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Abstract

Background: Accurately monitoring and collecting drug adherence data can allow for better understanding and interpretation
of the outcomes of clinical trials. Most clinical trials use a combination of pill counts and self-reported data to measure drug
adherence, despite the drawbacks of relying on these types of indirect measures. It is assumed that doses are taken, but the exact
timing of these events is often incomplete and imprecise.

Objective: The objective of this pilot study was to evaluate the use of a novel artificial intelligence (AI) platform (AiCure) on
mobile devices for measuring medication adherence, compared with modified directly observed therapy (mDOT) in a substudy
of a Phase 2 trial of the α7 nicotinic receptor agonist (ABT-126) in subjects with schizophrenia.

Methods: AI platform generated adherence measures were compared with adherence inferred from drug concentration
measurements.

Results: The mean cumulative pharmacokinetic adherence over 24 weeks was 89.7% (standard deviation [SD] 24.92) for
subjects receiving ABT-126 who were monitored using the AI platform, compared with 71.9% (SD 39.81) for subjects receiving
ABT-126 who were monitored by mDOT. The difference was 17.9% (95% CI -2 to 37.7; P=.08).

Conclusions: Using drug levels, this substudy demonstrates the potential of AI platforms to increase adherence, rapidly detect
nonadherence, and predict future nonadherence. Subjects monitored using the AI platform demonstrated a percentage change in
adherence of 25% over the mDOT group. Subjects were able to use the technology successfully for up to 6 months in an ambulatory
setting with early termination rates that are comparable to subjects outside of the substudy.

Trial Registration: ClinicalTrials.gov NCT01655680 https://clinicaltrials.gov/ct2/show/NCT01655680?term=NCT01655680

(JMIR Mhealth Uhealth 2017;5(2):e18) doi: 10.2196/mhealth.7030

KEYWORDS

medication adherence; artificial intelligence; clinical trials as topic

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 2 | e18 | p. 1http://mhealth.jmir.org/2017/2/e18/
(page number not for citation purposes)

Bain et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

mailto:laura.shafner@aicure.com
http://dx.doi.org/10.2196/mhealth.7030
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Accurately monitoring and collecting drug adherence data can
allow for better understanding and interpretation of the outcomes
of clinical trials [1-3]. The advent of electronic monitoring has
generated a wealth of published data on the value of analyzing
drug adherence and using this information as an explanatory
variable in itself [4-6]. In order to understand the dose-response
relationship of an investigational drug, or understand factors
contributing to intersubject variability in response to a drug, it
is imperative to properly capture and understand the dosing
history (ie, actual doses taken, missed doses, late doses). To
ignore these variations in adherence is a “lost opportunity if not
a scientific lapse” [4] in both clinical research and in population
health.

Monitoring Methods in Clinical Research
Most clinical trials use a combination of pill counts and
self-reported data to measure drug adherence, despite the
drawbacks of relying on these types of indirect measures. It is
assumed that doses are taken, but the exact timing of these
events is often incomplete and imprecise. Pill counts have
frequently been shown to underestimate poor adherence and
nonadherence [1,7-13].

A recent study questioned the utility of pill count data when
compared with pharmacokinetic data [2]. For the 1765 subjects
receiving active drug in 8 Phase 2 or later psychiatric trials
conducted between 2001 and 2011, the estimated nonadherence
rates of 12.8-39.2% from the pharmacokinetic data (with
nonadherence defined as >50% of pharmacokinetic samples
below the limit of quantification for the study drug in plasma)
proved far higher than the nonadherence rates of 0.0-5.1%
estimated by pill counts in 5 of the 8 studies [2].

The advent of electronic monitoring packaging (EMP) allowed
for more reliable collection of adherence data, giving researchers
the ability to collect the date and time stamp of each
bottle/package opening (frequently in real time), and providing
patients with some reminders and feedback. The short duration
of many of the trials that implemented EMP (and the variability
in quality of the study designs) in a systematic review of 37
studies using forms of EMP precluded definitive assessment of
their effect on adherence [14]. One limitation of EMPs is that
they do not verify drug administration. Meticulously removing
pills from pill bottles led researchers to prematurely halt a large
human immunodeficiency virus (HIV) prevention trial (VOICE)
for lack of efficacy, with data suggesting that approximately
70% of the female participants in the study had no measurable
tenofovir blood concentrations (the main study drug under

investigation) despite approximately 90% of these patients
claiming to be adherent [15,16]. More reliable measures tend
to be hardware-based and require changes to the drug
manufacturing process itself, incurring high costs and
operational challenges [17].

Due to its ability to ensure treatment adherence, directly
observed therapy (DOT) has been used for decades, both to
measure and maximize adherence for treatment of tuberculosis
infections and antiretroviral therapies [18-21], and to ensure
ingestion in inpatient settings or in early-phase clinical trials
when subjects are dosed in the clinic. However, for trials
conducted in outpatient populations, the cost and logistical
complexity of administering DOT forces clinical trials to switch
to less intensive monitoring, despite the continued and largely
unmeasured risk of nonadherence [22].

Artificial Intelligence Platform
The artificial intelligence (AI) platform AiCure (New York,
NY) uses AI to visually confirm medication ingestion (Figure
1) via software that can be downloaded as an app on any mobile
device. Using facial recognition and computer vision, software
algorithms identify the patient, the drug, and confirm ingestion.
Date and time stamps are collected for each individual pill.
Adherence data fall into the following 6 categories: (1) visual
confirmation of ingestion using the AI platform app, (2)
self-reported dose via the self-report button in the app (no visual
confirmation), (3) self-reported dose over the phone to the study
coordinator, (4) missed dose, (5) skipped dose, and (6) dose
taken in clinic. Encrypted data for each dosing administration
are sent to cloud-based dashboards for real-time monitoring and
intervention, with suspicious activity, duplicate enrollment, or
incorrect usage triggering alerts. Study subjects were
provisioned a smartphone with the AI app predownloaded to
monitor study drug compliance. The AI app was installed with
Health Insurance Portability and Accountability Act-compliant
AI software.

The present report describes medication adherence results from
an exploratory pilot substudy, using the AI platform compared
with modified DOT (mDOT) 3 times per week during a clinical
study (Study M10-855 [ClinicalTrials.gov NCT01655680]) of
an investigational adjunctive oral medication (ABT-126) that
was evaluated for treatment of cognitive impairment in patients
with schizophrenia. The objectives of this exploratory pilot
substudy were to evaluate the AI platform as a real-time
monitoring method for study drug adherence, and to examine
the feasibility of using the platform in a 6-month Phase 2
schizophrenia study.
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Figure 1. Artificial intelligence platform.

Methods

Study M10-855 (AbbVie Inc.) was a Phase 2, multicenter,
randomized, double-blind, placebo-controlled, dose-ranging,
parallel-group, 24-week study of the safety and efficacy of an
investigational adjunctive treatment (ABT-126) for the treatment
of cognitive deficits in nonsmoking subjects with schizophrenia
who were clinically stable. The study was conducted from May
2012 to July 2014 at a total of 31 sites in the United States, 20
sites in Russia, and 7 sites in the United Kingdom. Overall,
431 subjects were randomized to 25, 50, or 75 milligrams (mg)
ABT-126 or matching placebo administered as 3 capsules once
daily in the morning. All subjects provided informed consent
prior to any study procedures.

Adherence was measured by review of returned study drug
blister cards. Subjects with less than 70% adherence received
intense counseling on the importance of adherence, and could
also be withdrawn from the study. In addition, a later
amendment of the protocol included an optional adherence
program (AI substudy) for US sites. Ten of the 31 US sites
agreed to participate. In addition to the blister cards, subjects
at these sites were asked to choose between the AI platform and
mDOT as a further adherence measure. mDOT required study
staff (or a third party) to observe and record study drug
adherence at least 3 times per week. Subjects monitored by the
AI platform were assigned a device with the AI app downloaded.
Adherence data from the AI substudy were not entered into the
clinical study database. Sites participating in the AI substudy
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continued to record adherence based on returned blister cards
at each visit.

Pharmacokinetic blood samples for the analysis of ABT-126
plasma concentrations were collected at weeks 2, 4, 6, 10, 12,
16, 18, 22, and 24. At weeks 2 and 4, the pharmacokinetic
samples were collected prior to dosing at the site on the week
2 and week 4 visit days. At weeks 6, 12, 18, and 24, the
pharmacokinetic samples were collected (when possible)
following the cognitive and functional assessments. At weeks
10, 16, and 22, the pharmacokinetic samples were collected at
any time during the visit.

The primary exploratory analyses for the AI substudy were
performed for all randomized subjects who received the study
drug at the 10 designated US sites, and included data through
week 24. Daily adherence data captured by the AI platform
were summarized by week (7-day intervals). The
protocol-planned measure for adherence used pill count data
based on the returned blister packs. The main adherence
measures for the analyses in this paper were based on scheduled
pharmacokinetic sampling results and AI platform-measured
parameters. A subject on ABT-126 was said to be adherent for
a given week based on pharmacokinetics, if the subject’s
pharmacokinetic sample taken during that week had measureable
study drug concentration (ie, concentration above the lower
limit of quantification [LLOQ]). A subject’s AI platform
adherence rate for a given week was defined as the number of
doses captured by the AI platform relative to the number of
planned doses for that week. Additionally, each subject had
cumulative pharmacokinetic and AI platform adherence rates

calculated for each study week, based on data from that week
and previous weeks with nonmissing data. No planned sample
size or power calculations were performed for these post hoc
exploratory analyses. The analyses are exploratory in nature,
and the reported results need to be interpreted descriptively to
generate future hypotheses.

Results

In the M10-855 study, a total of 431 adult subjects with
schizophrenia (placebo, n=144; 25 mg ABT-126, n=66; 50 mg
ABT-126, n=151; 75 mg ABT-126, n=70) were randomized
and received at least 1 dose of study drug or placebo. Subjects
remained on their baseline antipsychotic treatment regimen
during the study. Ten of the 31 US sites participated in the AI
substudy. A total of 75 subjects were enrolled at these sites
(Table 1)). Of these 75 subjects, 53 were monitored with the
AI platform. Of these 53 subjects, 12 were grandfathered into
the substudy after 6-to-20 weeks of daily administrations of the
study drug prior to AI platform monitoring. Among the subjects
who used the AI platform, the following completed the study:
placebo, 8 of 15 subjects (53%); 25 mg ABT-126, 7 of 8 subjects
(88%); 50 mg ABT-126, 12 of 19 subjects (63%); and 75 mg
ABT-126, 9 of 11 subjects (82%). All 22 subjects who chose
to be monitored by mDOT 3 times per week (per protocol)
completed the study (placebo, n=7; 25 mg ABT-126, n=6; 50 mg
ABT-126, n=4; 75 mg ABT-126, n=5). The early discontinuation
rate in the AI group (17 of 53 subjects, 32%) was similar to the
early discontinuation rate at the 21 US sites not participating in
the AI substudy (36 of 135 subjects, 26.7%).

Table 1. Subject disposition (AI substudy). AI: artificial intelligence; mDOT: modified directly observed therapy; mg: milligrams.

Dose of ABT-126Parameter

Overall75 mg50 mg25 mgPlacebo

7516231422All subjects participating in
the AI substudy, N

58 (77%)14 (88%)16 (70%)13 (93%)15 (68%)Completed study, n (%)

17 (23%)2 (13%)7 (30%)1 (7%)7 (32%)Withdrawn, n (%)

531119815Subjects monitored using
the AI platform, N

36 (68%)9 (82%)12 (63%)7 (88%)8 (53%)Completed study, n (%)

17 (32%)2 (18%)7 (37%)1 (13%)7 (47%)Withdrawn, n (%)

19 (36%)0 (0%)9 (47%)4 (50%)6 (40%)Suspicious, n (%)

12 (23%)4 (36%)3 (16%)2 (25%)3 (20%)Grandfathered, n (%)

225467Subjects monitored using
mDOT, N

22 (100%)5 (100%)4 (100%)6 (100%)7 (100%)Completed study, n (%)

0 (0%)0 (0%)0 (0%)0 (0%)0 (0%)Withdrawn, n (%)

Suspicious subjects were those flagged by the AI platform as
having dosing parameters outside of normal activity.
Grandfathered subjects were those enrolled in the study before
the option to use the AI platform was introduced.

For all subjects in the AI substudy (n=75), the mean age was
45.9 years (standard deviation [SD] 10.86) and 55% (41/75) of

the subjects were male (Table 2). Overall, 52% (39/75) of
subjects were black, 41% (31/75) were white, 5% (4/75) were
Asian, and 1% (1/75) were Hawaiian. Subject demographics in
the AI substudy were similar to those at all US sites (n=210)
and mean age was 45.1 years (SD 11.20), 59% of subjects were
male, and the majority of subjects were black (57%). In the AI
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substudy, the treatment groups were reasonably balanced with
respect to age, sex, and race, with the exception of a higher
percentage of white subjects and lower percentage of black

subjects in the 75 mg ABT-126 group compared with the
placebo, 25 mg, and 50 mg ABT-126 groups.

Table 2. Demographic characteristics (AI substudy). mg: milligrams.

Dose of ABT-126Variable

Overall

(N=75)

75 mg

(N=16)

50 mg

(N=23)

25 mg

(N=14)

Placebo

(N=22)

45.945.345.045.647.6MeanAge, years

10.8614.4011.779.527.87Standard deviation

48.048.549.047.547.5Median

20, 6520, 6521, 6329, 6232, 64Minimum, Maxi-
mum

34 (45%)7 (44%)10 (44%)8 (57%)9 (41%)FemaleSex, n (%)

41 (55%)9 (56%)13 (57%)6 (43%)13 (59%)Male

4 (5%)1 (6%)2 (9%)0 (0%)1 (5%)AsianRace, n (%)

39 (52%)4 (25%)12 (52%)8 (57%)15 (68%)Black

1 (1%)0 (0%)0 (0%)1 (7%)0 (0%)Hawaiian

31 (41%)11 (69%)9 (39%)5 (36%)6 (27%)White

Subjects who were monitored by the AI platform, received
ABT-126 (25, 50, or 75 mg), and had available pharmacokinetic
data had geometric mean ABT-126 drug levels (normalized to
the 50 mg dose) that were higher at each time point evaluated
through week 24 compared with subjects monitored by mDOT
(Figure 2). At week 24, the geometric mean drug level,
normalized to the 50 mg dose, was 16.6 nanograms/milliliter
(ng/mL; SD 4.42) for subjects using the AI platform compared
with 9.6 ng/mL (SD 6.56) for subjects monitored by mDOT.
The analysis set consisted of all subjects who received any dose
of ABT-126 at the participating US sites and had available
pharmacokinetic data. Visits were based on a categorization of
collection-day data into weekly windows.

Based on an analysis of subjects who received ABT-126 at the
AI substudy sites and had available drug concentration data,
cumulative pharmacokinetic adherence was higher from week 2
through week 24 for subjects monitored using the AI platform
compared with subjects monitored using mDOT (Figure 3). The
mean cumulative pharmacokinetic adherence over 24 weeks
was 89.7% (SD 24.9) for subjects receiving ABT-126 and
monitored using the AI platform (n=28) compared with 71.9%
(SD 39.8) for subjects receiving ABT-126 and monitored by
mDOT (n=15). The difference was 17.9% (95% CI -2 to 37.7;
P=.08). Subjects (n=69) at the 21 US sites not participating in
the AI substudy had cumulative pharmacokinetic adherence
over 24 weeks of 78.1% (SD 29.7). The analysis set consisted
of all subjects who received any dose of ABT-126 at US sites
selected to use the AI Platform and who had available
pharmacokinetic data. Visits were based on a categorization of
collection day data into weekly windows. Pharmacokinetic
adherence was defined as ABT-126 levels greater than the
LLOQ (0.7 ng/mL). Cumulative results were based on data from
current and previous visits with nonmissing data.

A total of 19 subjects (19/53, 35.8%; 13 subjects on active drug
[including 4 subjects in the 25 mg ABT-126 group and 9
subjects in the 50 mg ABT-126 group] and 6 subjects on
placebo) were flagged as having suspicious drug administration
behavior by the AI platform (Table 1). The generation of the
platform used in the study utilized manual review of deidentified
video data to identify suspicious behaviors (leaning out of the
field of view, tampering with the drug, spitting out the drug,
hand to mouth gestures, and turning the device away). Seven
of 13 subjects (54%) had at least 1 pharmacokinetic sample
showing a drug concentration of zero or below LLOQ, or did
not complete the trial. At week 24, mean cumulative
pharmacokinetic adherences for suspicious subjects using the
AI platform (n=10), for nonsuspicious subjects using the AI
platform (n=18), and for subjects monitored using mDOT (n=15)
were 78.9% (SD 36.8), 95.7% (SD 12.7), and 71.9% (SD 39.8),
respectively. At week 24, mean cumulative pharmacokinetic
adherence for subjects grandfathered into the substudy and using
the AI platform (n=7) was lower (81.0%, SD 37.8) compared
to those who began the study with the AI platform (n=21; 92.6%,
SD 19.4).

The average cumulative dose adherence measured by the AI
platform through week 24 was 80%. Of note, concordance was
not demonstrated between the AI platform and pharmacokinetic
cumulative adherence rates, giving a Pearson’s correlation of
r=0.33 (95%CI -0.12 to 0.65). At the AI substudy sites, the
mean percentage of subjects with adherence >70%, as measured
by review of returned study drug blister cards, was >90% at all
study visits evaluated (weeks 2, 4, 6, 10, 12, 16, 18, 22, and 24)
for each treatment group (including subjects monitored with
the AI platform and those monitored by mDOT).

Subjects received 3 study drug capsules per daily dose, for a
total of 21 capsules per week. The mean total capsules per week
based on visual confirmation of ingestion by the AI platform
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ranged from 14.6 to 18 and the total mean missed/skipped
capsules per week ranged from 1 to 3 for subjects receiving any
dose of study drug (placebo or ABT-126) who were monitored
using the AI platform. Overall, the mean time required to take

a capsule (placebo or active drug) while being monitored with
the AI platform ranged from 40.3 to 70.6 seconds from weeks 1
to 24. The average time taken per dose of study drug (3 capsules;
placebo or active drug) throughout the study was 3 minutes.

Figure 2. Geometric mean ABT-126 plasma concentrations, normalized to the 50 milligram dose, for subjects who participated in the adherence
substudy stratified by artificial intelligence platform versus modified directly observed therapy use. Error bars indicate mean with standard errors.
ng/mL: nanograms/milliliter; mg: milligram.
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Figure 3. Cumulative adherence based on study drug (ABT-126) concentration.

Discussion

Electronic monitoring of medication adherence [23] has
highlighted the value of obtaining real-time dosing data for
better informed pharmacokinetic, pharmacodynamic, and
efficacy analyses, and for treatments requiring close monitoring
[12,24]. Although the accuracy of electronic monitoring has
been validated based on observed dosing [25], most studies
have not evaluated electronic monitoring using drug levels in
the blood; sensitivity and specificity are typically measured
against biomarkers such as detected HIV viral load [26-28] or
adherence is compared to less reliable measures, such as pill
counts or patient self-reports [16].

Other monitoring methods using ingestible sensor technology
or breathalyzer monitoring have demonstrated the accuracy of
these methods based on adherence markers or plasma drug

concentrations collected during observed dosing [29,30].
However, usability outside of controlled settings has not been
robustly assessed [29,30]. Evaluations of new monitoring
methods should include effects on adherence, concordance with
drug concentration measurements in ambulatory settings, and
ease of adoption.

Principal Results
In the present study, the AI platform was introduced into 10 of
31 US study sites participating in a Phase 2 study of ABT-126
in subjects with schizophrenia to augment standard and more
intensive adherence assessments (eg, pill counts and mDOT),
and to evaluate and test feasibility of the AI platform in this
setting. Adherence measures (AI platform vs mDOT) were
compared with drug concentration measurements to build a
framework for evaluating the effectiveness of the AI platform
in measuring drug ingestion and promotion of treatment
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adherence. Subjects monitored using the AI platform appeared
to be more adherent to study drug dosing compared to subjects
receiving mDOT 3 times per week, based on plasma drug levels.
The differences detected in study drug concentrations might
have been more pronounced had a measure such as mDOT
(which helps support optimal adherence [21]) not been the
comparator in this study, or had a drug with a shorter half-life
than ABT-126 been evaluated (the plasma concentrations of
which would have been more sensitive to missed doses).

Lack of concordance between the AI platform and
pharmacokinetic cumulative adherence rates, giving a Pearson’s
correlation of r=0.33 (95%CI -0.12 to 0.65), may be explained
by the following three considerations: (1) 9 patients receiving
active study drug were grandfathered into the substudy, each
of whom had pharmacokinetic samples with no corresponding
AI platform adherence data; (2) the AI platform dataset
contained a maximum of 540 data points for each subject,
compared to a maximum of 9 data points for each subject in the
pharmacokinetic dataset; and (3) the AI platform dataset
included doses that were missed, skipped, or self-reported,
highlighting suboptimal adherence that may not have been
captured in the pharmacokinetic dataset.

Cumulative adherence, measured by study drug concentrations
above the LLOQ, appeared to be higher through 24 weeks for
subjects monitored using the AI platform (89.7%) compared
with subjects monitored using mDOT (71.9%). The difference
was 17.9% (95% CI -2 to 37.7; P=.08).

Subjects monitored using the AI platform demonstrated a
percentage change in adherence of 25% over the mDOT group.
The study drug concentration among the mDOT group (71.9%)
is consistent with the McCann et al study, which showed
nonadherence rates of 12.8-39.2% [2]. Deceptively removing
pills to feign higher adherence leads to the low rates of
nonadherence typically measured by pill count, as seen in the
aforementioned study (0.0-5.1% [2]) and in the present study
(0-3%). The discrepancy between the adherence rates reported
by pill count and those measured through pharmacokinetic
sampling is substantial. Within the AI group, subjects who were
identified as suspicious had lower cumulative pharmacokinetic
adherence at week 24 compared to subjects who were not
identified as suspicious (78.9% vs 95.7%). Subjects who were
grandfathered into the substudy had lower cumulative
pharmacokinetic adherence at week 24 compared to subjects
who were not grandfathered into the substudy (81.0% vs 92.6%).
Excluding these first 2 groups might have led to higher
cumulative adherence in the AI group.

The AI platform was successfully utilized in this multicenter
study among cognitively impaired subjects with schizophrenia.
Subjects were able to use the technology successfully for up to
6 months in an ambulatory setting. Acceptance of mobile

technology has received little attention in this patient population
and has primarily relied on the use of mobile devices for patient
self-assessment, and as psychoeducational tools [31,32].

Limitations
The principal limitation of this substudy was the lack of
randomization; subjects were allowed to choose between the
AI platform and mDOT. Of the 75 subjects at the 10 sites, 22
self-selected mDOT, possibly adding bias to the study results.
However, it is worth noting that 17 of the 22 subjects had
already started the study prior to the introduction of the AI
platform, or were already receiving DOT at board and care
facilities. A second limitation was the small sample size of
subjects randomized to active drug (AI platform, n=38; mDOT,
n=15). A third limitation was the inconsistent use of mDOT.
Although mDOT usage was suggested at all US sites, not all
subjects received direct observation 3 times per week. A fourth
limitation was the use of the plasma concentrations in the
analyses without regard to the collection time relative to the
recorded last dose. The impact of this variable on the
conclusions is believed to be negligible since the threshold for
declaring lack of adherence was a concentration below the
LLOQ, which is a conservative criterion that should not be very
sensitive to collection time relative to dosing time variations.

Conclusions
Extensive evidence of nonadherence in clinical trials, which
includes behaviors such as removing pills from blister cards or
bottles while reporting high adherence, can undermine trial
results by providing false data and preclude true assessments
of efficacy and safety [3]. AI platforms have the potential to
increase adherence, identify poor-performing subjects, and
improve data quality. Detailed dosing patterns based on
confirmed ingestions allow for real-time intervention to further
improve adherence rates and subject retention. In clinical
practice, where poor adherence to antipsychotic treatment is
linked to increased hospitalization rates, the availability of
real-time data could allow for quicker and more effective
interventions, potentially improving outcomes and reducing
relapses [33]. In clinical research, this technology might be
useful to predict future behavior during placebo lead-in periods
in clinical studies by allowing for early detection and
intervention [3,34]. Such technology can also help researchers
understand the response patterns among patients in trials and
terminate the development of ineffective drugs with confidence,
leading to improved decision-making and accelerated clinical
trial results. The use of AI to visually confirm medication
ingestion is a valid contribution to the armamentarium of tools
that could help reduce uncertainties and costs associated with
high rates of nonadherence in clinical trials and real-world
settings.
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