
Original Paper

Let Visuals Tell the Story: Medication Adherence in Patients with
Type II Diabetes Captured by a Novel Ingestion Sensor Platform

Sara H Browne1,2, MD, MPH; Yashar Behzadi3, PhD; Gwen Littlewort4, MSc, DPhil
1University of California, San Diego, School of Medicine, La Jolla, CA, United States
2Specialists in Global Health, Encinitas, CA, United States
3Proteus Digital Health, Redwood City, CA, United States
4University of California, San Diego, Machine Perception Laboratory, La Jolla, CA, United States

Corresponding Author:
Sara H Browne, MD, MPH
University of California, San Diego
School of Medicine
9500 Gilman Drive, Mail Code 0640
La Jolla, CA, 92093-0640
United States
Phone: 1 858 822 6563
Fax: 1 858 534 6020
Email: shbrowne@ucsd.edu

Abstract

Background: Chronic diseases such as diabetes require high levels of medication adherence and patient self-management for
optimal health outcomes. A novel sensing platform, Digital Health Feedback System (Proteus Digital Health, Redwood City,
CA), can for the first time detect medication ingestion events and physiological measures simultaneously, using an edible sensor,
personal monitor patch, and paired mobile device. The Digital Health Feedback System (DHFS) generates a large amount of
data. Visual analytics of this rich dataset may provide insights into longitudinal patterns of medication adherence in the natural
setting and potential relationships between medication adherence and physiological measures that were previously unknown.

Objective: Our aim was to use modern methods of visual analytics to represent continuous and discrete data from the DHFS,
plotting multiple different data types simultaneously to evaluate the potential of the DHFS to capture longitudinal patterns of
medication-taking behavior and self-management in individual patients with type II diabetes.

Methods: Visualizations were generated using time domain methods of oral metformin medication adherence and physiological
data obtained by the DHFS use in 5 patients with type II diabetes over 37-42 days. The DHFS captured at-home metformin
adherence, heart rate, activity, and sleep/rest. A mobile glucose monitor captured glucose testing and level (mg/dl). Algorithms
were developed to analyze data over varying time periods: across the entire study, daily, and weekly. Following visualization
analysis, correlations between sleep/rest and medication ingestion were calculated across all subjects.

Results: A total of 197 subject days, encompassing 141,840 data events were analyzed. Individual continuous patch use varied
between 87-98%. On average, the cohort took 78% (SD 12) of prescribed medication and took 77% (SD 26) within the prescribed
±2-hour time window. Average activity levels per subjects ranged from 4000-12,000 steps per day. The combination of activity
level and heart rate indicated different levels of cardiovascular fitness between subjects. Visualizations over the entire study
captured the longitudinal pattern of missed doses (the majority of which took place in the evening), the timing of ingestions in
individual subjects, and the range of medication ingestion timing, which varied from 1.5-2.4 hours (Subject 3) to 11 hours (Subject
2). Individual morning self-management patterns over the study period were obtained by combining the times of waking, metformin
ingestion, and glucose measurement. Visualizations combining multiple data streams over a 24-hour period captured patterns of
broad daily events: when subjects rose in the morning, tested their blood glucose, took their medications, went to bed, hours of
sleep/rest, and level of activity during the day. Visualizations identified highly consistent daily patterns in Subject 3, the most
adherent participant. Erratic daily patterns including sleep/rest were demonstrated in Subject 2, the least adherent subject.
Correlation between sleep /rest and medication ingestion in each individual subject was evaluated. Subjects 2 and 4 showed
correlation between amount of sleep/rest over a 24-hour period and medication-taking the following day (Subject 2: r=.47, P<.02;
Subject 4: r=.35, P<.05). With Subject 2, sleep/rest disruptions during the night were highly correlated (r=.47, P<.009) with
missing doses the following day.
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Conclusions: Visualizations integrating medication ingestion and physiological data from the DHFS over varying time intervals
captured detailed individual longitudinal patterns of medication adherence and self-management in the natural setting. Visualizing
multiple data streams simultaneously, providing a data-rich representation, revealed information that would not have been shown
by plotting data streams individually. Such analyses provided data far beyond traditional adherence summary statistics and may
form the foundation of future personalized predictive interventions to drive longitudinal adherence and support optimal
self-management in chronic diseases such as diabetes.

(JMIR mHealth uHealth 2015;3(4):e108) doi: 10.2196/mhealth.4292
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Introduction

Medication adherence is defined as “the extent to which patients
take medications as prescribed by their health care providers”
[1]. An estimated 50% of patients do not adhere to prescribed
medication regimens over time [1]. In the United States, US
$100 billion in unnecessary hospitalizations and a total direct
and indirect estimated cost of US $290 billion occurs from
non-adherence annually; while non-adherence is estimated to
cost the European Union €1.25 billion annually [1-4].

Any attempt to address this problem is complicated by the
absence of reliable measurement of medication adherence, a
difficulty that has plagued medicine since the days of
Hippocrates [5]. The current gold standard is directly observed
therapy, where a health care worker watches a patient swallow
each dose of medication. This is expensive and impractical in
chronic disease management. Alternatively, patient questioning,
pill counts, and prescription refill rates have been used as
methods for assessing adherence, but these have been shown
to be inaccurate [1,6]. Electronic monitoring methods such as
medication event monitoring systems, which rely on the opening
of an electronic cap or patient dispensation of medication as a
proxy measure of ingestion, emerged in the 1980s. The
limitations of these systems, such as mismatches between
electronic cap opening and actual intake, or patients obviating
electronic assessment by decanting pills into a different
container, have been well documented [7-10]. None of the
methods of assessing medication adherence described above
monitor actual medication ingestion, nor do they include any
physiological measures such as activity, heart rate, or sleep/rest.

A Novel Sensor Platform to Monitor Medication
Adherence and Self-Management
A novel technology, Digital Health Feedback System (DHFS),
is now available that allows for the date- and time-stamping of
actual ingestions of oral medications rather than surrogate
measures of ingestion. The system has been shown to be safe,
reliable, and highly accurate, with a positive detection accuracy
of sensor-detected ingestions of approximately 99.1% (321/324
ingested under direct observation; 95% CI 97.3-99.7) [11]. In
the renal transplant population, the system accurately detected
the ingestion of two sensor-enabled capsules taken at the same
time with a detection rate of 99.3% (n=2376) [12]. The system
is approved by the US Food and Drug Administration (FDA)
and CE marked (European Conformity marking) (August 2012).
It is the only system ever approved by the FDA for the
measurement of medication adherence (July 2015).

This system consists of a 1 mm3 edible sensor (1 x 1 x.45 mm
microchip), coated with very thin layers of commonly ingested
excipients (ie, minerals and metals), and a small detector patch
worn on the torso. When ingested with medication, the sensor
readily separates from the carrier, is energized, and
communicates with the adhesive-backed detector patch worn
on the torso. The detector patch interprets the information as
unique to the ingested sensor and records it along with
physiological metrics including heart rate, step activity, and
sleep/rest. All of the recorded data are sent wirelessly to a paired
device, such as a mobile phone or a personal computer, and are
subsequently uploaded to a secured, centralized data storage
location (Figure 1) [12-15]. The patch can be configured to
acquire various physiologic data at predetermined intervals.
Individuals using the system generate dense physiological data
that can be viewed in combination with the patient’s medication
ingestion data.
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Figure 1. Overview of the Digital Health Feedback System to monitor medication adherence and self-management (figure courtesy of Proteus Digital
Health).

Continuous Wearable Sensor Platforms Require Novel
Modes of Analysis
As described above, the DHFS includes a continuous wearable
monitor patch and generates dense individual data on adherence
and physiological measures. A patch, sampling every 5 minutes,
can generate over 1000 data events per patient in a 24-hour
period. In order to be interpretable and useful to a health care
provider and patient, these dense data require novel methods of
analysis not used previously in adherence monitoring. Currently,
adherence data are traditionally reported as summary statistics,
that is, “taking adherence,” the percentage of doses taken in
relation to the total number of prescribed doses and “timing
adherence,” the percentage of doses taken during a prescribed
time interval. Such summary statistics derived from the ingestion
sensor platform, while highly accurate in comparison to any
other adherence assessment, will not reflect the richness of
information that the entire DHFS system is capable of providing.

For dense DHFS data, we reasoned the use of more advanced
analyses incorporating visualization methods were needed.
Information visualization enhances human cognition in multiple
ways, including enhancement of pattern recognition, such as
when information is organized in space by its time relationships,
and supporting the ease of perceptual inference of relationships
that are otherwise more difficult to induce [16]. Thus,
visualizations could capture dense data and, if well designed,
may be able to quickly inform health care workers and be easily
understood by patients with minimal training. The issue of how
to present large amounts of continuous dense data to a patient
and health care audience, and the study of effective ways of
using visualizations to support the analysis of large amounts of
medical data, is currently acknowledged as an area of critical
need [17]. Visual analytics, defined as the science of analytical
reasoning facilitated by advanced interactive visual interfaces
[16], is an emerging discipline that has shown significant
promise in addressing many of these information overload

challenges [18]. One of the major figures in the field of visual
analytics is Edward Tufte, who encourages the use of
data-rich visualizations that present all available data without
editing. He emphasizes that data-rich graphics can actually
reveal what the data mean [19]. Furthermore, it is unclear how
physiological measures can be used to increase understanding
of individual patient medication ingestion patterns and
self-management beyond traditional adherence summary
statistics. Exploratory analyses using data-rich visualizations
may indicate how this might be done. Thus, we explored
combining multiple data streams of medication ingestion and
physiological data together in novel data-rich visualizations to
see if we could capture longitudinal patterns of
medication-taking behavior and self-management in individual
patients with type II diabetes. If successful, we reasoned that
visualization data may provide information for individually
tailored interventions that could support medication adherence.

The visualizations in this paper were derived from the data
output of a trial of the DHFS system in patients with type II
diabetes. Time domain methods were used to graph signal
changes over time, visualizing multiple signals simultaneously.
The trial included 5 patients each taking metformin twice daily
over 37-42 days [13,20] and was a user experience study
designed to evaluate the use of the technology. Thus, our work
focuses on visualizations capturing longitudinal patterns of
medication-taking and self-management over the course of the
study; it does not focus on glucose control.

As an initial approach, we investigated whether varying the
time interval over which data are analyzed and visualized
provides different insights into patients’ medication-taking
behavior. Thus separate analyses were performed looking at
data for each individual over (1) the entire study period, (2)
24-hour periods, and (3) weekly time periods. Visualizations
generated attempted to explore relationships that would be of
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value in supporting patient medication adherence and
self-management in this chronic disease state.

Methods

User Experience Trial
Data analyzed were from a user experience study, which was a
prospective, single-arm, observational cohort study (conducted
by Diabolo Clinical Research) that aimed to characterize the
at-home adherence patterns of 5 patients with type II diabetes
to oral metformin [20]. The study captured each subject’s
medication adherence and physiological data using the DHFS.
Components of DHFS networked self-management system have
been previously outlined in detail (see [20] and Figure 1).
Subjects were instructed to continuously wear the personal
monitor (RP2, Proteus Digital Health), co-ingest an edible sensor
(IEM version DP4.2, Proteus Digital Health) whenever taking
metformin, and to take one weight measurement daily (Medical
Scale A&D) [13,20]. The subjects were also instructed to take
at least one pre-meal fasting blood glucose measurement daily,
preferably in the morning to provide a fasting glucose
measurement, with a wireless glucometer (OneTouch Ultra2,
Life Scan) and test strips [13,20]. Mobile phones used were
Android 2 Global 2.2 operating system (Motorola). The data
from the telemetered devices were then integrated into the DHFS
system. Full ethical approval for the study was obtained from
Ethical and Independent Review Services, Corte Madera. All
participants signed an informed consent.

Data Analysis and Visualization Generation Methods
We analyzed Microsoft Excel and Matlab files exported from
the DHFS database and wireless glucose monitor, containing
individual subject’s DHFS outputs of pulse measured every 10
minutes, activity recorded every 5 minutes, sleep/rest, and
glucose.

Standard summary statistics in percentages were calculated
across all subjects for (1) taking adherence, defined as the
number of ingestible sensor tablet detections by the personal
monitor divided by the number of metformin doses prescribed,
and (2) scheduling or timing adherence, defined as the number
of ingestible sensor tablets detected within a±2-hour time
window around the pre-determined dosing time divided by the
number of sensors detected. Descriptive statistics of daily
glucose measurement, with mean, maximum, and minimum
range, along with 95% confidence intervals across the study
period were calculated.

Verification of System and Data Cleaning
Patch function was checked using number of individual activity
events reported over a 24-hour time period, with sampling every

5 minutes, that is, 288 measurements daily. The amount of
continuous patch wearing per subject was recorded. In
correlation calculations, days without full patch function were
removed. The total number of events per subject per day
recorded by the monitoring patch including heart rate, activity,
and posture were approximately 720. Thus, over the 197 days
of the study, data events recorded ranged from approximately
26,640-30,240 per subject, with a total number of data events
recorded of greater than 141,840 for the entire study.

Algorithms were developed using Matlab and applied to analyze
data for medication-taking behavior, sleep/rest, activity, heart
rate, and then integrated with glucose measurements over (1)
the entire study period, (2) daily, and (3) weekly. The sleep/rest
state signal is derived from an algorithm based on activity,
position, and pulse. The temporal structure of this sleep/rest
state signal was used to derive the waking time. Waking time
derivation was based on the following assumptions: (1) there
is a single daily waking event, (2) short interruptions in long
rest periods are transient state changes that should be ignored,
and (3) similarly short rests in long waking periods do not
suggest the main daily transitions. Visualizations were plotted
using Matlab.

Pearson’s r correlation between sleep/rest metrics and
medication-taking behavior was calculated using a single daily
measure, derived from physiological features tracked by the
personal monitor patch, and a daily adherence measure of either
number of doses taken or timing of dose ingestion. A delay in
medication ingestion of greater than 12 hours was considered
to be a missed dose. The daily sleep/rest measure used were
total hours of rest, and number of sleep disturbances between
10 p.m. and 8 a.m.

Results

Demographics and Traditional Summary Statistics of
Medication-Taking and Timing Adherence
Subjects were 5 patients with type II diabetes (2 females and 3
males), age 43-61, prescribed twice-daily metformin. Subjects
1, 2, and 5 used insulin in addition to metformin during the
study. Days of participation per subject ranged from 37-42, with
a total number of subject days of 197. On average, the cohort
took 78% (SD 12) of prescribed medication and took 77% (SD
26) within the prescribed ±2-hour time window. Figure 2 shows
those metrics for individual subjects. Figure 3 also shows the
range of daily glucose measurements for each subject with the
mean, maximum, minimum, and 95% confidence interval over
the period of the trial.
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Figure 2. Standard representation of medication taking and scheduling adherence across study period by subject.

Figure 3. Daily average glucose measurements taken by subject.

Verification of System and Data Cleaning
Patch use across 197 subject days of participation in the study
showed subjects wore the patch continuously between 87-98%
of the time. One isolated event of greater than 288 events was
observed due to patch dysfunction. Data from days of no
recording were removed as described above.

Data Visualizations Incorporating the Entire Study
Period

Medication-Taking Behavior, Timing of Ingestions, and
Missed Doses
The DHFS system allows precise time-stamping of ingestions.
The initial visualizations sort to provide a means to quickly
evaluate how closely patients executed the twice daily dosing

regimen prescribed and what the fraction of missed doses looked
like in terms of the time of their occurrence. Figure 4 provides
a summary graph of doses taken, total missed doses, and fraction
of missed doses taking place in the morning or evening per
subject over the period of the trial. The majority of missed doses
occurred in the evening, particularly in Subjects 2 and 4 who
had the lowest adherence.

In Figure 5, we plotted the fraction of medication ingested versus
the time of day ingestion took place for the 5 subjects across
the entire study period (Figure 5). This graphic provides
information on the range of morning and evening medication
ingestion timing and allows discernment of the subjects’ daily
timing patterns. Subject 3 took medication over the narrowest
range of time (in the morning over a 1.25 hour range and in the
evening over a 2.4-hour range) and had a consistent pattern of
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ingestion. Subject 2 took medication over the widest range of
times (over an 11-hour range in both the morning and evening)
and had no consistently repeated pattern of ingestion timing in
either the morning or the evening. Given that the mean half-life
of metformin is approximately 5.7 hours in patients with type
II diabetes [21], Subject 2 would have considerable variability
in the plasma levels of metformin by timing adherence alone.
Subject 4 took medication over a 4.5 and 4.8 hour time range,
in the morning and evening respectively, but multiple doses

were missed, mostly in the evening. Subjects 1 and 5 missed
19% and 14% respectively of their total doses. Subject 1 showed
a range of ingestion times in the morning of 4.0 hours and a
wide range of 11 hours for the timing of her second dose.
Subject 5 ingested medication over a range of 8.5 hours in the
morning and 5.8 hours in the evening. These graphs provide
information on longitudinal patterns of missed doses and twice
daily dose timing beyond the traditional summary graphs (Figure
2).

Figure 4. Dosage adherence summary for whole trial.

Figure 5. Frequency distribution of the time of day at which the subjects ingested medication.

Waking Times, Medication-Taking Behavior, and
Glucose Self-Monitoring
The DHFS is capable of identifying sleep/rest behavior in
addition to the precise timing of medication ingestion. The
ability to execute consistent timing of drug ingestion twice daily
may be connected to individual daily waking and bedtimes.
Using DHFS data, we derived each subject’s waking time and
bedtime (see Methods for mathematical derivation of these).
Figure 6 shows the variability of sleep and waking time for each
subject across the study.

We then visualized wake time with medication ingestion time
for each subject, but also incorporated time of glucose

measurement over the course of the study to explore if it was
possible to visualize morning self-management patterns in
individual subjects. Subjects in this study were instructed to
take at least 1 daily glucose measurement, preferably first thing
in the morning to provide a daily fasting glucose measure.

Figure 7 shows patterns of morning self-management of
medication ingestion and blood glucose measurement in relation
to waking time for Subjects 2, 3, and 4 (Subjects 1 and 5 are
shown in Graphs 1 and 2 in Multimedia Appendix 1). Each
individual subject displayed distinct patterns. Subject 3 ingested
metformin within 3.5 hours of waking and always took blood
glucose measurements before medication ingestion. Over the
entire period of the trial, Subject 3 missed no morning doses.
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Subject 2 took medication and blood glucose measurements at
widely varying times after waking but showed a very close
association between timing of morning glucose measurement
and medication ingestion (r=.6113, P>.001). Subject 4 took
metformin within minutes of waking but missed multiple
metformin doses. The proximity of waking time and medication
ingestion for Subject 4 may partly account for the consistency
in timing adherence of this subject, thus when the subject
remembered to take the medicine, he did so on waking usually
between 6-8 a.m. Subject 4 did not take blood sugar measures
every morning and those taken were frequently made hours
after waking and thus unlikely to represent fasting glucose

values. Subjects 1 and 5 took their metformin dose within 4
hours of waking and their graphs are shown in Graphs 1 and 2
in Multimedia Appendix 1. The visualizations suggest that
Subjects 2 and 4 did not have well-developed, consistent
successful morning routines, in contrast to Subject 3. Subject
4 had some timing consistency that could be used to reinforce
a medication ingestion routine on waking. Subject 2 showed no
consistent pattern with waking. We note that these visualizations
captured longitudinal patterns of waking, medication ingestion,
and glucose measurement beyond traditional adherence
summary graphs.

Figure 6. Frequency distribution of the estimated sleep and wake times of subjects.
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Figure 7. Morning glucose tests and metformin dose ingestion times in hours after waking for Subject 3 (top), Subject 2 (middle), and Subject 4
(bottom).

Activity Levels and Heart Rate
The DHFS also monitors heart rate and activity. An important
aspect of patient self-management in chronic diseases like

diabetes is maintaining healthy levels of physical activity.
Subjects 3 and 4 had the most frequent and vigorous exercise
levels, averaging between 8000 and 12,000 steps on most days.
Subjects 1 and 2 had the lowest step counts averaging 4000-5000
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steps per day. Subject 5 showed the widest range of daily step
count with an average of 6000 steps per day. Step count
distribution and daily average, maximum, and minimum heart
rates for each patient are shown in Graphs 3 and 4 in Multimedia
Appendix 1.

We then combined data on heart rate and step activity to gain
potential insight into the fitness levels of the subjects. We looked
at the sustained maximum heart rate in terms of the elevation

of the heart rate from resting (calculated for each individual)
and its relationship to daily step count in each subject (Figure
8). In Figure 8, Subjects 1 and 2 have steep slopes in heart rate
at relatively low step counts in comparison to Subjects 3 and 4.
This may imply lower cardiovascular fitness levels in Subjects
1 and 2. Subject 5, a known hypertensive taking the medication
atenolol, showed limited elevation in heart rate with elevated
step count.

Figure 8. Sustained heart rate elevation from rest associated with daily step count, by subject. The graph plots the heart rate elevations from rest in
beats per minute against each subject’s daily step counts.

Data Visualizations Over 24-Hour Periods
We then explored whether data analysis using visualization over
a 24-hour time frame would offer different information than
visualization over the entire study period. We generated graphs
for each day of study participation, incorporating medication
ingestion, sleep/rest, activity, and glucose measurement (both
the time of day the glucose measurement took place and the
actual glucose level are represented on the graph) for each
subject. We found that with this combination of ingestion and
physiological data, it was possible to generate visualizations
that reconstructed the broad pattern of the patient’s day in
relation to their medication-taking. Thus we could see when
patients rose, tested their blood glucose, took their medication,
became physically active, and later went to bed. Samples of
these daily graphs for each subject are provided; Subjects 2, 3,
and 4 are shown in Figures 9-11 and Subjects 1 and 5 in the
Graphs 5 and 6 in Multimedia Appendix 1. These samples were
chosen either because they represent a consistent feature of the
subject’s longitudinal daily pattern or provided detail on how
the structure of a patient’s day appeared related to their
medication ingestion pattern that day.

Figure 9 shows visualizations of the most adherent participant,
Subject 3 on Days 1, 9, and 14 of the study. The graphs show
that Subject 3 had blocks of continuous sleep/rest (sleep/rest is
visualized as a state that is either awake, 0, or asleep, 100),
typically rose around 5 a.m., engaged in a period of the highest
activity level, possibly exercise, subsequently took a blood

glucose measurement, and ingested metformin medication
around 7 a.m. The subject remained fairly active throughout
the day, took a blood glucose measurement in the evening,
promptly ingested metformin, and went to sleep/rest prior to
midnight. Subject 3 showed limited variation in the patterns.
One minor variation occurred in the evening of Day 9 when
blood glucose was measured at approximately 9 p.m., followed
by sleep/rest. Subject 3 then got up later to take metformin and
then went back into sleep/rest at around 11 p.m. The
visualizations capture the daily patterns of a highly adherent
subject who demonstrates consistent self-management routines
longitudinally over the study.

Figure 10 shows Subject 2 on Days 4, 5, and 9. Subject 2’s daily
graphs showed considerable variation in behavior patterns. On
Day 4, the subject’s continuous sleep/rest was of short duration
taking place both at night and in the middle of the day; activity
in between sleep/rest was low level; six blood glucose
measurements were taken; and metformin was ingested at
midday and then approximately 9 hours later. On the following
Day 5, Subject 2 had an almost 12-hour period of sleep/rest
starting just after midnight, took her blood glucose around noon,
took metformin dose around 2 p.m., and had a further period
of sleep/rest. The subject had low activity levels outside
sleep/rest periods and missed the evening metformin dose. On
Day 9, Subject 2 had no identifiable sleep/rest period until late
evening, again showed low levels of activity, measured her
blood glucose twice, and took four metformin in a 24-hour
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period. Two of these metformin were taken minutes apart.
Subject 2’s graphs showed wide daily variation, with continuous
changes in sleep/rest patterns and erratic medication-taking
behavior. These visualizations provide considerable data beyond
traditional adherence summary statistics. It can be appreciated
that poor adherence in this subject may not respond to simple
medication reminders or even missed dose reminders but will
require a broader approach. The visualizations suggest health
care providers should talk to the subject more broadly about
factors that influence medication adherence such as sleep
disturbance, mood alteration associated with significant sleep
disturbance, the length of time these issues have persisted and
should extend the interview to try to understand whether the
patient’s daily patterns were the result of untreated concurrent
conditions such as depression, hyperthyroidism, chronic pain,
gastroesophageal reflux disease, or were a reaction to external
stressors or both.

Figure 11 shows sample daily graphs from Subject 4 on Days
17 and 34. Subject 4 appeared to show some variability in
medication-taking with variable sleep length. On Day 17,
Subject 4 had poor sleep/rest and did not take a metformin or
a blood glucose measurement. On Day 21, after a continuous
period of sleep/rest, Subject 4 took a morning dose of metformin
prior to measuring his blood glucose three times between noon
and 3 p.m. and took an evening dose between 6 and 7 p.m. The
graphs provide examples of a day when the patient is
non-adherent and a day when the patient was adherent. (Samples
and discussion of daily graphs for Subjects 1 and 5 are available
as Graphs 5 and 6 in Multimedia Appendix 1).

This interval of analysis enabled highly individualized insight
into each participant’s daily behavior patterns over the period
of study in relationship to medication ingestion. The data
potentially provide information to support individually tailored
interventions to improve adherence outcomes.
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Figure 9. Daily medication taking, sleep/rest, activity, and glucose measurement for Subject 3 on Day 1 (top), Day 9 (middle), and Day 14 (bottom).
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Figure 10. Daily medication taking, sleep/rest, activity, and glucose measurement for Subject 2, Day 4 (top), Day 5 (middle), and Day 9 (bottom).
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Figure 11. Daily medication taking, sleep/rest, activity, and glucose measurement for Subject 4, Day 17 (top), and Day 34 (bottom).

Data Visualizations Over Weekly Periods
While daily graphs demonstrated the ability of the DHFS to
provide detailed insights into individual daily patterns of
behavior, we wanted to capture both the detail of the daily

analysis with longitudinal patterns of behavior, so we generated
visualizations using the data input over weekly periods. Figure
12 show samples of graphs combining medication ingestion,
sleep/rest, activity, and glucose measurement (both the time of
day the glucose measurement took place and the actual glucose
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level are represented) over weekly time frames. The sample
graphs chosen either represent the typical longitudinal pattern
of that subject over the course of the study or include patterns
associated with incomplete medication-taking. Figure 12 shows
examples of these, for Subjects 2, 3, and 4. (Weekly graph
examples for Subjects 1 and 5 are available as Graphs 7 and 8
in Multimedia Appendix 1). Figure 12 shows Subject 3 over a
1-week period from Days 14-20, with regular periods of
sleep/rest, exercise, active daytime periods, and glucose
measurements taken twice daily with all readings below 150

mg/dl. Subject 2 is shown over a 1-week period from Days 3-9,
with erratic and often interrupted sleep/rest patterns, four
medication dose ingestions on Day 9, varying numbers of blood
glucose measurements, mostly greater than 180 mg/dl, and
generally low levels of activity. Subject 4 is shown on Days
15-21 of the trial, with regular activity, variable sleep/rest length,
and missed multiple medication doses, particularly in the
evening. Subject 4 took four blood glucose measurements during
this period and had elevated glucose readings.
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Figure 12. Weekly medication taking, sleep/rest, activity, and glucose measurement for Subject 3, Days 14-20 (top); Subject 2, Days 3-9 (middle);
and Subject 4, Days 15-21 (bottom).

Analysis of Sleep/Rest and Medication-Taking Behavior
The daily and weekly visualizations suggested there may be
some association with variation in sleep pattern and medication

ingestion in some subjects, particularly Subject 2. To evaluate
whether there was a relationship between sleep/rest and
medication-taking behavior in the individual patients, we looked
at the correlation between (1) total hours of sleep/rest the
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previous night and pill taking the next day, and (2) sleep/rest
disruptions (breaks in sleep between 10 p.m. and 8 a.m.) and
medication-taking behavior the following day for each subject
over the entire study period. Tables 1 and 2 show these
correlations. The medication-taking behavior of Subjects 2 and
4 appeared to be significantly affected by the amount of

sleep/rest they had the previous night. Subject 2 also appeared
to have a robust relationship between the absence of breaks in
sleep/rest between 10 p.m. and 8 a.m. and the likelihood of
taking metformin medication the following day. Larger studies
are needed to fully evaluate the relationship between amount
of sleep/rest and medication adherence.

Table 1. Total hours of sleep/rest the previous night correlated with medication-taking adherence the next day.

P valueCorrelation coefficient (r)Subject

.433-.1581

.022a.4752

.236.2063

.050a.3504

.321.1885

aP<.05

Table 2. Number of breaks in sleep/rest between 10 p.m. and 8 a.m. correlated with medication-taking adherence the next day.

P valueCorrelation coefficient (r)Subject

.427-.1431

.009a-.4682

.424.1363

.506-.1164

.722.0665

aP<.05

Discussion

Principal Findings
The DHFS is the only system to date that can detect actual
medication ingestion events. It also captures dense physiological
data simultaneously. This study aimed to use modern methods
of visual analytics to represent continuous and discrete data
from this novel sensor system, plotting multiple different data
types simultaneously to evaluate the potential of the DHFS to
capture longitudinal patterns of medication adherence. The
DHFS was able to provide remote monitoring of ingestion events
and physiological metrics in the natural setting over the entire
period of the study. High levels of continuous patch wearing
with an early prototype were demonstrated in this study (current
monitor patch versions are four generations from the version
used).

Our study demonstrated a number of findings. Visualization of
the data with simultaneous variable plotting, integrating
physiologic and medication ingestion data, provided useful
detailed information on longitudinal medication-taking and
timing adherence patterns beyond traditional summary statistics.
Varying the time interval over which the variables were
visualized provides complementary data, with visualizations
over a 24-hour period demonstrating the ability to reconstruct
basic daily behavior patterns in relation to medication ingestion.
While there was some overlap of behavior in this small sample,

essentially each subject emerged as having their own distinct
longitudinal pattern. Even if that pattern was one of variability,
such as Subject 2, who showed widely variable patterns of
medication ingestion and timing with highly variable morning
and daily routines, including sleep/rest patterns. In contrast, our
analyses also enabled us to look at the behavior patterns of
Subject 3, a patient with type II diabetes, who was highly
adherent to the prescribed regimen and whose glucose measures
remained under 150 mg/dl over the period of the study. The
regularity of this subject’s daily routine, including sleep/rest
cycles and level of exercise, was striking in comparison to some
of the other subjects. As the number of these types of analyses
using the DHFS over wide populations grows, it will be also
be important to increase our understanding of how highly
adherent and optimally self-managed patients behave. This will
enable us to identify “success habits” and share those with other
patients. The focus of adherence consultations can then include
not just “how you are failing,” but also generalized examples
of “how to succeed.”

One of the most significant strengths of the visualizations
presented is that they encompass idiographic data analysis
techniques that can focus on individual variability over time.
These methods are uniquely suited to the analysis of individually
tailored interventions evolving over time to promote medication
adherence. The initial graphs on timing of ingestions and missed
doses may allow the health care provider and patient to discuss
patterns of medication-taking across a monitored time period
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and to focus on the time of day patients may need the most
support. Addition of the 24-hour graphs provide detailed
information on patterns of activity and sleep/rest on days when
doses were missed and may allow a more in-depth interaction
with the patient on the types of support needed. To illustrate
how this information could be used in practice, in discussion
with Subject 2, the health care provider could extend the
interview on factors affecting this patient’s medication
adherence to include sleep/rest patterns and other disorders
associated with significant sleep disturbance, such as depression,
hyperthyroidism, chronic pain, gastroesophageal reflux disease,
to try to understand whether the patients’ daily patterns are the
result of untreated concurrent conditions or a reaction to
stressors, or both. The visualizations provide the opportunity
to extend the health care patient interview allowing broader
personalized intervention to support treatment success beyond
the use of medication reminders alone, which would be unlikely
to successfully support medication adherence in Subject 2.
However, Subject 4, who most frequently took his medication
after waking, may well respond to reminders alone, particularly
missed dose reminders, timed around his waking. Similarly
dose reminders may work well in the evening time for Subjects
1, 4, and 5, particularly missed medication reminders around
dinner time, to reduce the number of missed medications in the
evening. The fully developed DHFS is capable of delivering
near real-time feedback, which can be incorporated into
individually tailored patient missed-dose reminder interventions.
Thus the visualizations tell individual stories for each subject
that can inform intervention and future management to support
medication adherence and patient self-management.

A major stated aim of this paper is to provide and explore modes
of data visualization that are accessible to both health care
worker and patient consumer. This requires visualizations to
preserve the accuracy of the data, while maintaining accessibility
to the maximum number of individuals without prior training.
Despite the density of the multiple different data types
summarized by some of the visualizations, it was possible to
develop graphs that could be easily understood and potentially
suitable for use by patients and health care workers with minimal
training. Health care workers in particular have very little time,
and continuous data streaming of individual variables can easily
overwhelm providers with data that may be largely unusable.
As stated in the introduction, visual analytics is an emerging
discipline that has shown significant promise in addressing
many of these information overload challenges [18]. In
data-rich illustrations, every data point has value, when such
illustrations are examined closely [19]. Further, as Tufte
emphasizes, a key take-away point is that data-rich graphics do
not simply represent the data in visual form but can reveal what
the data mean [19]. We contend that an example of this principle
is the multiple data stream visualizations over 24 hours, where
only by visualizing this data could we appreciate that we were
able to reconstruct the broad structure of a person’s day and see
how their medication-taking behavior was related. Plotting data
streams together, providing a data-rich representation, was more
meaningful than plotting each data stream individually and
revealed information that would not have been appreciated if
each data stream had been plotted individually.

Based on visualizations showing variability in sleep/rest and
medication-taking behavior in some subjects, we evaluated
potential correlations between medication-taking behavior
sleep/rest patterns. This analysis suggested medication-taking
behavior in 2 individual subjects was significantly influenced
by sleep/ rest patterns over the period monitored. Other
researchers have found sleep disturbance, especially when
reported with depression, is associated with poor medication
adherence [22,23]. Larger studies over longer periods of time
would be needed to definitively establish whether sleep
disturbance is significantly correlated with non-adherence in
certain individuals and in general.

As these visualizations could prove useful and relevant in
clinical practice, investigation of their ease of use and utility to
health care workers and patients is currently in progress. While
our analyses across varying time intervals provided
complementary data, using a weekly interval of analysis we
were able to provide much of the detail of daily structure in
combination with longitudinal patterns over a 1-week period.
Thus, we estimate that the weekly visualizations will prove the
most useful interval of evaluation in future studies incorporating
tailored individual interventions to support medication adherence
and optimal self-management. The addition of subject input
such as personal event logs would further increase the impact
of these visual analyses of DHFS data and enrich feedback that
could be given to individuals to guide self-management.

In future, as the number of these analyses and use of the DHFS
system grows, reference databases on patterns of longitudinal
medication adherence and self-management patterns will
accumulate and measurable estimates of comparability of
longitudinal patterns to large sample populations will be
available. Ultimately, we anticipate that machine-learning
techniques will make predictive interventions possible to support
longitudinal medication adherence and patient self-management.

Limitations
The major limitation of this work is the study size. Work is
currently underway to further refine analytic algorithms within
larger studies. Co-ingestion of an edible sensor whenever taking
metformin, as occurred in this user experience study, is now
being replaced with combined formulations of edible sensor
and medication [24]. The focus of this work is analysis of
medication-taking and physiological correlates. Limited
comment is made here on the adequacy of glycemic control of
type II diabetes in these subjects. Further, rigorously designed
and larger studies will be necessary to evaluate the DHFS as a
tool for monitoring and improving glycemic control within type
II diabetic self-management.

Conclusions
Visualizations integrating medication ingestion and
physiological data from the DHFS over varying time intervals
captured detailed individual longitudinal patterns of medication
adherence and self-management in the natural setting.
Visualizing multiple data streams simultaneously, providing a
data-rich representation, revealed information that would not
have been appreciated by plotting data streams individually.
Such analyses provided data far beyond traditional adherence
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summary statistics and may form the foundation of future
personalized predictive interventions to drive longitudinal

adherence and support optimal self-management in chronic
diseases such as diabetes.
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