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Abstract

Commercial mobile apps for health behavior change are flourishing in the marketplace, but little evidence exists to support their
use. This paper summarizes methods for evaluating the content, usability, and efficacy of commercially available health apps.
Content analyses can be used to compare app features with clinical guidelines, evidence-based protocols, and behavior change
techniques. Usability testing can establish how well an app functions and serves its intended purpose for a target population.
Observational studies can explore the association between use and clinical and behavioral outcomes. Finally, efficacy testing can
establish whether a commercial app impacts an outcome of interest via a variety of study designs, including randomized trials,
multiphase optimization studies, and N-of-1 studies. Evidence in all these forms would increase adoption of commercial apps in
clinical practice, inform the development of the next generation of apps, and ultimately increase the impact of commercial apps.

(JMIR Mhealth Uhealth 2017;5(12):e190) doi: 10.2196/mhealth.8758
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Introduction

Mobile health (mHealth), or the use of mobile technology to
improve health, is a rapidly expanding field [1]. As of 2015,
more than 165,000 mHealth apps were available on the Apple

iTunes and Android app stores, and 34% of mobile phone
owners had at least one health app on their mobile device [2-4].
Although health apps have drawn great public interest and use,
little is known about the usability and efficacy of the majority
of commercially available apps [5,6].
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Much mHealth research focuses on the development and testing
of new apps in academic settings [7]. However, the pace of
traditional academic research is slow and less nimble relative
to commercial app development, and this may result in huge
lags in dissemination into commercial markets or settings where
the general public has access to them [8], assuming the
researcher takes steps to disseminate into commercial markets
at all. Producing an app for public use requires content,
programming, design expertise, the ability to continually host
and update the app, and the resources to provide both customer
service and technical support [8-10]. Apps generally take 7 to
12 months to fully develop and launch and cost on average US
$270,000 [10]. This does not include the added expense to
maintain the app postdevelopment or the costs to publish the
app to multiple platforms (eg, Apple and Android). Because
many researchers will not have access to these resources,
leveraging existing commercial apps in research may be an
efficient and cost-effective alternative. The greater the scientific
workforce dedicated to gathering evidence for health apps, the
more quickly this field can evolve into one that is well grounded
in evidence.

Health care providers also have great interest in determining
the evidentiary basis of commercial apps. In fact, the American
Psychiatric Association [11] and others [12] have developed
guidelines for clinicians in selecting commercial apps to
recommend to patients. A bedrock of these guidelines is that
clinicians examine the evidence to make these decisions. With
little evidence available for commercial apps, clinicians risk
recommending a tool that does not work or worse one that
causes harm. Although methods for systematically developing
and establishing the effectiveness of apps in academic research
laboratories have been described [13], little guidance is available
on ways to develop an evidence base for commercial apps.

A recent systematic review provides a helpful starting point to
describe methods that have been used in studies evaluating the
quality of commercial health apps [14]. They report that among
studies analyzing the quality of downloaded app content,
methods used included rating apps relative to predefined criteria,
rating apps relative to evidence-based criteria, and usability
testing of functions [14]. Other studies analyzed content
descriptions of apps using methods such as adapted website
assessment tools, user ratings and reviews, and degree of
involvement of experts in app development [14]. This review
not only provides a useful overview of methods used in
published studies but also points to the need for further work
in developing and describing methods including those that have
not yet been applied in research on commercial apps. We build
on this work by detailing a wide variety of methods and study
designs that can be used to evaluate commercial health apps.

The purpose of this paper is to present the full scope of methods
for generating evidence for commercial health apps. Methods

for evaluating commercial health apps reviewed include content
analysis, usability testing, observational studies, and efficacy
testing. Illustrative examples are used when possible to
demonstrate the application of methods described; examples
were identified using the results of PubMed searches with related
terms (eg, mobile apps, content analysis, usability testing,
observational study, and randomized controlled trial [RCT]).
This review will also shed light on decisions regarding which
methods match specific research question and the degree of
time and resources involved in the various study designs. The
identification of high-quality commercial apps is essential for
research, clinical practice, and to inform the development of
the next generation of commercial apps.

Content Analysis

Content analysis is a research methodology that involves coding
and interpreting qualitative, usually text-based material [15].
Commercial apps include multiple features, health information,
and advice, all of which can be subject to content analysis. The
first step in conducting a content analysis is to access the app
content for review. In previous studies, the content that was
analyzed came from either directly downloading the app and
exploring its features or from the information provided in the
app store (eg, app description and list of features) [14]. Although
content analysis can simply involve describing the content
included, another approach is to select a comparator against
which the app content would be assessed. Three common
comparators used in the scientific literature include clinical
guidelines, evidence-based protocols, and behavior change
techniques (see Table 1) [16-18]. Other possible comparators
might include theoretical constructs or even other well-validated
apps.

Accessing Content
Content analyses of descriptions in the app store [19] or of
content in the downloaded app [14] address different questions.
Evaluating the app descriptions gives insight into the content
that influences a user’s decision to download an app. A
drawback is that app descriptions are not necessarily exhaustive
sources of app content and may not exhaustively describe all
features or content included in the app [19]. Coding the content
of the downloaded app, on the other hand, will give insight into
the actual content of the app. The drawback of this approach is
that it may require some expense as many apps must be
purchased. It also necessitates greater time investment as some
apps require a period of use to experience all features. Content
may also vary user by user as apps begin to employ artificial
intelligence to personalize the content. Therefore, time,
resources, and the research question must be considered when
selecting an approach to accessing content for evaluation.
Researchers should clearly articulate the limitations to the
approach selected.
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Table 1. Examples of evaluations of commercial mobile health apps.

Example studiesMethod and types of
evaluation

FindingsStudy aimHealth topic

Content analysis

No apps promoted all 7 practices; 22.9%
(52/227) included at least four of the prac-

Apps (N=227) evaluated for use of 7 self-
management behavioral practices recom-

Diabetes self-management [19]Clinical guidelines

tices, and 14.5% (33/227) did not include
any practices

mended by the American Association of
Diabetes Educators

51.1% of apps (115/225) implemented
“ask,” 47.1% (106/225) “advise,” 8.0%

Apps (N=225) evaluated for use of the 5As
clinical practice guidelines

Smoking cessation [20]

(18/225) “assess,” 96.0% (216/225) “assist,”
and 11.1% (25/225) “arrange follow-up”

61% (35/57) apps did not incorporate any
evidence-based behavioral strategies; of the

Apps (N=57) examined for inclusion of 8
strategies and 7 behavioral targets recom-

Pediatric obesity prevention and
treatment [21]

remaining 39% (22/57) apps, the meanmended by the Expert Committee for Pedi-
atric Obesity Prevention number of strategies used was 3.6 (standard

deviation [SDb] 2.7) out of the possible 15

Apps included 19% (3.8/20) of the strategiesApps (N=30) evaluated for inclusion of 20
evidence-based weight loss strategies used
in the Diabetes Prevention Program

Weight loss [22]Evidence-based
treatment strategies

10.3% (12/117) of apps were coded as de-
livering any elements of cognitive behav-
ioral therapy or behavioral activation

Apps (N=117) evaluated for incorporated
cognitive behavioral therapy and behavioral
activation treatment strategies

Depression [23]

On average, apps included 22% (5/23) of
the behavior change techniques (range 2-8)

Apps (N=64) reviewed for use of behavior
change techniques

Physical activity [24]Behavior change
techniques

On average, App descriptions included 16%
(4.2/26) of the behavior change techniques
(range 1-13)

Descriptions (N=167) for top-ranked apps
evaluated for use of behavior change tech-
niques

Physical activity [25]

Usability testing

42.7% (79/185) of tasks completed without
assistance; participants were interested in

Usability of apps (N=11) evaluated among
diverse participants (N=26) through comple-
tion of a series of app-related tasks

Multiple health outcomes (depres-
sion, diabetes, caregiving) [26]

Laboratory studies

using technology, but lacked confidence
navigating the apps and were frustrated by
design features

10% (4/42) of apps had a composite usabil-
ity score above 20 (scale 1-30)

Usability of apps (N=42) evaluated by two
experts based on ease of use, user interface
design, customizability, data entry and re-

Diabetes self-management [27]

trieval, integration of data into
charts/graphs, data sharing

Entry for the app Pain Scale was 89% faster
than entry for the app Manage My Pain;

Usability of apps (N=2) evaluated by pa-
tients with chronic pain (N=41) through re-

Pain management [28]

Manage My Pain incorporated more attrac-
tive fonts and colors

call of two pain memories; assessed for ease
of use and time to enter pain data

Responses indicated that users were satis-
fied with the app

Usability of an app, Heartkeeper, evaluated
through user feedback (N=26) on a survey
that solicited feedback from existing users

Heart disease [29]Field testing

of the app in the field based on ease of use,
performance, appearance, and perceived
app security

Plans, ability to export user’s app data,
general usability, and app cost associated

User ratings for apps (N=234) evaluated for
presence of 12 features; analyzed whether

General patient-centered health
[30]

User ratings

with higher user ratings; presence of athese features explained variation in user
ratings of the app tracking feature associated with low user

ratings
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Example studiesMethod and types of
evaluation

FindingsStudy aimHealth topic

Observational studies

Greater app use predicted more positive
emotion among app users

Evaluated data from users (N=152,747) of
the stress reduction app Happify to explore
whether greater usage predicted higher well-
being

Mental health [31]N/Aa

People who used the app most often were
more likely to achieve weight loss success
of losing 5% of their starting weight (73%
success) than those users who only used the
app occasionally (5% success)

Examined cross-sectional associations be-
tween weight loss and components of
weight loss app Lose It! use among app
users (N=972,687)

Weight loss [32]

Use of the app was associated with short-
term increases in physical activity

Three studies examined the associations
between use of Pokémon Go and physical
activity (two through survey and one
through ongoing use of a physical activity
device); an outcome external to the app

Physical activity [33-35]

Efficacy testing

No between-group difference for weight
loss; app condition participants kept more
consistent diet records than pen and paper
participants but not more than phone memo
participants

Tested the effect of a weight loss app versus
two traditional diet counseling methods (pen
and paper and memo function on phone) on
self-monitoring and weight loss among
adults during an 8-week trial (N=57)

Weight loss [36]Randomized con-
trolled trials

No between-group differences found for
weight loss or reduction in blood pressure
differed between groups; app users set a
calorie goal more often than the usual care
group

Tested the effects of using MyFitnessPal
weight loss app plus usual care versus usual
care alone, for effects on weight loss and
blood pressure over 6 months with N=212
primary care patients

Weight loss [37]

Researcher-created app was more effective
than QuitGuide for quit rates (13% vs 8%)
and participants engaged with it more than
QuitGuide (opened app 37.2 times vs 15.2
times)

Compared the efficacy of two smoking
cessation apps over 8 weeks: a commercial
app (QuitGuide) versus a researcher-devel-
oped app that incorporated Acceptance and
Commitment Therapy

Smoking cessation [38]

aN/A: not applicable.
bSD: standard deviation.

Selecting a Comparator

Clinical Guidelines
Some content analysis studies have compared app content with
clinical guidelines put forth by professional organizations (eg,
Expert Committee for Pediatric Obesity Prevention) [39,19-21].
This approach can identify apps that are most comprehensive
in their incorporation of clinical guidelines and identify gaps
in the content of other apps. It can also lend credibility to
commercial apps that score highly among researchers, clinicians,
and patients [19]. Studies comparing the content of commercial
health apps with clinical guidelines have found that guidelines
are sparsely used (see Table 1) [19-21]. For example, 227
diabetes self-management apps were evaluated against seven
self-management behavioral practices recommended by the
American Association of Diabetes Educators [40]. Results
revealed that no apps promoted all seven, 22.9% (52/227)
included at least four, and 14.5% (33/227) of apps did not
include any of the behavioral practices [19]. However, as the
researchers suggest, it is unlikely that all users will need or want
every aspect included in clinical guidelines; for example, some

patients may want to track their medications, whereas other
patients may not be on medication [19]. Although commercial
apps may not incorporate all components of clinical guidelines,
they can still be useful tools to deliver some key components
of the guidelines. Understanding which components of the
guidelines are included can help users and providers select the
app that best matches their needs. One challenge for app
developers is that clinical guidelines change as the science
evolves, and some changes are heavily debated among scientists
and practitioners (eg, American Heart Association dietary fats
recommendations) [41], which can be confusing for developers
and users. Staying abreast of changing guidelines would be
necessary to insure that information provided is current.

Evidence-Based Protocols
Another comparator for commercial app content analysis is an
evidence-based protocol. An evidence-based protocol is a
structured collection of behavioral strategies that when
implemented together and as recommended have produced
significant effects on behavior or a health condition in
randomized trials (eg, Diabetes Prevention Program Lifestyle
Intervention) [42]. A comparison of apps with evidence-based
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protocols can provide useful information about the strategies
being deployed. To date, studies comparing the content of
commercial health apps with evidence-based protocols have
consistently found low rates of strategies included (See Table
1) [22,23]. For example, one study evaluated 30 weight loss
mobile apps for inclusion of the 20 evidence-based weight loss
strategies used in the Diabetes Prevention Program lifestyle
intervention protocol (eg, weight loss goal, portion control,
problem solving, and stress reduction) [22]. Overall, the apps
included only 19% (3.8/20) of the strategies, but nearly all apps
(93%) included setting a weight loss goal [22]. These findings
suggest that although commercial apps do not generally appear
to be providing a comprehensive set of behavioral strategies,
they may assist the user with specific behavioral strategies.

Behavior Change Techniques
Another approach to analyze the content of apps has been to
identify and classify the behavior change techniques used in
the apps. A taxonomy of behavior change techniques was
developed through a systematic process where health behavior
theories and meta-analyses of interventions were reviewed to
generate a list of discrete evidence-based techniques (eg, prompt
barrier identification, model or demonstrate the behavior, and
plan social support) [17]. The goal of the taxonomy is to provide
a list of behavior change techniques in their smallest reducible
size and to improve the specification, replication, and
implementation of behavioral interventions [16-18]. Numerous
validation studies have shown that researchers can use the
taxonomy to reliably classify behavior change techniques
[17,43]. Furthermore, research has shown that certain behavior
change techniques are associated with more favorable outcomes
[17,44,45]; therefore, evaluating apps for inclusion of these
behavior change techniques could aid in identifying appropriate
apps for specific behavior change goals. Two studies have
evaluated the content of commercial physical activity apps to
describe their utilization of behavior change techniques [24,25].
One study found that, on average, physical activity apps
incorporated 5 of the 23 behavior change techniques (22% of
total) [24]; another one found that app descriptions mentioned,
on average, 4.2 of the 26 behavior change techniques (16% of
total) [25]. As more behavior change techniques are
implemented in commercial apps, behavioral providers may be
able to give tailored recommendations of apps to match patients’
specific behavioral challenges.

Challenges to Content Analysis
Content analyzing commercial apps can be challenging for four
main reasons. The first challenge is the variability in the way
apps implement clinical guidelines, evidence-based strategies,
and behavior change techniques. For example, an app might
implement goal setting by allowing a user to set a behavioral
goal. Goal setting implemented during behavioral counseling
would not only involve the individual selecting a goal but would
also provide assistance with selecting realistic and measurable
goals and guidance on adjusting the goal over time based on
the individual’s performance. In this case, the app developers
would have to make a judgment call as to whether goal setting
in the app reached the fidelity threshold for goal setting as
originally intended. When evaluating the content of apps,

researchers are encouraged to specifically describe the threshold
for each behavioral strategy. Continuous rating scales could
also be used instead of simple yes or no” indicators of the
presence of a strategy to more fully capture the extent to which
the strategy was implemented.

A second challenge to content analysis is that methods presented
here rely on subjective ratings of app content and app features.
A recent study demonstrated the difficulty of conducting
consistent assessments of app content between reviewers, as
evidenced by low interrater reliability scores [46]. Researchers
are cautioned to use tools that involve little reviewer discretion
(ie, assessed on a factual basis) to reliably evaluate app content
and features across individuals [46].

A third challenge to content analysis is that apps are frequently
updated which may result in continuously changing features,
loss of features, and new features. The app version number and
download and review dates should be disclosed in content
analysis reports. Given how often companies release app
updates, content analysis reviews can quickly become obsolete
and may need to be performed quickly and frequently.

A final challenge to content analysis is that some apps release
features only after a period of use or with an additional cost
[22]. The period of use may be based on time spent or
accomplishment of specific goals. These features might be
missed if coding is only done in a single use episode or without
purchasing the extra features. Therefore, proper recording of
the duration of use and presence of additional paid features in
apps is recommended.

Usability Testing

Usability or user testing refers to how well an app functions
and whether or not it serves its intended purpose. Typically,
usability is measured across dimensions such as user ratings of
app flexibility, operability, understandability, learnability,
efficiency, satisfaction, attractiveness, consistency, and error
rates [47-51]. Usability testing specific to a target population
can be particularly helpful for researchers or clinicians whose
work focuses on those populations [47]. The International
Organization for Standardization (ISO) is a leader in developing
industry standards and evidence-based guidelines for the
development of a range of services and products, including
technologies [52]. Two recent International Standards (ISO
9241 and ISO 25062) provide guidelines for conducting and
reporting on usability testing of mobile apps [53]. These
standards frame usability testing and results in terms of the
feedback from users, as opposed to past standards that defined
usability based on the software product itself [53]. Developers
may approach the process of usability evaluation through
methods such as experts-based evaluation (ie, experts describe
the problems that users might encounter), observation (ie,
watching users interact with the app), surveys (ie, to collect user
feedback), and experimental evaluation (ie, evaluation of a
product through interaction with app by experts or users to
collect feedback on usability issues) [47,53]. Evaluation of
commercial app usability can include laboratory testing,
field-based evaluations, and reviewing ratings and narrative
user reviews from app marketplaces (Table 1).
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Laboratory-Based Testing
Usability testing can be conducted in a laboratory where users
are asked to carry out specific tasks with an app in a controlled
setting with extensive observation [51]. Laboratory-based testing
can be helpful, especially when usability needs to be assessed
in a specific population who may have different characteristics
than the users targeted by the company (see Table 1 for
examples) [26-28]. Usability metrics, such as comprehensibility
and ease of use, can be collected over a short period of time
with a small number of people. In a single visit, laboratory-based
usability testing can provide rich data by allowing user behavior
to be audio- or video-recorded. Investigating the way that
members of the target population click through and understand
various screens and features may uncover usability issues [47].
For example, a researcher might be interested in identifying a
commercial exercise app that has high usability in older cancer
survivors. Results from laboratory-based testing can be used to
inform the instructions and training given to the target
population or additional technology needed to support use of
the app. For example, investigators might be able to design
workarounds for app deficiencies (eg, use mobile phone settings
for color changes and font size to make app more readable) to
boost their usability in future research. One limitation of
usability testing is that it may not represent how users will
interact with the app in the real world [28,51]; therefore, more
extensive field testing may be necessary.

Field Testing
Field testing or mobile in the wild testing allows observation
of how people use the app in their real lives [51] to better
understand real-world usage of the app [54,55]. Testing apps
in the field can test usability of an app for a specific target
population or help determine which of the several apps is best
for a target population. Few studies have used field-based
methods to evaluate the usability of commercial health apps
(Table 1) [29]. One study evaluated the app Heartkeeper by
incorporating a button into the app where users could click and
complete a quality of experience survey to rate content quality,
security, ease of use, availability, performance, appearance, and
learning of the app [29]. Responses indicated that users were
satisfied with the app [29]. Another method to collect field
usability data is through app tracking software. Software can
be installed on mobile phones to monitor the number of active
app users, how long users spend in the app, what they click on,
and so on. Researchers should consider utilizing these programs
and reporting on app use data to supplement other field testing
results. Despite the rich data field tests can provide, capturing
app use in a dynamic environment makes direct observation
difficult [21]. Furthermore, findings may only be relevant to
the sample of users selected and samples tend to be small [26].
Additional evidence for app usability in a variety of populations
is critical to provide further insight into which apps might be
best suited for whom.

User Feedback: Ratings and Reviews
User feedback on the app marketplace is a source of usability
data that reflects the experiences of people who presumably
downloaded and used the app. These data can demonstrate app
popularity via total number of ratings, as well as quality via

average rating (typically as a number of stars out of 5) and
narrative reviews. Although mean rating provides an overall
estimate of quality or desirability, the distribution of ratings
may be important to understanding the mean rating. For
example, an average rating of 3 stars could either suggest that
most ratings hovered around 3 stars, or could be reflective of
highly polarized ratings (ie, mostly 1-star and 5-star ratings).
Low ratings may indicate a specific issue with the app or
contradictory opinions of the app overall. Ratings may change
over time because of updates (eg, bug patches and function
improvements) and users changing their past ratings over the
course of app use (as allowed by some app stores). However,
recent research suggests that caution should be taken when
interpreting these ratings as they are correlated with unexpected
factors such as time to last update, app vocabulary, and the app
description [56]. Narrative reviews can provide qualitative data
about the positive and negative aspects of usability, user
interface, and match between intended use and functionality.
Reviews may also include users’ perceptions of efficacy (eg,
“this app is great!! I lost 10lbs using it!!”). Because not all users
provide reviews, reviews may oversample highly positive and
negative experiences rather than the “average” experience.
Content analysis [57], sentiment classification, and natural
language processing may be useful for examining user-narrative
reviews. One limitation is that app creators can write reviews
themselves or otherwise incentivize users to give favorable
ratings, affecting interpretability of these data [14].

Observational Studies

Observational studies can be used to assess app use, satisfaction,
and the predictive value of app use on behavioral and clinical
outcomes. Observational studies can be conducted via large
databases of users or case series of a small number of users to
assess outcomes tracked by the app (Table 1) [31-35]. Although
observational studies cannot establish causality (ie, efficacy of
the app on an outcome), they can be used to explore associations
between app use and outcomes. For example, an observational
study of users of popular weight loss apps might examine
whether length of use is associated with greater weight loss.
Observational studies can also provide information about
duration of use in real-world settings for specific types of users
[58]. For example, ecological momentary assessment can be
utilized to gather data numerous times throughout a day [59] to
provide information about use patterns across people or
intraindividual use patterns. A limitation of observational studies
is the potential for selection bias, especially when examining
prolonged use of the app and the inability to draw causal
conclusions about observed behavior changes. Additionally,
app users are not likely representative of patient populations
(eg, MyFitnessPal users likely have different characteristics
than primary care patients with obesity). Furthermore,
information regarding the characteristics of users may be limited,
making it difficult to ever know whom the data represent. For
this reason, it would be important to clearly describe the
limitations of the data in manuscripts and other public reports.
Given the massive amount of data companies have on the use
of their apps, observational studies present an enormous
opportunity for academic-industry collaboration. Academics
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could partner with companies who are interested in having their
outcome (eg, weight loss and physical activity) and process data
(eg, self-monitoring patterns) analyzed. Alternatively, companies
are increasingly hiring behavioral and data scientists to explore
their data, providing a novel industry career path for academics
looking to use their skills to inform commercial products.

Efficacy Testing

Efficacy testing is a critical step in establishing whether use of
a commercial app results in meaningful change in behavior and
clinical outcomes. The gold standard approach to efficacy testing
is the RCT [60]. However, given the time and expense required
to perform RCTs, alternative study designs like N-of-1 and case
series can be considered as initial steps to justify the progression
to RCT.

Randomized Controlled Trials
Evidence from RCTs (Table 1) is considered the gold standard
in the context of clinical guidelines [61], which is ultimately
the gateway to becoming a part of standard practice. A major
decision point in RCTs is the appropriate control or comparison
group with each option addressing a unique question. Usual
care control groups address whether a commercial app improves
upon usual care [37]. On the other hand, one might be interested
in testing whether an app-delivered behavioral strategy improves
upon the same behavioral strategy when delivered via a
traditional modality (eg, dietary self-monitoring via app vs paper
diaries) [36], in which case a noninferiority trial using the
traditional condition as comparator is appropriate. If the research
question is whether an app improves upon a standard practice,
a comparison could be made between standard practice with
and without the app [37]. Comparative effectiveness studies
including both equivalence and noninferiority designs might
compare two apps or an app with another treatment approach.
For example, one RCT tested whether a new
investigator-generated smoking cessation app utilizing a novel
behavior change model was more effective than a commercially
available app [38].

Challenges
RCTs are time and resource intensive, which means their use
must be reserved for apps in which other previously discussed
forms of evidence support the investment. Another challenge
to RCTs with commercial apps is that frequent app updates
make it difficult to ensure that all participants receive identical
intervention. Treatment fidelity and receipt should be tracked
so that such deviations can be documented and controlled for
in analytic models. Finally, researchers have no control over
the features in a commercial app, making it difficult to test
whether the “success” of an app-delivered intervention is
attributable to the total package of the app or because of specific
app components.

Alternative Study Designs

Optimization Strategies
To address research questions about the efficacy of individual
app features, researchers may consider utilizing an optimization
design, such as the one described in the multiphase optimization

strategy (MOST) framework [62,63]. The MOST framework
is an iterative research design that allows investigators to select
and evaluate individual components, rather than the treatment
as a whole, to optimize the effect of individual components on
behavior change. Specific study designs within this framework
include factorial designs and sequential multiple assignment
randomized trials [62]. Furthermore, parallels have been drawn
between the use of optimization designs, such as MOST, for
behavioral trials and the process used for software development,
which is described as an “agile science” process for behavioral
research [64]. The agile science process calls for researchers to
target and test specific components of new products (eg, apps)
for rapid testing of and adaptation to the smallest meaningful
unit possible, allowing for more efficient iteration and
dissemination [64]. The MOST framework has yet to be applied
to testing the efficacy of commercial apps, and one challenge
is in randomizing participants to only using parts of an app when
they have access to the entire app. This work might ideally be
performed during the design phase of the app in the context of
an academic-industry partnership. Studies could leverage a
MOST design to test different combinations of commercial apps
that each provide a unique behavioral strategy; however, efforts
would need to be taken to prevent contamination as commercial
apps are publicly available.

N-of-1 Studies
A fairly quick way to build efficacy data for a commercial health
app is via N-of-1 designs. This methodology, also known as
“single-case,” involves the repeated measurement of an
individual over time and is a practical method for understanding
within-person behavior change after presenting an intervention
(ie, AB design) or after presenting the intervention and then
removing it (ie, ABA design). Similar to the process
recommended by researchers to rapidly iterate mobile app
development in the laboratory [8], N-of-1 trials could be used
to test the preliminary efficacy of established commercial apps
using methods analogous to personalized medicine (ie, iterative
crossover designs) [65]. For example, those interested in testing
whether exposure to theory-based content of a healthy eating
app influences the dietary choices of individual participants
might use a series of ABA N-of-1 designs to describe
intraindividual variation in behavior before and after exposure
to that feature. Furthermore, ongoing work in dynamic statistical
modeling provides guidance for analyzing the data from N-of-1
trials [66], including techniques to increase the generalizability
of estimates [67]. Although no published studies have used
N-of-1 designs for testing commercial apps, a recent systematic
review examined the evidence for using N-of-1 studies for other
health behavior interventions, describing the current state of
evidence supporting N-of-1 studies, and methodological
considerations for designing and executing N-of-1 studies [68].
The review also offers insights about the potential for technology
to help collect large amounts of individual data from participants
both unobtrusively and longitudinally [68]. N-of-1 designs do
have important limitations, including lack of generalizability,
limited consensus on appropriate analytic techniques, and failure
to address long-term maintenance of behavior change.
Additionally, use of N-of-1 designs for testing mobile apps
include the potential to overestimate effects because of the so
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called “digital placebo” effect, which is the ability of
expectations of the benefit of using a digital tool such as an app
to lead to clinical improvement [69]. The digital placebo effect
could partially explain consumers’ reports of benefits from apps
that are largely devoid of evidence-based strategies and unlikely
to provide substantive benefit [69]. Researchers employing an
N-of-1 design are cautioned to account for these limitations in
their study designs.

Discussion

In this paper, we described a host of methods that can be used
to systematically evaluate commercial apps as a way to stimulate
a science of commercial health apps. Greater evidence for
commercial apps could increase their adoption in clinical
practice and impact on behavioral and clinical outcomes.
Commercial apps are typically developed with a high level of
expertise in design and function and many are well marketed
and have enormous user bases. Scientists who do not have the
resources to develop their own apps can instead employ less
resource–intensive research on commercial health apps. Industry
professionals and investors would benefit from data on the
content, usability, and efficacy of the commercial apps to inform
their decisions on future products and investments.

Future Research
Additional areas of exploration in researching commercial apps
may include evaluation of the technical functions of the app,
developer transparency, and policies regarding user data privacy
and security (eg, transparency about how developer will use
app data) [70]. In terms of technical performance of the app,
research could evaluate features such as validation of
information inputs (eg, app verifies that the information a user
inputs is plausible or flags the entry and asks for a correction)
and information security precautions (eg, whether user’s medical
data are susceptible to interception) [70]. In terms of developer
transparency, researchers could use app metadata to extract
manufacturer information, contact information, and product
information. For example, do manufacturers include professional
expertise in the target health area, such as endocrinologist for
a diabetes self-management app? These data would also allow
researchers to evaluate relationships between app quality, user
ratings, and developer transparency [56,71]. Another important
dimension of transparency is extent of user information required
to run the app and whether permissions requested are necessary.
A recent review investigated the declarations of manifest files
and app source code to determine whether the permissions
requested were related to the information needed to run the app
[72]. Results suggested that requested permissions often

surpassed what the app needed, which means these apps could
pose an unnecessary threat to user privacy and safety [72]. In
terms of evaluation of the privacy and security of commercial
apps, researchers can track whether users retain the rights to
their own data, whether data are adequately protected during
transmission and storage, and developer transparency (eg,
published contact information if users have questions) [73]. A
growing interdisciplinary dialogue is emerging about the ethical
considerations of using health technologies, including proper
precautions that should be taken to ensure user privacy and
safety [73,74].

Limitations
This review has some limitations. First, we did not conduct a
systematic review of app evaluation studies, but rather present
a focused summary of methodologies commonly used in studies
testing traditional interventions with details on how they can
be applied to commercial apps, with illustrative examples where
possible. In general, another limitation of this review is that
commercial products may be updated, completely changed, or
discontinued while a research study is in progress, making
findings obsolete before they are even published. Apps that
were developed by established companies, have been in the
marketplace for a while without major changes, and have large
and devoted user bases may be less likely to change drastically
over the course of a research study. Research on a commercial
app that contains features that are common to many other
commercial apps will have relevance to those other apps even
if the target app no longer exists. However, the rapid pace of
technology means researchers should avoid delays in data
analysis and publication for this work. Historically, traditional
interventions have evolved relatively slowly, which allowed
lags in the research process. Such lags cannot be afforded for
this work. To speed the process, researchers should be sure to
establish a firm project timeline, select collaborators who are
willing to commit to the project timeline, and target journals
with fast review turnaround times and brief report article types.

Conclusion
Research on commercial mHealth apps can take many forms
depending on the research question as well as the time and
resources required to complete it. No single methodology is
best as each provides a different type of evidence and involves
a unique set of advantages and limitations. Research on
commercial mobile apps complements research exploring the
development and testing of novel apps in academic laboratories.
Both have a place in the literature and together will propel the
mHealth space forward and strengthen the degree to which its
foundation is empirical evidence.
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