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Abstract

Background: Smoking is the leading cause of preventable death in the world today. Ecological research on smoking in context
currently relies on self-reported smoking behavior. Emerging smartwatch technology may more objectively measure smoking
behavior by automatically detecting smoking sessions using robust machine learning models.

Objective: This study aimed to examine the feasibility of detecting smoking behavior using smartwatches. The second aim of
this study was to compare the success of observing smoking behavior with smartwatches to that of conventional self-reporting.

Methods: A convenience sample of smokers was recruited for this study. Participants (N=10) recorded 12 hours of accelerometer
data using a mobile phone and smartwatch. During these 12 hours, they engaged in various daily activities, including smoking,
for which they logged the beginning and end of each smoking session. Raw data were classified as either smoking or nonsmoking
using a machine learning model for pattern recognition. The accuracy of the model was evaluated by comparing the output with
a detailed description of a modeled smoking session.

Results: In total, 120 hours of data were collected from participants and analyzed. The accuracy of self-reported smoking was
approximately 78% (96/123). Our model was successful in detecting 100 of 123 (81%) smoking sessions recorded by participants.
After eliminating sessions from the participants that did not adhere to study protocols, the true positive detection rate of the
smartwatch based-detection increased to more than 90%. During the 120 hours of combined observation time, only 22 false
positive smoking sessions were detected resulting in a 2.8% false positive rate.

Conclusions: Smartwatch technology can provide an accurate, nonintrusive means of monitoring smoking behavior in natural
contexts. The use of machine learning algorithms for passively detecting smoking sessions may enrich ecological momentary
assessment protocols and cessation intervention studies that often rely on self-reported behaviors and may not allow for targeted
data collection and communications around smoking events.

(JMIR Mhealth Uhealth 2017;5(12):e189) doi: 10.2196/mhealth.9035
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Introduction

Despite rapid adoption of many tobacco control policies around
the world, cigarette smoking remains the greatest preventable
cause of death [1]. Ecological momentary assessment studies

are increasingly popular for understanding smoking behavior
in context [2-4]. Studies in this area have traditionally relied on
participants to self-report smoking behaviors in real time, which
can be particularly burdensome for heavier smokers and result
in missing or biased information if participants are not
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forthcoming about or forget smoking events [5]. In this study,
a smoking event can be either an individual puff or an entire
session, defined as the time it takes to smoke a single cigarette.
Emerging technologies that allow for passive detection of
stereotyped behaviors such as smoking may be able to decrease
or eliminate reliance on burdensome and potentially biased
self-reports to study when, how frequently, and under what
circumstances smoking behavior occurs.

Mobile phones and, recently, smartwatch technologies have
rapidly spread and are widely available [6]. Typical
smartwatches house sophisticated sensors that accurately track
simple activities, such as step counting. In recent years, methods
have been developed that use these sensors to detect more
complex activities, such as eating and drinking [7,8]. Previous
research [9-12] has shown the possibility of detecting smoking
using smart devices. However, these studies have employed
highly intrusive devices such as respiration bands [10,13] worn
across the chest and two-lead electrocardiographs worn under
the clothes to achieve high accuracy in detection. In our
previous, laboratory-based work [14,15], we have shown that
smoking can also be detected by leveraging the accelerometer
sensor found on a typical smartwatch in conjunction with
common machine learning algorithms.

The utilization of smartwatches presents a nonintrusive means
of smoking detection that potentially eliminates the need for
reliance on self-reporting. The purpose of this study is to extend
our previous laboratory-based work to determine the feasibility
and accuracy of our detection method with a population of
smokers wearing the device in the natural context of normal
daily activities.

Methods

Overview
Adult smokers were recruited to wear a commonly available
smartwatch while recording their daily activities, including
smoking and other behaviors that are similar to smoking (ie,
eating, drinking). The data from these recordings were then
used in a machine learning exercise to develop an automated
gesture detection algorithm. The accuracy of our automated
detection was compared against the self-reported information
on activities and manual inspection of smoking session data.

Recruitment of Participants
Participants were recruited through flyers, which included study
information and a link to an online eligibility survey that was
accessible via a clickable URL address and a QR code. The
survey asked about participants’ smoking behavior as well as
age, gender, and contact information. Eligibility criteria included
age older than 18 years, having smoked at least 100 cigarettes
in their life, smoking more than 10 cigarettes daily, and
preference for smoking with the right hand. The flyers were
posted throughout Columbia, SC, in areas where smokers were
likely to congregate (eg, coffee shops, bars), as well as online
venues such as Craigslist. The incentive for completion of the
study was a US $100 Visa gift card that was given to each
participant after concluding the protocol.

Only participants who met all eligibility requirements were
contacted and invited to a study briefing. In the briefing,
participants’ eligibility was reconfirmed with a smoke carbon
monoxide breathalyzer. A level of 8 ppm was used as the cutoff,
which is slightly higher than cutoff levels of 5 to 6 ppm
suggested for distinguishing smokers from nonsmokers in other
studies [16-18]. Participants were provided with an Asus
Zenwatch and Android mobile phone to complete the trial. A
15-minute tutorial was given to each participant on how to use
the data collection app and smartwatch and how to fill in the
smoking logs using their mobile phone to register the times
when they began and finished smoking. Fourteen smokers
attended a briefing; two did not meet the criteria of 8 ppm after
taking the smoke carbon monoxide breathalyzer measure and
were excluded from the study. Of these 12 participants, data
from two were inconsistent and excluded from the analysis
because they did not follow the study procedures. In one case,
the participant wore the watch on the left hand instead of the
right hand and therefore did not collect data from the hand used
to smoke. In the second case, large sections of data were missing
due to the participant losing Bluetooth connectivity between
their watch and their phone by moving more than 30 feet away
from the phone. Hence, data from 10 participants were analyzed.

After the study was completed, these 10 participants were asked
to fill out a brief demographic survey. The survey included basic
questions about age, race, ethnicity, gender, and intentions to
quit or continue smoking.

Data Collection and Annotation
The data analyzed in this study consisted of the
three-dimensional accelerometer data collected from the Asus
Zenwatch (first generation). The accelerometer onboard the
Asus Zenwatch is triaxial and therefore capable of recording
acceleration in three principal axes x, y, and z. These three axes
are situated on the watch as shown in Figure 1, where the z-axis
(in green) is perpendicular to the watch face.

Although a few apps exist for recording accelerometer data on
both Apple and Android platforms, none of them contained the
required features, such as recording and transmission of the data
to cloud storage or alteration of sampling frequency. Therefore,
we developed an app capable of recording, maintaining, and
transmitting data to Dropbox as the means of data collection
and storage across our cohort of participants. The use of a
customized app allowed for control over the sampling frequency
of the data. During this investigation, a fixed sampling frequency
of 20 Hz was used.

Each participant was asked to record a total of 12 hours of data
over the course of three days. The total of 12 hours was
partitioned into seven periods: four 1-hour periods, two 2-hour
periods, and one 4-hour period. The participants were instructed
to schedule these seven periods such that each would contain
at least one full smoking session. Due to the large data transfers
occurring between the watch and the phone, the battery life of
the watch was not able to achieve the full 4 hours in most cases.
In these cases, the participants were asked to record as long as
they could until the battery power was nearly depleted.
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Figure 1. An illustration of accelerometer axes on a typical smartwatch.

In addition to the accelerometer data, the participants were
instructed to record the beginning and end times of each
cigarette in an online logbook using the provided mobile phone.
A bookmark on the phones linked to a brief Google form that
served as their logbook. The protocol involved recording the
starting timestamp immediately before beginning a smoking
session. In addition, each participant was asked to indicate
whether the cigarette was the first from a new pack. After each
smoking session, they were asked to report the end of their
smoking session as well as the approximate number of puffs
during their smoking session.

Smoking sessions were extracted and inspected based on the
start and end times recorded in each participant’s log entries.
The duration of these sessions ranged from 2 to 20 minutes in
length. However, these ranges are misleading in some ways.
For instance, some of the longer sessions (>10 minutes) clearly
consisted of more than one smoking event. This behavior is
typical for chain-smokers but, as per our defined protocol,
should have been recorded as two separate sessions instead of
one. Any other gesture that was not within one of the reported
sessions was classified as a nonsmoking session.

A Hierarchical Approach to Detection of the Smoking
Gesture
Machine learning techniques have been commonly used in the
broad field of pattern recognition. Common machine learning
techniques consist of naive Bayes, support vector machine,
decision tree, random forest, artificial neural network, and
rule-based artificial intelligence (AI), to name a few. In this
study, we have integrated artificial neural networks and
rule-based AI in a hierarchical fashion to improve recognition
of smoking activity.

Artificial Neural Networks
In this study, two-layer, feed-forward artificial neural networks
[19] with 10 hidden neurons were used as the core engine for

detection of smoking gestures. Typically, the creation of an
artificial neural network occurs in two main steps: training and
validation. Details about the training and validation processes
can be found in our previous works [14,15]. In general, the
artificial neural network was trained to produce an output of 1
during the smoking gesture and a 0 during all other activities.
Figure 2 provides an illustration of a sample smoking session
(with five distinct puffs) and the expected ideal output. In this
figure, the patterns illustrated in blue, red, and yellow
correspond to the x, y, and z dimensions of the accelerometer
data and the pattern shown in purple denotes the ideal output.

Rule-Based Artificial Intelligence
Rule-based AI constitutes the earliest form of the machine
learning techniques. Rule-based techniques can be very efficient
in circumstances where the actions taken by the AI core can be
deduced based on a set of definable rules. The cooperation
between the artificial neural network and rule-based cores can
be structured in a variety of ways. In our study, we chose a
hierarchical model, where the artificial neural network operates
as the core of the smoking detection and rule-based AI operates
in a layer above the artificial neural network. In this
arrangement, the rule-based core is responsible for establishing
the beginning and the end of a “puff” gesture, counting the
number of puffs, and establishing the beginning and end of a
new smoking session. The rule-based layer also addresses some
of the shortcomings of our previous studies [14], where several
nonsmoking gestures (eg, scratching the nose and yawning)
caused high numbers of false positives for the artificial neural
network. By utilizing the rule-based layer to establish a
minimum number of puffs within a smoking session, single
gestures such as a yawn will be eliminated as a smoking event.
The operational directives of the rule-based core are described
later in the paper.

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 12 | e189 | p. 3http://mhealth.jmir.org/2017/12/e189/
(page number not for citation purposes)

Cole et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. An example of a smoking session. Each dimension of the accelerometer data is shown in blue (x), red (y), and yellow (z). An ideal output
of the artificial neural network is shown in purple where each bump denotes a smoking gesture.

Training of the Artificial Neural Network
It is typical to train the artificial neural networks on a separate
set of data than what is used during the validation step to
establish its full functionality (to enforce generalization). This
process eliminates the possibility of memorization [19] by the
AI. Therefore, the training of the artificial neural network was
performed with smoking data collected from 10 volunteers that
were not part of the data collection mentioned in the
“Recruitment of Participants” section. These volunteers were
instructed to use the same mobile phone and smartwatch used
in the trial to record smoking and nonsmoking sessions in a
laboratory setting. The training set consisted of 13 smoking
sessions that were collected from 7 of 10 participants and 12

nonsmoking sessions from 3 of the remaining participants. The
nonsmoking sessions included a variety of activities such as
eating (3 sessions), drinking (3 sessions), walking (3 sessions),
tying shoes (1 session), and typing on a computer (2 sessions).
An example of each gesture is shown in Figure 3. Inputs to the
network were extracted using a 5-second rolling window, which
resulted in a total of 177,450 smoking gestures and 174,080
nonsmoking gestures. The smoking gestures were then coded
as positive responses and the nonsmoking gestures as negative
responses. The artificial neural network was trained and
validated with this set of data, achieving an accuracy of 95%.
Here we define accuracy to be the percentage of correctly
predicted smoking and nonsmoking gestures.

Figure 3. Examples of the following nonsmoking sessions: (a) drinking, (b) eating, (c) walking, and (d) typing on a computer.
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Development of the Rule-Based Artificial Intelligence
From a General Model of a Smoking Session
Precise definition of a smoking session is critical for evaluation
of a predicted model and development of any rule-based criteria.
Development of a template for a smoking event is beneficial in
a number of ways. First, such a definition can be used to
compare the output from our detection mechanism to the actual
smoking session recorded by participants. Second, the existence
of such a model will help to better define the operating rules of
the rule-based AI in improving the detection rates.

A smoking session can be defined in terms of its dependent
components such as the number of individual gestures and their
time dependencies. Figure 4 describes the model of smoking
that was empirically derived based on our observations of the
participants’ data. Based on this model, a smoking session is
described by five main parameters: minimum puff duration,
minimum and maximum rest time between puffs, maximum
session duration, and the minimum number of puffs per session.
A “puff” was defined as the time it takes a person to raise the
cigarette to their lips, inhale, and then lower their arm back to
the resting position. Therefore, we conservatively define a
minimum puff duration consisting of 0.75 seconds (shown in
Figure 4a). Any puff shorter than 0.75 seconds in duration was
therefore rejected as a valid puff by the rule-based AI system.

A minimum of 2.5 seconds and a maximum of 4 minutes were
used as the rest time that separated two adjacent puffs (Figure
4b) belonging to the same smoking session. Two adjacent puffs
in violation of the minimum separation criterion were classified
by the rule-based system as the same puff that was incorrectly
separated from each other. Correspondingly, two adjacent puffs
in violation of the maximum separation criterion are classified
to belong to two separate smoking sessions.

Finally, a smoking session was defined to consist of at least 3
puffs that satisfy the previous gesture criteria (eg, puffs must

be longer than 0.75 seconds in duration and more than 2.5
seconds and less than 4 minutes from the next puff) and not
exceed 8 minutes in duration (Figure 4c-d). The 8-minute rule
was implemented to have a higher precedence over all other
rules. A sequence of appropriate puffs that exceed 8 minutes in
total length was counted as two separate smoking sessions. This
rule was primarily implemented to address chain-smoking
behavior.

In our data, puff duration never exceeded 5 seconds in length.
Therefore, the input to the artificial neural network’s gesture
recognition system consisted of a set of accelerometer data that
spanned 5 seconds of observation sampled at 20 Hz (100 points
of data). Each set of data included x, y, and z components of
the accelerometer, which necessitated an artificial neural
network architecture with 300 input points and one output point.
The single output of the artificial neural network was interpreted
based on a threshold of a probability of 0.85, above which
signified a smoking gesture. For more details related to the
interpretation of the artificial neural network’s output, refer to
our previous articles [14,15].

During the supervised training of the artificial neural network,
the onset and offset of the smoking gesture was loosely defined
by the supervisor. Loose interpretation of the edge is not
consequential because it is a very quick event (in comparison
to the gesture itself) and therefore makes very little impact on
the duration of a gesture.

Evaluation Techniques
Evaluation of automated methods for detection of smoking
gestures can be performed at various levels of granularity. At
the finest point, every sampled data point (20 points every
second) can serve as the subject of evaluation, whereas at the
coarsest point an entire smoking session can be the subject of
evaluation.

Figure 4. Model of a smoking session: (a) puff duration >0.75 seconds, (b) maximum rest time between puffs <4 minutes and minimum rest time >2.5
seconds, (c) minimum number of puffs in a session=3 puffs, (d) session duration <8 minutes.
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In this work, we define our objective as successful detection of
each smoking session. The interpretation rules of a smoking
session (Figure 4) were used to quantify the output of the
smoking detection mechanism. The validity of each detected
session was established based on comparison to the self-report
by the participants. A detected smoking session was categorized
as a true positive if it was corroborated by the timestamps of
the self-report and false positive otherwise. The true positive
rate was measured by the number of detected true positive
sessions divided by the total number of smoking sessions
reported by the participants.

It is common to provide a measure of false positive rate to form
a more complete evaluation of a predictive system’s
performance. Calculation of the false positive rate is the total
number of nonsmoking sessions that were predicted as smoking
divided by the total number of nonsmoking sessions. However,
in this instance proper calculation of the total number of
nonsmoking sessions term became ambiguous. Within a 12-hour
of recording session, a total of 854,400 nonsmoking sessions
(of 8 minutes length at 20 Hz of sampling rate) can be extracted
via a rolling window. Given that the smoking detection
mechanism produced on average two false smoking sessions
per participant, the estimated false positive rate would be

2.34×10-6. A more meaningful measure of the false positive
rate can be achieved by calculating the number of nonsmoking
sessions as the total number of contiguous nonsmoking sessions
(ie, the number of 8-minute nonsmoking sessions that had no
overlap with other ones). The number of nonsmoking sessions
was calculated as the total number of minutes recorded by a
given participant divided by the window size (in our case 8
minutes) and subtracting the total number of smoking sessions
recorded by the participant from this value: number of
nonsmoking sessions=(total number of minutes recorded
sessions/window size)–total number of smoking sessions. Using

this calculation, for a given 12-hour period in which a participant
smoked 10 times, the number of smoking sessions would be
80.

Results

Summary of Data

Participant Demographics
Three of the 10 participants did not complete the demographic
survey. Of the participants who completed the survey, the mean
age was 32 (SD 6) years, the minimum age was 27 years, and
the maximum age was 46 years. There were four females and
three males. Six participants were non-Hispanic white, whereas
one was African American. Only one participant indicated that
they intended to quit smoking within the next 6 months.

Participant Data
In total, 120 hours of data were collected from the 10
participants, in which 123 smoking sessions were reported. Each
data file was first subjected to a low-pass filter to eliminate the
high-frequency noise caused by movements such as walking or
shaking. The effect of the filter can be seen in Figures 5 and 6.
Following the smoothing step, the inputs to the artificial neural
network were prepared by using a rolling window of 5 seconds.

Within the 12 hours of recording, participants typically smoked
12 times. On average, the duration of a smoking session was 8
minutes based on the self-report data and 5 minutes based on
visual inspection of the recorded sessions. These discrepancies
were most likely a consequence of both the additional time
required for manual entry in the self-report protocol and human
error. Requiring the participants to log their smoking session
in an electronic form may have taken some participants a few
extra minutes, thus inflating their reported session window.

Figure 5. A noisy nonsmoking session is shown a before the smoothing filter with the output of the detection mechanism shown in purple.
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Figure 6. A noisy nonsmoking session is shown after the smoothing filter with the output of the detection mechanism shown in purple.

Evaluation Outcomes

Self-Reporting Accuracy
In total, of the 123 recorded sessions, 27 entries were missing
either a start or end time. In these cases, a window of 8 minutes
was given preceding an end time with a missing start time or
following a start time with a missing end time. Using this metric,
the accuracy of self-report (ie, the rate of correctly logged
smoking entries) was approximately 78% (96/123). However,
it should be noted that we expect the self-report to be lower
than the estimated 78%. This expectation is based on close
examination of the raw recorded data that would otherwise be
impossible to ascertain from self-report data. One such example

is shown in Figure 7, where the participant did not report a clear
smoking session. However, by a close comparison of the
recorded session to the model of smoking, one can make a
reasonable determination that it is indeed an unreported smoking
event. The omission of this session in the log resulted in an
increase of the false positive rate, where it should have
contributed to an increase in the true positive rate. The opposite
of this phenomenon also occurred; that is, a smoking session
was reported in a given period yet on careful inspection no valid
smoking event was found in the recorded data (an example is
shown in Figure 8). If both of these phenomena were included
in the calculation of the self-report accuracy, then it would drop
to 71% (88/123 correctly reported sessions).

Figure 7. This session was not reported by the participant, but is an unmistakable smoking session with 13 clear puffs.
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Figure 8. This session was reported as a smoking session, but no clear smoking gestures can be identified.

Table 1. Values for the true positive rate calculated by iteratively excluding sessions from the four categories producing false negatives.

True positive rate, %Corrected smoking sessions, nExcluded smoking sessions, nDetected smoking sessions, nCategory

811230100Ground assumption

821212100No smoking

891129100Improper use

89-99101-1129-11100Abnormal gesture

89-99101-1120100True false negative

Detection Accuracy
The evaluation of the results was not as intuitive as expected.
Our initial approach to evaluation (first entry in Table 1) was
to compare the outcomes of the automated detection mechanism
to that of self-reported smoking. However, this approach
presumed 100% accuracy of self-report, for which we have cited
some contradictory examples (refer to the previous section). If
we assume that self-report is 100% accurate, then real errors in
self-report (see previous section) lead to underestimating true
positive detection rates and overestimating false positive rates.
Therefore, it is paramount to examine and categorize the sources
of discrepancy between the two methods. To that end, we define
the following categories of discrepancies: “no smoking,”
“improper use,” “abnormal gesture,” and “true false negative.”
All subsequent investigations of the self-report data were
performed by visual inspection of the recorded signals. All
detection estimates were adjusted incrementally as each source
of error was eliminated. The modified results are shown in Table
1.

The first category of no smoking denotes no visual presence of
a smoking event during the reported smoking period (an example
is shown in Figure 8). Two such sessions belonged to one
participant. These sessions were excluded from the total number
of self-reported smoking sessions, which resulted in a new true
positive rate of 82% (100/121).

The second category, improper use, was one of the biggest
contributors in reducing the true positive rate in this study.
Improper use denotes the condition where the participant did
not wear the watch as dictated by the protocol of the study
(either not on the right wrist or not in the protonated position).
This condition can easily be identified and corrected [15],
although the correction mechanism was not implemented and
incorporated into this study. A total of nine sessions were
identified via visual inspection to be in violation of proper
adherence to the study protocol and could therefore be excluded
from the study. A corrected true positive rate value of 89%
(100/112) was estimated after elimination of these violations.
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Table 2. Values for the false positive rate calculated by iteratively excluding sessions from the two categories producing false positives.

False positive
rate, %

Total possible sessions, nCorrected false smoking
sessions, n

Excluded sessions, nDetected false smoking
sessions, n

Category

2.8%77722022Ground assumption

2.1%77116622Clearly smoking

2.1%77116022True false positive

The third category, abnormal gesture, denotes the occurrence
of smoking gestures that could not be reproduced in the
laboratory setting. These gestures had a clear periodicity
consistent with smoking behavior, but had no other resemblance
to our database of smoking gestures. Such conditions may be
indicative of smoking in unusual positions, such as smoking
while lying in the facedown position (possibly from the edge
of the bed) or hanging upside down. Various reclined positions,
laying down in the face-up position, or lying down on the left
or right side were investigated without any success in recreating
the recorded anomalous smoking gestures. In future iterations
of the detection mechanism used in this study, smoking in these
positions should be included in our training session of the
artificial neural network. However, before retraining the artificial
neural network, these curious gestures need to be confirmed as
valid smoking sessions and be reproducible in laboratory
settings. Depending on whether such gestures can be excluded
from this study or not, an upper bound of 99% accuracy can be
estimated for the performance of the automated detection
mechanism.

The fourth and final category, true false negative, represented
the cases where the self-reporting data were correct, but the
automated detection mechanism misidentified the sessions. Our
thorough investigation identified only one such session. We
suspect the abnormally short puffs by this participant as the
culprit for this misclassification. The likelihood of this type of
misclassification can be reduced in the future by allowing
personalization of the puff duration based on a given person’s
smoking profile.

In our evaluation of the false positive rates, we faced the same
challenges as in our evaluation of the true positive rate. A
progressive evaluation of the false positive rate is shown in
Table 2. Under the simplified conditions (assumption of 100%
accuracy in self-reporting), a total of 22 smoking sessions were
identified within nonsmoking regions of the 120 hours of total
recording time. Based on the definition of false positive rate
presented in a previous section, 120 hours of recording time
translated into 777 windows of observed nonsmoking behavior.
Similar to the case of true positive rate, the following categories
of false positive rate were investigated to understand the nature
of the detection mechanism’s performance better: clearly
smoking and true false positive. The results of this classification
are summarized in Table 2.

Under the conventional technique of assuming 100% confidence
in self-reporting data, on average, the detection mechanism
achieved a false positive rate of 2.8% (22/777). However, due
to clear presence of errors in self-reports, 2.8% served as an
upper bound estimate of performance, and the actual
performance can be expected to be lower than 2.8%.

To obtain a better estimate of the false positive rate, the first
category of clearly smoking was scrutinized (Table 2). The
clearly smoking category denotes sessions in which at least one
smoking event was indisputably present, yet no smoking event
was logged during the self-reported period of smoking. An
example of the phenomenon is shown in Figure 7. A total of
six such sessions were identified during a careful manual
inspection of the recorded data. It is unclear whether such
instances should be included in the evaluation of the true
positive rate or false positive rate. Here we have chosen the
latter and have excluded them from the calculation of the false
positive rate. With these excluded, the false positive rate was
reduced to 2.1% (16/771).

The second category, true false positive, signified the cases
where the smoking detection mechanism performed a true
misclassification and thus could not be excluded. A total of 16
such sessions fell into this category. The majority of these
sessions contained very jittery and erratic motions, which may
be the cause of their misclassification. If so, a more rigorous
filtration of high-frequency signals may remove or reduce this
category of error in future iterations of the software.

Discussion

Principal Results
The presented automated smoking detection mechanism
demonstrated a conservative true positive rate of more than 82%
for identifying smoking sessions, while achieving a negligible
false positive rate of 3%. Furthermore, the true positive rate
increased to approximately 90% when considering only the
smoking sessions that participants adhered to study protocols.
Approximately 10 of the smoking sessions were not reproducible
in the laboratory session, which will be the subject of future
studies to assess how different smoking positions (eg, while
lying down) are accompanied by different gesture patterns or
otherwise influence accelerometer readings. Once confirmed
as valid smoking sessions, similar gesture patterns can be
included in future training sessions of the detection mechanism’s
underlying artificial neural network. A new true positive rate
can be estimated for the newly trained artificial neural network
by assuming 50% successful detection of the anomalous gestures
(although, based on the current true positive rate, 80% is more
realistic). A 50% success rate in detecting anomalous gestures
will increase the true positive rate to 93% accuracy. In contrast,
a liberal assessment of the traditional self-report had a maximum
accuracy of 71% to 78%. However, we speculate actual accuracy
of self-report may be lower if our analysis of the data from our
study is indicative of normal self-report behavior.
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Limitations
There are two primary limitations of the automated, machine
learning-based approach to detection of smoking: technological
and methodological. Technological aspects include the battery
life span, which is of primary interest for apps that require
continuous monitoring over waking hours. The wearable device
used in our studies (Zen watch) has a limited practical battery
life of nearly 20 hours. However, this battery life span may be
significantly reduced under high-throughput data exchange
conditions, where data are continuously transmitted to another
device via a Bluetooth connection. Although a limitation for
practical deployment of an automated smoking detection
approach, limited battery life can be mitigated in two ways.
First, the identification of puffs, smoking gestures, and smoking
sessions can be translocated on the watch and therefore eliminate
excessive Bluetooth communication. We anticipate a substantial
reduction in the power consumption of the smartwatch, returning
its life span to nearly 10 hours a day. The second mitigation of
limited battery life is newly arriving smartwatches with battery
life spans of more than a week. Therefore, the prospect of
continuously monitoring smoking behavior for a day or more
is highly positive.

A number of methodological issues also limited this study. The
first issue is related to study protocol adherence, which requires
participants to wear the smartwatches in a particular fashion
(eg, wearing the watch on the dominant hand). Although these
protocols may be acceptable during the early stages of a study,
they may be cumbersome during the broader dissemination of
this approach. To that end, our existing algorithm should be
improved to detect the orientation of the smartwatch (left hand
versus right hand, supinated or pronated) either automatically

or during the initial setup stages. Our subsequent work [15] has
demonstrated the possibility for automatic correction of the
accelerometer data if the watch is worn incorrectly. In addition,
study procedures can warn the user if the watch is not worn
correctly. The second issue is related to the anomalous and
irreproducible smoking gestures we observed. These gestures
need to be further studied and, once confirmed as valid smoking
gestures, examples need to be included in future iterations of
the smoking detection mechanism.

Conclusions
The potential benefits of developing an automated system for
detection of human activities are vast. Based on our
observations, two distinct conclusions can be stated. First, it is
possible to detect smoking behavior based on triaxial
accelerometer data and this behavior can be distinguished from
other similar gestures. Second, an automated smoking detection
approach to the study of smoking behavior may be substantially
more reliable than approaches that rely on traditional self-report.
Third, with an accurate, automated system in place, reliance on
self-reporting could be eliminated, thus decreasing the burden
on a participant without losing any benefits. The resulting data
collection system could allow for a range of unobtrusive studies
of how context, including that which can be captured by global
positioning systems, influences smoking behavior, targeted
surveys around smoking events, and targeted communications
for those who are trying to quit. Furthermore, this automated
system may easily be expanded to detect increasingly popular
electronic cigarette smoking, for which behavioral gestures
accompanying consumption are very similar to cigarette
smoking but for which the patterns of behavior and their context
are much less well understood.
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