not a smartphone. In
addition, participants were excluded if they did not provide
sufficient data to complete the analyses (eg, insufficient wear
time of the phone or ActiGraph; see data processing described
subsequently).

Procedures
For this validation study, only the baseline phase (ie, the first
week when no intervention was provided) from the MILES
intervention study was used. Participants were requested to
continue with their normal physical activity during the baseline
phase. All participants (N=23) were provided a Nexus One
smartphone equipped with a custom app for tracking physical
activity via the built-in accelerometer and also wore an
ActiGraph (GT3X+), utilizing standard quality control
procedures for the ActiGraph [29]. Participants wore the
ActiGraph accelerometer for at least 7 days (our request was 7
days, but due to scheduling issues some individuals wore the
ActiGraph longer). Participants were asked to wear the
ActiGraph and smartphone at the same times during waking
hours. Participants wore the ActiGraph on their hip and were
allowed to wear the smartphone either on the hip or in their
pocket. After the baseline week, participants reported where
they wore the phone and exploratory analyses suggested that
placement did not influence any of the results (which were
in-line with our laboratory-based study as described
subsequently).

Data Processing
Data compliance and cleaning procedures for the ActiGraph
and smartphone were consistent with other large-scale
cross-sectional accelerometer studies [25,30], such that (1) valid
hours of data consisted of no more than 60 consecutive “zero”
values (interpreted as nonwear time) and (2) a valid day was
defined as at least 10 valid hours/day for both the Nexus One
phone and the ActiGraph. We included this 10-hour stipulation
for both phones to ensure comparable wear time (note: in
separate analyses not reported, there were no significant
differences in wear time between the ActiGraph and Nexus One
phone and individuals did wear them at the same times
throughout the day). We did not include a stipulation on the
number of valid days an individual must complete to be part of
the study. Instead, we included any day that included both valid
ActiGraph and smartphone accelerometry data. The same
cut-points that were used in the laboratory-based study were
used in the free-living study for the ActiGraph [26,31] and the
phone cut-points were based on the regression equations
calculated in the laboratory-based study.

Statistical Analyses
Although ICC were originally used, we again found minimal
within-person variation. As such, Spearman rank order
correlations were calculated between the ActiGraph and
smartphone. In addition, Bland-Altman plots [32] were created
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to compare the difference between the estimates of minutes in
each activity intensity per day between the ActiGraph and the
smartphone utilizing similar procedures reported previously
[29]. As is convention with Bland-Altman plots, a criterion level
of agreement that would be expected is required for proper
interpretation of the mean difference and variance calculation.
We assumed that a mean difference of less than 10 minutes
constituted agreement for MVPA based on national guideline
recommendations suggesting clinically meaningful activity
occurring past the 10-minute threshold [3]. There is no
consensus on what “meaningful” differences in sedentary or
light activity might be. Nonetheless, based on our own previous
work [1], we postulated that mean differences greater than 60
minutes for sedentary and light activity would suggest poor
agreement. For this study, we did not have a “gold-standard”
measure of sedentary, light physical activity, and
moderate-to-vigorous levels of physical activity but instead a
well-validated field measure, the ActiGraph. Without a
gold-standard metric, it is hard to determine what the “right”
answer should be. This is important to consider with regard to

interpretation of the confidence intervals because wide
confidence intervals could occur based on error from both the
ActiGraph and the smartphone. As such, although we report
confidence intervals in our Bland-Altman plots, we suggest
caution in overinterpretation of these confidence intervals.

Results

Study 1: Laboratory Study
There were a total of 15 participants (age: mean 55.5 years, SD
6.6, range 43-65; women: 56%, 8/15; education: mean 16.25
years, SD 1.6) who participated in study 1. A list of the activities
in the laboratory study can be found in Figure 1. Table 1 reports
Spearman rank order correlations between the ActiGraph counts
and the 3 phones. Overall, results suggest strong correlations
between the ActiGraph and the 3 phones and between the 3
phones (ρ=.90). Figure 1 is a visual representation of all
activities with color-coded labeling to identify the classification
of each activity as sedentary, light physical activity, or MVPA.

Table 1. Spearman rank order correlationsa (ρ) between raw ActiGraph and raw phone counts for the laboratory study (N=15).

Nexus OneMyTouchCliqStatistical model by activity monitoring deviceb

PρPρPρ

Full model

<.001.80<.001.82<.001.77ActiGraph

<.001.90<.001.95Cliq

<.001.90MyTouch

No bike & standing

<.001.83<.001.89<.001.85ActiGraph

<.001.88<.001.93Cliq

<.001.87MyTouch

Hip only

<.001.85<.001.86<.001.82ActiGraph

<.001.95<.001.93Cliq

<.001.93MyTouch

Hip only and no bike & standing

<.001.83<.001.85<.001.81ActiGraph

<.001.92<.001.92Cliq

<.001.89MyTouch

a The Spearman correlations are between counts/min derived for the ActiGraph and the 3 Android smartphones (Motorola Cliq, HTC MyTouch, and
Google/HTC Nexus One).
b The different models correspond to different filters (ie, no bike & standing excludes bicycling and standing; hip-only excludes measures whereby the
phones were in the pocket).

Table 2 reports results of the mixed model regression equations
for each cut-point estimate. The betas and intercepts were the
values used to calculate the phone-based cut-points listed when
the ActiGraph cut-points (ie, <100 and >1952) were imputed
into the equation. Figure 2 provides estimates of the mean
differences between the predicted values from the phones and
the actual ActiGraph counts across phones and across different

modeling datasets (eg, the full dataset, to the dataset that only
included hip data and excluded biking/standing). Overall, there
was some instability in the overall estimate depending on the
observations included/excluded from the models using the
leave-one-out technique based on the large root mean standard
errors but that these differences were not greatly impacted by
the specific phone used or the filtering strategies. Overall, the
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models were improved if data were aggregated across all phones
as opposed to using phone-specific estimates. For the remainder
of the paper, we only refer to the aggregated estimates of
cut-points across phones as these appeared most stable and we

continue to report both the “full model” and “no bike and
standing” models because there appeared to be improved model
fit using this filter but no improved model fit when excluding
measurements from the phones while worn in the pocket.

Table 2. Regression equations and cut-points for sedentary and moderate-to-vigorous levels of physical activity in the laboratory.

MVPA cut-pointcSedentary cut-pointbNbaInterceptaPhone

Full data

328.7253.541696.73–260.34Moto Cliq

283.4650.821697.96–304.62HTC MyTouch

307.7648.561697.15–247.00Google Nexus One

305.3650.927.28–270.65All phones mean

No bike & standing

279.7737.061337.63–182.81Moto Cliq

248.8635.201338.67–205.17HTC MyTouch

260.7533.361338.14–171.66Goo/HTC Nexus One

262.4735.178.15–186.55All phones mean

a The betas and intercepts were developed as an aggregation of the results of the leave-one-out technique (ie, averaging the beta and intercept estimates
from all models).
b The cut-point value imputed into the regression equation for the sedentary cut-point was <100.
c The cut-point value imputed into the regression equation for the MVPA cut-point was >1951.

Figure 2 shows the mean difference between the predicted value
of an ActiGraph count compared to the actual ActiGraph count
(ie, predicted count – actual count). This mean difference across
different models allows for an estimate of differences across
models when using the leave-one-out strategy of model building.
Higher mean differences suggest less stable regression models
that are more influenced by individual observations in the model.
The error bars represent the root mean standard error across all
models run utilizing a leave-one-out procedure, which further
provides insights on the interpretability of the models. High
root mean standard errors suggest large variation in estimates
during the leave-one-out procedure, but also provide an estimate
of “meaningful” mean difference estimates across the various
regression models. Results suggest that the mean differences
observed did not differ by phone or data-filtering strategy used,
but that there was large variation of impact across observations,
thus justifying the use of the leave-one-out method for creating
a more stable regression model.

Table 3 reports the percentage of time each device accurately
classified an activity into its corresponding MET classification
(ie, sedentary, light physical activity, or MVPA) [28]. Overall,
results suggest that the phones correctly classified activities at
nearly the same level as the ActiGraph. For example, when
excluding behaviors from the model that are known to be poorly
classified using cut-point estimates (ie, bicycling and standing),
the ActiGraph correctly classified 91% (108/119) of all activities
across all participants. In comparison, the phones correct
classification levels ranged from 78% (73/93; MyTouch, Full
Model) to 91% (85/93; Nexus One, no bike and standing model).
Not surprisingly, cycling activities and standing exhibited the
poorest estimated agreement (see Table 3). Interestingly, the
phones actually did better at correctly classifying the light
intensity activity of sweeping. Again, Figure 1 provides a visual
summary of these classifications on a labeled scatterplot for the
Nexus One.
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Table 3. Correct classification of activity intensity level for each device.

Correct classification,a %PlacementActivity

ActiGraphCliqMyTouchNexus One

N/A

No bike &

standbFull

No bike &

standbFull

No bike &

standbFull

64%65%63%60%59%73%69%Overall

91%83%83%80%78%91%90%Overall excluding behaviorsb

0%0%0%0%0%0%0%HipBicycling outside 10 mph

0%0%0%0%0%0%0%PocketBicycling outside 10 mph

7%9%0%0%0%36%18%HipCycling indoors 75 rpm

0%88%63%63%63%63%50%PocketCycling indoors 75 rpm

100%82%82%82%82%91%91%HipLying down

100%89%89%89%89%100%100%HipSitting while slouching

100%90%90%80%80%100%100%HipSitting with back straight

93%73%82%73%82%82%91%HipTelevision (free-movement)

100%80%80%80%80%90%90%HipTelevision (sitting straight)

0%9%9%0%0%18%9%HipStanding Straight

50%100%100%100%100%100%100%HipSweeping

92%90%90%90%90%80%90%HipTreadmill 2 mph

92%90%80%40%20%100%80%HipTreadmill 3 mph

91%70%70%90%90%90%80%PocketTreadmill 3 mph

80%60%60%80%80%80%80%HipTreadmill 5 mph

a These values are the percentage of times the activity was correctly categorized according to its physical activity intensity level (ie, sedentary, light,
or moderate-to-vigorous intensity physical activity) by each of the 4 devices. For this work, we explored correct classification both using different
phones and via different cut-point algorithms based on different regression models. The cut-points used here were the average cut-point estimates across
all the phones for both the full model cut-points (ie, <50.92 for sedentary and >305.36 for MVPA) and the model generated when biking and standing
was excluded when creating the cut-point estimates (ie, “no bike & standing” model cut-points were <35.17 for sedentary and >262.47 for MVPA).
For the full model, N=132.
b This overall estimate of correct classification excluded the following behaviors that are known to be problematic for classifying using a cut-point
strategy: bicycling outdoors, indoor cycling, and standing still (N=93).
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Figure 2. Comparison of the stability of different regression model estimates (laboratory study). The error bars represent the root mean standard error
across all models run utilizing a leave one out procedure.

Study 2: Free-Living Study
There were 23 participants who had acceptable data for
comparing the phone accelerometer to the ActiGraph (age: mean
57.0 years, SD 6.4, range 45-69; women: 74%, 17/23; body
mass index: mean 29.5, SD 5.9, range: 20.8-40.9; white: 70%,
16/23; Asian/Asian American: 22%, 5/23; bachelor’s degree or
higher: 79%, 18/23; married: 44%, 10/23; working full time:
64%, 14/23). On average, participants had approximately 5 days
of valid wear time for both the ActiGraph and smartphone
accelerometry data (days per participant: mean 4.8, SD 2.1;
total days=107). Table 4 reports correlations between the
estimated number of minutes engaged in sedentary, light

physical activity, and moderate-to-vigorous levels of physical
activity based on the Nexus One phone using the full model
cut-points derived from study 1 compared to the ActiGraph
(listed in Figure 1). Overall, results suggested moderate to strong
correlations between the direct estimates for sedentary physical
activity and MVPA (eg, raw count comparisons: ρ=.44, P<.001;
sedentary: ρ=44, P<.001; MVPA: ρ=.67, P<.001) and weak
correlations for light physical activity (ρ=.38, P<.001). These
correlations were nearly the same as the no bike and standing
correlations (eg, raw count comparisons: ρ=.35, P<.001;
sedentary: ρ=.44, P<.001; light: ρ=.34, P<.001; MVPA: ρ=.68,
P<.001).

Table 4. Free-living Spearman rank correlations between ActiGraph and NexusOne smartphone.

SmartphoneaActigraph

MVPALightSedentaryRaw count 

PρPρPρPρ

<.001.57<.001.32.02–.22<.001.59Raw count

.98.00.27.11<.001.44<.001–.34Sedentary

.49–.07<.001.38.20–.13.16.14Light

<.001.67.53.06.03–.21<.001.54MVPA

a Smartphone estimates of min/day in each category are based on the “full” model average cut-points that were derived from study 1.

Figures 3-5 report Bland-Altman plots comparing the ActiGraph
and smartphones utilizing the full model cut-point estimates.
Comparison of the plots suggest good absolute mean-level
differences in sedentary and MVPA activity minutes/day
estimates (sedentary: mean difference=–26.0 min/day, 95% CI

–279.5 to 227.6; MVPA: mean difference=–1.3 min/day, 95%
CI –38.4 to 35.8). Absolute mean-level differences for light
physical activity were outside of the acceptable range (mean
difference=–111.2 min/day, 95% CI –285.8 to –63.5). Although
not shown, we did create Bland-Altman plots for the no bike
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and standing models and consistently found poorer absolute
estimates suggesting that for absolute estimates in a free-living
context, the full model cut-points listed in Table 2 (ie, <50.92
for sedentary and >305.36 for MVPA) were superior. Based on
the lack of a gold standard in this study, the 95% confidence

intervals are not as easily interpreted because the error likely
comes from measurement issues with both devices. As such,
they are provided more for broader context but should be
interpreted with caution.

Figure 3. Bland-Altman plot comparing estimated minutes of MVPA per day between the phone and ActiGraph, full model (free-living study).
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Figure 4. Bland-Altman plot comparing estimated minutes of light activity per day between the phone and ActiGraph, full model (free-living study).
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Figure 5. Bland-Altman plot comparing estimated minutes of sedentary behavior per day between the phone and ActiGraph, full model (free-living
study).

Discussion

Principal Findings
The purpose of this work was to determine the validity and
reliability across different Android smartphones for tracking
physical activity among midlife and older adults. Overall, results
indicated (1) Android smartphone raw counts are strongly
correlated to ActiGraph counts in a laboratory-based and
free-living setting suggesting the accelerometers provide similar
estimates regardless of the activity classification algorithm used,
(2) Android smartphone raw counts were strongly correlated
with one another suggesting that different Android phones
reliably provide similar estimates before any algorithm, (3)
placement in the pocket versus on the hip both in a
laboratory-based and free-living context did not detrimentally
impact estimates suggesting that phones can reliably be worn
in either location, and (4) absolute classifications of activity
intensity between the phone and ActiGraph were comparable
both in-laboratory (based on similar correct classification
percentages of known activities) and free-living context (based
on absolute mean difference estimates via Bland-Altman plots)
for sedentary and MVPA estimates but not light physical
activity.

Results indicating that the phone accelerometers and ActiGraph
are strongly correlated have important implications for not only
cut-point-based activity classification strategies, but also any
classification strategy utilizing an accelerometer. In particular,
because the effective raw signals are providing similar
information, it is quite plausible that similar algorithm strategies
can be used between devices with similar effects, assuming
some degree of calibration. This is important because it suggests
other activity recognition strategies, such as machine

learning/neural network analyses [10-13], can likely provide
similar estimates from the raw accelerometer signals across
phones. This also increases confidence that estimates between
Android phones from apps that utilize the accelerometer for
activity classification will likely be comparable across phones.

Results suggesting phone placement did not impact sedentary
and MVPA estimates have important implications for usability.
Specifically, we found an almost even split in preferences related
to wearing the phone, with some desiring to wear it on the hip
and others desiring to keep it in their pockets. A phone will
likely be worn if it fits into a person’s daily life. As such,
allowing individuals to wear the device in whatever way they
so desire increases the likelihood of continuing to gather the
data in the long-term (as we did in our MILES intervention trial
[8]). Our results suggest that acceptable activity estimates can
be acquired either on the hip or in the pocket. Further work
should continue to explore ways to further improve
“wearability” of a system. This interest is evident in the
commercial sector with devices such as the Fitbit Flex, Jawbone
UP, or Misfit Shine, which are all wrist-worn activity monitors.

Finally, our results suggesting that the phones gave similar
absolute estimates of sedentary and MVPA activities to an
ActiGraph in both in-laboratory and free-living studies has
important implications for epidemiologic and intervention
research. At present, there is far more data supporting the
linkage between cut-point-derived estimates of physical activity
with health outcomes compared to the other data analytic
techniques [1,15,33]. Based on this, although it is likely the
machine learning-based classification techniques will eventually
provide better methods for classifying physical activity, at
present, there is still value in focusing on validating the
smartphone compared to the classical cut-point-derived
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estimates from the ActiGraph. Our results suggest that the
phones can provide an acceptable alternative to an ActiGraph
for classifying sedentary and MVPA, but not light physical
activity.

Limitations
The ActiGraph was utilized as our primary comparison metric.
Although the ActiGraph is acceptable for field-based research,
it is not a gold-standard activity monitoring device. This is
particularly important to be mindful of when interpreting the
Bland-Altman plots because the Bland-Altman plots are
designed to support comparison of a new measure to a previous
gold-standard metric. The Bland-Altman plots revealed good
mean-level differences but poor confidence interval estimates
between the smartphone and ActiGraph. Because the ActiGraph
is not a gold-standard measure, it is quite plausible that the high
confidence intervals can be attributed not only to variance from
the smartphone but also the ActiGraph. As such, the confidence
intervals from the Bland-Altman plots need to be interpreted
with caution. Further, the ActiGraph cut-points utilized
incorporated only the vertical axis whereas the phones used all
3 axes, thus establishing another potential source of error
between the two.

A second limitation of our work is that we utilized a
cut-point-based strategy for activity classification rather than
newer strategies such as neural network analysis or machine
learning techniques [10-13]. Although a cut-point strategy does
not afford the level of precision that these newer techniques do,
cut-point estimates are still pragmatic to use in both
epidemiologic and intervention research. In particular, the
national guidelines for physical activity do not focus on specific
behaviors, but instead the broad classes of moderate and
vigorous intensity physical activity that we can classify with
cut-point algorithms [3]. As such, intensity classification has
utility for physical activity recommendations because it more
directly corresponds with national guidelines. In addition, there

is also much more work linking cut-point-based estimates of
physical activity to health outcomes compared with the more
precise activity classification techniques [1,33]. As such, the
regression equations generated provide a strategy for
establishing a linkage from estimates derived from smartphones
to those health outcome linkages made via previous work that
found associations with ActiGraph estimates via cut-point
algorithms and health outcomes.

Another limitation is the brands of the smartphones we studied.
In 2009, HTC and Motorola were among the most important
manufacturers of Android smartphones, but at this point
Samsung has become the primary Android phone manufacturer.
Unfortunately, our study cannot provide any insights on the
quality of Samsung devices. Further, although the data were
comparable across our phones, it is impossible to determine if
the phone estimates would remain comparable in newer phones.
That said, based on the plethora of different Android phones
available, our data at least increases confidence that different
manufacturers and running different firmware versions of
Android may provide similar estimates of physical activity
based on the accelerometry.

Strengths of this research were that data are available from both
an in-laboratory and free-living context. Further, the samples
used to create the estimates are in-line with other physical
activity assessment/validation protocols. Finally, validation
occurred via direct observation of activities in laboratory.

Conclusions
Overall, our results suggest that an Android smartphone appears
to be an acceptable alternative for estimating sedentary and
moderate-to-vigorous intensity physical activity to an ActiGraph
accelerometer in both a laboratory-based and free-living context.
This suggests that smartphones might be an effective
mechanism, by themselves, for tracking physical activity. Future
work should explore other potential analytic techniques (eg,
machine learning) for further improving the classification.
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