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Abstract

Background: Automatically tracking mental well-being could facilitate personalization of treatments for mood disorders such
as depression and bipolar disorder. Smartphones present a novel and ubiquitous opportunity to track individuals’ behavior and
may be useful for inferring and automatically monitoring mental well-being.

Objective: The aim of this study was to assess the extent to which activity and sleep tracking with a smartphone can be used
for monitoring individuals’ mental well-being.

Methods: A cohort of 106 individuals was recruited to install an app on their smartphone that would track their well-being with
daily surveys and track their behavior with activity inferences from their phone’s accelerometer data. Of the participants recruited,
53 had sufficient data to infer activity and sleep measures. For this subset of individuals, we related measures of activity and
sleep to the individuals’ well-being and used these measures to predict their well-being.

Results: We found that smartphone-measured approximations for daily physical activity were positively correlated with both
mood (P=.004) and perceived energy level (P<.001). Sleep duration was positively correlated with mood (P=.02) but not energy.
Our measure for sleep disturbance was not found to be significantly related to either mood or energy, which could imply too
much noise in the measurement. Models predicting the well-being measures from the activity and sleep measures were found to
be significantly better than naive baselines (P<.01), despite modest overall improvements.

Conclusions: Measures of activity and sleep inferred from smartphone activity were strongly related to and somewhat predictive
of participants’ well-being. Whereas the improvement over naive models was modest, it reaffirms the importance of considering
physical activity and sleep for predicting mood and for making automatic mood monitoring a reality.

(JMIR Mhealth Uhealth 2017;5(10):e137) doi: 10.2196/mhealth.7820
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Introduction

A goal of personalized medicine is to tailor treatments to
individuals based on their needs. To aid the tailoring of

treatments, it is necessary to monitor an individual’s state of
well-being and to evaluate whether they are responding to a
treatment [1,2]. However, monitoring can be a tedious and
expensive process and, as a result, can yield low adherence [3].
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To overcome low patient adherence, automatic monitoring can
be employed in the treatment of mental health disorders, such
as depression and bipolar disorder, which benefit from
monitoring symptoms over time to identify symptom relapse
and to possibly prevent symptoms because of higher
self-awareness [4].

The proliferation of personal electronics has enabled continuous
personal monitoring [5]. For example, activity recognition has
enabled tracking to monitor physical exertion and sleep patterns
[6]. Recent studies have started examining whether these
smartphone-measured behavioral patterns can be used to infer
and then automatically track signals that are not explicitly
measured by the smartphone, such as mental well-being.

Many studies have looked at inferring measures of mental
well-being from smartphone-measured behavioral patterns [7].
In particular, researchers have considered using measures of
location and mobility from global positioning system (GPS)
logs to infer depression [8-10], bipolar state [11], stress [12],
and well-being measures related to schizophrenia [13]. These
studies have shown that daily self-reported levels of stress are
related to geospatial activity and sleep [12] and that mobility
data can improve predictions of whether a participant is happier
or less depressed than usual [8,10] and their bipolar state or
transition between states [11]. Researchers have also found that
regularity of an individual’s daily mobility is significant when
predicting depression symptom severity [9,14].

Additional studies have explored the relationships of social
signals such as phone usage, call logs, and SMS (short message
service) logs with well-being. Two recent studies found that
phone usage measures were correlated with depressive symptom
severity [9,14]. Another study found that using social signals
such as emails, SMS and call logs, Internet usage, app usage,
and location frequency was predictive of mood and energy when
previous observations of mood and energy were included [15].
However, a similar follow-up study was unable to reproduce
these results. This follow-up study did not find sophisticated
models considering high accelerometer activity, call and SMS
logs, screen events, app usage, and number of images taken to
be better than guessing each individual’s well-being [16].

Whereas this body of literature has established that relationships
between measures of mental well-being and
smartphone-measured behaviors may exist, the above literature
has not focused extensively on physical activity in uncontrolled
environments (ie, outside a lab without constraints on
participants, such as where the phone must be located). For
example, studies have explored predicting bipolar states and
state transitions via accelerometers on small populations [11]
or mood in constrained environments where the phone had to
be in a fixed position [17,18] or activities had to be performed
in a lab [19]. One study looked at a measure of total daily
physical activity and sleep (as measured with multiple sensors)
but within the context of stress and not well-being more broadly,
and it did not attempt to predict well-being [12].

Despite these few studies’ limited focus on activity and sleep,
there is a body of literature external to mobile health (mHealth)
that has established a strong relationship of better mood with
increased activity [20-24] and sleep quality [25,26]. There is

also mounting evidence that a smartphone accelerometer
measures physical activity to a sufficient extent to be useful for
monitoring well-being. Several studies have demonstrated that
individuals’ sleep and physical activity can be somewhat
accurately tracked with smartphones [27] and activity
recognition [28-30], respectively. As a result, it seems probable
that an individual’s activity and sleep, as tracked by their
smartphone’s accelerometer, could be related to and potentially
predictive of their mood and well-being more broadly.

If possible, tracking mental well-being with an accelerometer
could have benefits over using other sensors. For example, an
accelerometer could provide more privacy than previously
considered sensors, such as GPS location [8-12] and call logs
[13,15,16]. Another advantage to using an accelerometer is that
the sensor is always available when the phone is turned on,
including when the individual’s phone is out of service or, for
example, in a tunnel. Whereas accelerometers embedded in a
wearable device might have more potential to accurately track
activity, smartphones are more ubiquitous and thus more realistic
for long-term tracking.

Here, we are interested in focusing on and better understanding
the relationships of physical activity and sleep, as measured by
a smartphone accelerometer, with emotion for improving
automatic mood tracking. We are particularly interested in
understanding whether the relationships are predictive,
especially from data collected with ordinary participant-owned
smartphones in unconstrained environments (ie, not imposing
constraints on participants about where they need to keep the
phone or whether they need to have a special device with an
accelerometer attached to their body). To explore these research
questions, we conducted a field study, extracted measures of
physical activity and sleep from smartphone accelerometer logs,
related these measures to participants’ self-reported well-being,
and attempted to infer participants’well-being with classification
and regression models. We expect that increased physical
activity and better sleep quality will be related to improved
self-reported mood and well-being.

Methods

Field Study
We recruited 106 participants from the university community
through the Experimental Social Science Laboratory (XLab)
for an 8-week field study to pilot methods. Participants were
eligible if they owned an Android smartphone, were native
English speakers, were undergraduate students, and agreed to
the consent form. The study was approved by the University of
California, Berkeley Internal Review Board. The participants
were asked to take an entry survey, respond to daily well-being
prompts on their smartphone, allow passive collection of sensor
data from their smartphone, and take an exit survey.

Data Collection
Data were collected from participants through a custom Android
app that used the Funf Open Sensing Framework [31]. This app
was installed by participants before the study period and
collected both passive sensor data as well as daily participant
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input. The participants were instructed and reminded to uninstall
the app at study completion.

To quantify well-being, we followed prior studies and asked
participants to repeatedly fill out a 2-question survey on their
phone. Participants could enter information about their state on
two 9-point Likert scales—one for energy and one for mood.
Scales were labeled with opposite poles, such as unhappy to
happy and unenergetic to energetic. Participants could select
the specific words from short lists of relative synonyms for each
pole, such as unhappy, negative, sad, bad versus happy, positive,
good. Participants were queried for their state 4 times a day.
Each of the four daily surveys occurred at a random time within
a predefined period between 8 AM and 10 PM. The purpose of
randomizing within periods was to ensure distribution of surveys
throughout the day without having participants anticipate them.
All responses given in a day were averaged into a daily level
of perceived mood and energy.

To measure activity, we sampled the smartphone’s
accelerometer for intervals of 3 seconds every 5 minutes. These
data were collected continuously from the time the app was
installed. There were compatibility issues with phone models
and network connections, hence, the amount of data collected
on each subject varied. Quality of accelerometers also varied
between phone models, which contributed to variance in the
amount and quality of data collected on each individual. Some
of the difficulties we encountered with sensor data collection
included entirely missing observations, nonuniform readings
during an observation interval, and insufficient duration of
sampling, that is, less than 3 seconds. Participants were excluded
from the analyses if they did not have complete data (well-being
responses and activity readings) for at least 14 days of the study.

Data Processing

Preprocessing
The smartphones’ 3-axis accelerometers measured the
acceleration of the device in three directions. Following prior
work, we considered the magnitude of the acceleration minus
gravity [32]. Gravity for each segment was estimated as the
average of coordinates in each of the directions. To account for
irregular sampling and to reduce noise in the sensor readings
during a sampling interval, we interpolated the available data
points and took regular sampling from the interpolation.
Quadratic and cubic splines gave irregularities with missing
readings; thus, a linear spline was identified as performing the
best. This regular sampling allowed us to compute discrete
Fourier transforms on the approximated signal and approximate
the spectral density using Welch’s method, that is, averaging
between Fourier transforms on multiple overlapping segments
of the full observation window.

Activity Inference
We inferred activity from features summarizing the
orientation-invariant magnitude of acceleration deviation and
the spectral density of the magnitude of deviation of
acceleration. The acceleration deviation was computed by
subtracting the estimated gravity from all readings in the
interval. This approach was taken to allow for more fine-grained
analysis of movement than is presented here. Much prior work

with accelerometers, predicting both mental well-being
[11,17,19] and activity [28-30], utilized features on
coordinate-wise acceleration. However, such approaches were
not applicable here, as our participants’ phones were not in a
fixed position during the study. We followed prior work that
considered features on the magnitude and power spectrum of
the magnitude of acceleration during the sample period [30].
The features we used were the average and standard deviation
of the magnitude of acceleration and the dominant frequency,
entropy of the normalized power spectrum, power in the high
frequencies, medium frequencies, and low frequencies of the
power spectrum of the magnitude of the acceleration. These
eight features were used to fit two logistic regression classifiers.
One classifier was trained to identify when the phone is still or
set down; the second classifier identified activity such as
walking, running, or pedaling a bicycle. We did not use a
classifier to explicitly identify the phone being in a vehicle,
such as a car, bus, or train. We did not find a classifier to be
reliable enough, given the many states a vehicle can assume,
for example, idling, accelerating, and traversing a smooth or
bumpy road. Such a task was also of uncertain necessity because
participants do not necessarily exert extra energy while riding
in transportation and thus vehicle activity was less likely to
correspond to elevated mood from physical exertion.. As a
result, we focused this study on measures of physical activity
and sleep. The goal of these two classifiers was to quantify how
long the phone was set down at night, and the subject
presumably sleeping, and how long the participant was
physically active during the day. These classifiers were trained
on an auxiliary activity-labeled dataset that was collected with
the same smartphone app and data processing pipeline. The
classifiers achieved 80% to 95% accuracy on held out subjects
from the training dataset.

Measure Extraction

Sleep Duration
Sleep duration was estimated as the length of the longest period
during which the participant was not physically active, starting
after 9 PM the prior evening. This period was calculated by
looking at the longest contiguous series of observations when
the accelerometer data predicted that the participant was not
active and taking the duration of that period. Whereas this
approach likely overestimates the duration of sleep, it should
be representative of a period of passivity or evening rest and is
preferable to the highly noisy alternative of considering the
duration for which the phone was predicted to be still during
the evening.

Nighttime Stillness
Sleep disturbance, or nighttime stillness, sought to capture sleep
disturbance during the time when each participant’s phone was
most likely to be set down and the participant presumably asleep,
based on their typical behavior. This measure was considered
to be the fraction of time that a participant was still during their
median period of late evening or when their phone would
typically be still, based on their behavior during the study. The
period of late evening was defined for each participant by first
considering the longest contiguous set of observations during
which the phone was predicted to be set down, starting after 9
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PM for each day of the study. The median time that this period
started, or presumably the phone was set down, for each day of
the study defined the beginning of period, and the median time

that the contiguous still observations ended on each day of the
study was considered the end of the period of late evening.

Table 1. Daily measures of activity and sleep and how they were calculated.

How it was measured and calculatedMeasureType of measure

Coded as the number of days since the first day of the study.Day of study (semester)Time

Ordinal variable coded Monday (0) through Sunday (6).Day of week

Longest contiguous time that the participant was not physically active starting after 9 PM.Sleep durationSleep

Fraction of time a participant was physically active during the median active period. The median active
period is the time between the median hour the participant became physically active during each day
of the study and the median hour that the participant stopped being active during the study.

Daytime activityActivity

Fraction of time the phone was predicted to be still, that is, set down, during the median still period.
The median still period was calculated over the course of the study to be the median hour that the
longest contiguous still period started and the median hour it stopped.

Nighttime stillness

The nighttime stillness measure for each day of the study was
the fraction of observations on that day of the study, which
occurred during the late evening period and was predicted to
be still.

Daytime Activity
For a measure of daily physical activity, we consider the daytime
activity, which was the fraction of time that a participant was
predicted to be physically active during their active period or
the period of the day that we would expect each participant to
be active, given their typical behavior during the study. The
active period of the day was determined by first looking at the
longest contiguous set of observations when the phone’s
predicted behavior was not-physically active, starting after 9
PM. The median time across all the days of the study when this
physically not-active period began was considered as the end
of the active period, and the median end time of the not-active
period was considered the beginning of the participant’s typical
active period. The daytime activity measure for each day of the
study was then the fraction of time that the participant’s phone
predicted (with the models discussed previously) that the
participant was physically active during the participant’s active
period.

Day of Study
Following prior work, we coded the day of the study as the
number of days that had elapsed since the first day of the study
[12]. This measure is important to account for potential
participant fatigue, and also to represent the progression of the
academic semester, which may have had an effect on the
participants.

Weekday
The day of the week, and thus the potential effect of weekends,
was accounted for by coding weekdays with an ordinal variable
from 0 to 6, Monday through Sunday (Table 1).

Analyses

Relating Measures to Well-Being
The first set of analyses sought to study the relationship of
activity, sleep, and time on daily well-being. To account for the
repeated measures design and missing data, we used

mixed-effects linear models to relate reported average daily
well-being measures to daily behavior measures [33]. We started
with a maximal random-effects structure for each well-being
measure to allow for individual variation and increase
generalizability. Due to lack of initial convergence of the model,
we followed suggestions in prior work to look at the covariance
of the partially converged model and remove the variable in
minimum variance from the random-effects structure [34]. Using
this procedure, we removed the measure of sleep disturbance,
nighttime stillness, from the random-effects structure when
modeling mood and removed the scaled ordinal variable coding
the day of the week when modeling energy. After this step, both
models converged. Activity and sleep measures were centered
and normalized within individuals, and time measures were
scaled between 0 and 1 before fitting the models to compare
the relative sizes of effects.

To ensure the value of the model with maximally justified
random-effects structure, we fit two additional models: (1) a
model with only random intercepts and no additional
random-effects or fixed-effects and (2) a model with
fixed-effects and a random intercept only. Model fit was
assessed with chi-square tests on the log likelihood values of
different models. Model assumptions were visually checked.
The linear mixed-effects models and analyses were carried out
in the R programming language and environment [35] using
the lme4 [36] and lmerTest [37] software packages.

Predicting Well-Being
The second set of analyses assessed whether the relationships
between daily mood and the activity, behavior, and time features
were strong enough to be predictive. To do this, we attempted
two tasks. The first task was to predict whether a participant
was having a bad day, that is, whether their well-being was
lower than their median-reported well-being. Only participants
with sufficient observations of each class (at least 5 fine days
and 5 bad days) were included in the analysis. The second task
was to predict a participant’s level of well-being.

Prediction Models
For the first task, predicting whether a participant was having
a worse-than-usual day, we used logistic regressions with an
L1 and an L2 norm penalty as well as support vector machines
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(SVMs) and random forests [38,39]. For predicting the daily
level of well-being, we used a linear regression model with the
elastic net penalty [40] in addition to an Epsilon-Support Vector
Regression and random forests. These models were used on
individuals’ data to build personal models, rather than pooling
all individuals’ data into a global model. Personal models were
used because they have been shown to be the most successful
approach to predicting individuals’ responses [13].
Mixed-effects models help to model behavior within the
population as a whole while taking into account the fact that
individuals have different behavior, but personal linear models
are a best-case scenario for predicting individuals’ behavior
from their own data.

Prediction Framework
For both prediction tasks, we evaluated prediction accuracy
with leave-one-out cross-validation on personalized models,
that is, we trained a model on all but one of a participant’s data
points, evaluated the model accuracy on the held-out
observation, and then averaged accuracy across observations.
The penalty weights hyperparameters were set with
leave-one-out cross-validation on the training data and scanning
a variety of penalty weights. The predictive analysis was
performed in Python with the scikit-learn library [41].

Model Evaluation: User Lift
The accuracy of predicting whether an individual was having
a good day was quantified by prediction error or the percentage
of observations that were incorrectly predicted. The accuracy
of predicting the level of well-being on a given day was
quantified by root-mean-square error, which is the square root

of the average squared distance of a prediction from the true
value. We report the accuracy of predictions compared with the
accuracy of predicting each participant to be at their most
common state. This measure is called user lift; it is the increase
in accuracy, or decrease in error, that the model has relative to
always predicting an individual to be at their most common
state [42]. By comparing a model with each participant’s
baseline, user lift reveals how much better a model is doing
than guessing a participant to always be at their usual state. We
then used permutation tests to assess whether user lift was
significantly positive across the participants, that is, whether
the models were significantly better than always guessing a
participant to be at their most common state, as permutation
tests are reported to be more reliable than paired nonparametric
tests [43,44].

Results

Participation
Of the 106 participants recruited, 87 installed our app; 57
completed the study, that is, completed the exit survey at the
end of the 8-week study period. However, there were only
sufficient data on 53 participants to include in the analyses.
Baseline characteristics of individuals included and excluded
from the analyses are shown in Table 2 and indicate that similar
populations were included and excluded from the analyses.
Whereas some attrition was because of participation waning
over the 8-week study period, there was also attrition as a result
of technical difficulties and app compatibility issues on older
phones.

Table 2. Participant baseline characteristics. Averages across individuals are reported with standard deviations in parenthesis, except where indicated.
Where appropriate, numbers represent the average across individuals of averages within individuals.

Excluded participants

because of insufficient data

(n=53)

Included participants

with no exit survey

(n=6)

Included participants

with exit survey

(n=47)

Participant measure

20.80 (4.13)20.33 (1.60)19.83 (1.99)Agea

28326Female (number)a

12.61 (7.20)7.33 (3.54)11.14 (9.27)BDI-20b score (entry)a

N/AN/A11.98 (12.00)BDI-20b score (exit)a

5.44 (1.44)5.83 (0.90)5.17 (1.63)Median mood rating

5.98 (0.80)6.67 (0.94)5.60 (1.27)Median energy rating

30.25 (50.97)139.33 (55.01)160.51 (44.42)Number of emotion surveys completed

10.49 (15.99)44.00 (11.06)49.45 (8.27)Number of days with emotion ratings

N/AN/A6.88 (1.35)Reported typical sleep duration in hours (from exit survey)a

N/A8.56 (0.48)8.79 (1.22)Average duration of inactive period in hours (sensed sleep duration)

N/AN/A4.24 (5.04)Number of times per month a participant exercised (from exit survey)a

N/A151.25 (59.68)118.78 (32.67)Average minutes active per day (sensed daytime activity)

3.36 (5.15)40.00 (9.64)38.60 (9.15)Number of days with sensed activity and mood input

aIndicates measures averaged only over submitted responses, as entry and exit survey questions were optional.
bBDI-20 indicates optional self-reports to 20 questions of the Beck’s Depression Inventory (the question related to suicidal ideation was omitted).
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Table 3. Results of fixed-effects for linear mixed-effects model of mood level from smartphone-measured and time variables. The measure for nighttime
stillness was excluded from the otherwise maximal random-effects structure.

P valuet value

(degrees of freedom)

Standard errorEstimateFixed-effect

<.00128.973 (49.0)0.1745.056Mean mood (intercept)

.82−0.226 (47.0)0.261−0.059Day of study (semester)

.600.528 (257.0)0.0760.040Day of week (coded 0-6, Monday-Sunday)

.022.451 (52.0)0.0300.072Sleep duration

.0043.062 (50.4)0.0320.097Daytime activity

.131.528 (1881.5)0.0260.040Nighttime stillness

Table 4. Checking model fits for linear mixed-effects model of mood.

P valueChi-square value

(degrees of freedom)

Log likelihoodBayesian information

criterion

Akaike information

criterion

Model name

−3258.06538.86522.0Random intercept only

<.00123.2 (5)−3246.46553.76508.8Fixed-effects with random intercept only

<.001214.8 (14)−3139.06445.46322.0Maximal random-effects structure

Relationship of Sensor Data With Well-Being
From linear mixed-effects models, we found significant positive
relationships of daytime activity and sleep duration with daily
mood; when participants get more sleep and more daily activity
they tend to report better moods (Table 3). Daytime activity has
a stronger relative effect than sleep duration. Of note is that
nighttime stillness (sleep disturbance) is not significant. This
lack of significance could imply that the measurement is too
noisy and that more work is needed to reliably measure sleep
disturbance with a smartphone. The model with the maximal
random-effects structure better accounted for the variance across
individual participants than the random intercept only model

(Table 4). The main effects also remained significant, even
when accounting for individual differences.

We also found a significant positive relationship of daytime
activity with daily perceived energy level (Table 5). The relation
for sleep, though negative, is not significant, revealing a
potentially different relationship between the two emotions
(mood and energy) with sleep.

Day of the week has a significant positive fixed-effect but had
to be removed from the random-effects structure following prior
suggestions about how to handle lack of model convergence
[33].

Table 5. Fixed-effects for a mixed-effects linear model relating daily energy level from smartphone-measured and time variables. The ordinal variable
for weekday was excluded from the near-maximal random-effects structure.

P valuet value

(degrees of freedom)

Standard errorEstimateFixed-effect

<.00130.857 (53.9)0.1845.686Mean energy (intercept)

.20−1.303 (49.4)0.233−0.304Day of study (semester)

.0042.912 (1876.2)0.0670.196Day of week (coded 0-6, Monday-Sunday)

.39−0.858 (57.7)0.031−0.027Sleep duration

<.0014.673 (49.6)0.0390.182Daytime activity

.420.810 (50.4)0.0300.024Nighttime stillness

Table 6. Checking model fits for linear mixed-effects model of energy.

P valueChi-square value

(degrees of freedom)

Log likelihoodBayesian information

criterion

Akaike information

criterion

Model name

−3139.16301.06284.2Random intercept only

<.00198.1 (5)−3090.06240.96196.1Fixed-effects with random intercept only

<.001251.6 (14)−2964.26095.95972.5Maximal random-effects structure
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This effect for day of the week indicated that participants
collectively felt more energy at the end of the week, and there
is not sufficient evidence to support the idea that weekday
affected participants differently.When we changed the variable
encoding weekday to a binary variable indicating a fixed
weekend of Saturday and Sunday versus the rest of the week,
as has been suggested in related work [14], this relationship did
not remain significant. An interaction term between a weekend
indicator and daily activity was similarly not found to be
significant. This lack of significance as a binary variable could
be a result of weekends being less defined in our undergraduate
population, some of whom may or may not have classes on
Friday and thus have had extended weekends. The lack of
significance could alternatively result from insufficient
observations of weekends for each participant. Again, sleep
disturbance is not significant, further indicating that there might
be too much noise in the variable measuring sleep quality. The
model with the maximally justified random-effects structure
accounted for significantly more variation across participants
than having only a random intercept (Table 6).

Predicting Well-Being From Sensor Data
The activity, sleep, and time measures described above were
also used to predict daily well-being scores. Whereas
mixed-effects models were used to understand relationships of

activity and sleep measures with well-being within the
population, personal models (linear and nonlinear) were used
as a maximally personalized and thus somewhat best-case
approach for predicting individuals’ well-being [13]. The user
lift, or improvement of model predictions over a baseline is
reported (Table 7). The user lift is the increase in accuracy (or
decrease in error) that a model has relative to always predicting
an individual to be at their most common state. User lift
compares a model’s accuracy with a participant’s baseline; thus,
it quantifies how much better a model is performing than the
most reasonable constant prediction for each participant.

In general, it was difficult to predict individuals’ well-being on
a daily basis with the given information only being about their
activity and sleep (Table 7). On average, the best models were
able to improve prediction of good and bad mood and energy
by 5.44% and 4.92%, respectively. The model prediction
performance presented in Table 7 is for linear models (penalized
logistic regression and elastic-net penalized linear regression),
as those models were found to return higher accuracy than the
nonlinear SVMs and random forests. Whereas there was
considerable variation in predictability across individuals,
permutation tests reveal that user lift was significantly greater
than 0, that is, the models were better than naively always
predicting each participant to always be at their most common
state.

Table 7. Statistics on linear models predicting daily well-being from activity measures. Whereas the models provide an improvement overall, there is
a range in the ability to model individuals. The P values are for permutation tests, checking whether user lift is greater than 0, that is, whether models
are significantly more accurate than always predicting each individual to be at their most frequent state.

P valueMaximum

user lift

Minimum

user lift

Average

user lift

Well-being measureProblem (model)

.00135.00%−21.74%5.44%Mood (Prediction error)Good or bad day (penalized logistic regression)

.00839.39%−22.73%4.92%Energy (Prediction error)

.080.48−0.2320.026Mood (RMSEa)Daily average (linear regression with elastic net)

.010.575−0.1690.048Energy (RMSE)

aRMSE: root-mean-square error.

Discussion

Principal Findings
We found that increased daily activity, as tracked with a
smartphone’s accelerometer, positively correlated with
participant-reported mental well-being over time. Whereas a
positive correlation of activity and well-being has been
substantiated in literature external to mHealth [20-24], we have
shown that smartphones measure individuals’ daily activity to
a sufficient level of accuracy to measure this relationship in
everyday life. Although the potential for this result has been
shown in environments where constraints were placed on the
participants [11,17-19], we found this relationship present when
no constraints were placed on participants. Previous work did
not find a significant correlation of the total activity in a 24-hour
day with stress [12], which could indicate the need for
distinguishing daytime activity from nighttime activity, as we
have done, or indicate that physical behavior has unique effects

on different emotions, which we have observed by considering
mood and energy separately.

We also found that a simple measure of sleep duration derived
solely from accelerometer data was significantly positively
correlated with mood. However, it was not significantly
correlated with perceived energy, which supports the idea that
there are different relationships between different emotions and
physical behaviors. We did not find a significant correlation of
either mood or energy with our measure of
smartphone-measured sleep disturbance. This may imply that
the measure did not sufficiently describe sleep quality and that
more work is needed to monitor sleep quality in a sustainable
manner. It is possible that a more sophisticated method for
predicting sleep, such as the method found in prior works, would
allow for a finer measure of sleep disturbance [27].

When we used the activity, sleep, and time measures to predict
individuals’ well-being, we found modest but significant
improvement over naive baseline models. It is important to
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emphasize that there was a range in our ability to predict
individuals’ well-being from their activity and sleep behavior.
This range highlights the need for tracking approaches that tailor
to the user. However, it is unclear whether this effect is the
result of a range in how thoughtfully individuals responded with
their state, phone usage, data quality and quantity, or the strength
of well-being and activity relationship between individuals.

Limitations
A limitation of this study is that participants’ self-reported
well-being is subjective, and the population was not clinically
assessed. However, the measures of well-being that we used
have been widely used and prior research has found simple
single-scale measures to be related to longer clinical assessments
[45]. Whereas a better measure of well-being could be a longer
survey, such a measure would incur significant participant
fatigue and likely decrease the duration of participation.

Whether all of the participants’ relevant activity was tracked
with smartphones during the study is another concern. There
are limitations to activity recognition, especially when the
smartphone is not in a fixed position, a participant is performing
a nonstandard activity, or the phone is set down, for example,
left in a gym locker. However, the study cohort retrospectively
reported little vigorous exercise during the study period (Table
2); thus, the underestimation of vigorous exercise is likely to
be minor. Such limitations could possibly be partially mitigated
with location tracking, but time at a location is not necessarily
representative of activity, and poor GPS sensitivity would
remain a challenge. Wearables may provide a better facsimile
of an individual’s behavior when they are worn, but they have
notorious compliance limitations that smartphones do not suffer.

Another limitation was the sample size and lack of clinical
population. Some of the individuals in our study cohort did
report elevated levels of depressive symptoms in the entry and
exit survey. However, the cohort is not necessarily representative
of a population with clinically diagnosed mood disorders.
Depressed individuals often are less active than the general
population, but even small increases in physical activity can
improve symptoms [46].

Conclusions
This study examined the extent to which smartphones’
accelerometers can contribute to passively tracking individuals’
mental well-being in everyday life. We have found that
smartphones measure activity and sleep with sufficient accuracy
to reproduce prior findings of significant relationships between
activity and sleep with mood. Whereas models have a modest,
though significant, improvement over naive baseline models in
general, the range in predictive capability implies that more
work is needed to tailor mood- and depression-tracking apps to
individuals.

Our results support the promise for smartphones to be used in
sophisticated and long-term monitoring of patients’well-being.
Because smartphone use is high and their presence ubiquitous,
the ability to use a smartphone for tracking mental well-being
could have a huge impact on mental health care. Smartphone
monitoring may improve self-management via smartphone apps,
thereby making care more affordable and thus accessible to
individuals who currently do not have access to care. Passive
monitoring could also be used as an adjunct to clinician-led
treatment, thus increasing the quality of care and personalizing
treatments.
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