
Original Paper

Estimating Accuracy at Exercise Intensities: A Comparative Study
of Self-Monitoring Heart Rate and Physical Activity Wearable
Devices

Erin E Dooley, MS; Natalie M Golaszewski, MA; John B Bartholomew, PhD
Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, United States

Corresponding Author:
John B Bartholomew, PhD
Department of Kinesiology and Health Education
University of Texas at Austin
UT Mail Code: D3700 2109 San Jacinto Blvd
Austin, TX, 78712-1415
United States
Phone: 1 512 232 6021
Fax: 1 512 471 3223
Email: jbart@austin.utexas.edu

Abstract

Background: Physical activity tracking wearable devices have emerged as an increasingly popular method for consumers to
assess their daily activity and calories expended. However, whether these wearable devices are valid at different levels of exercise
intensity is unknown.

Objective: The objective of this study was to examine heart rate (HR) and energy expenditure (EE) validity of 3 popular
wrist-worn activity monitors at different exercise intensities.

Methods: A total of 62 participants (females: 58%, 36/62; nonwhite: 47% [13/62 Hispanic, 8/62 Asian, 7/62 black/ African
American, 1/62 other]) wore the Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225. Validity was assessed using 2
criterion devices: HR chest strap and a metabolic cart. Participants completed a 10-minute seated baseline assessment; separate
4-minute stages of light-, moderate-, and vigorous-intensity treadmill exercises; and a 10-minute seated recovery period. Data
from devices were compared with each criterion via two-way repeated-measures analysis of variance and Bland-Altman analysis.
Differences are expressed in mean absolute percentage error (MAPE).

Results: For the Apple Watch, HR MAPE was between 1.14% and 6.70%. HR was not significantly different at the start (P=.78),
during baseline (P=.76), or vigorous intensity (P=.84); lower HR readings were measured during light intensity (P=.03), moderate
intensity (P=.001), and recovery (P=.004). EE MAPE was between 14.07% and 210.84%. The device measured higher EE at all
stages (P<.01). For the Fitbit device, the HR MAPE was between 2.38% and 16.99%. HR was not significantly different at the
start (P=.67) or during moderate intensity (P=.34); lower HR readings were measured during baseline, vigorous intensity, and
recovery (P<.001) and higher HR during light intensity (P<.001). EE MAPE was between 16.85% and 84.98%. The device
measured higher EE at baseline (P=.003), light intensity (P<.001), and moderate intensity (P=.001). EE was not significantly
different at vigorous (P=.70) or recovery (P=.10). For Garmin Forerunner 225, HR MAPE was between 7.87% and 24.38%. HR
was not significantly different at vigorous intensity (P=.35). The device measured higher HR readings at start, baseline, light
intensity, moderate intensity (P<.001), and recovery (P=.04). EE MAPE was between 30.77% and 155.05%. The device measured
higher EE at all stages (P<.001).

Conclusions: This study provides one of the first validation assessments for the Fitbit Charge HR, Apple Watch, and Garmin
Forerunner 225. An advantage and novel approach of the study is the examination of HR and EE at specific physical activity
intensities. Establishing validity of wearable devices is of particular interest as these devices are being used in weight loss
interventions and could impact findings. Future research should investigate why differences between exercise intensities and the
devices exist.

(JMIR Mhealth Uhealth 2017;5(3):e34) doi: 10.2196/mhealth.7043
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Introduction

Prior Research
The Physical Activity Guidelines for Americans suggest adults
achieve 150 minutes of moderate to vigorous physical activity
(MVPA) per week [1]. According to self-report data, the
proportion of adults meeting the guidelines was 62.0%, but this
dropped to 9.6% for accelerometry measures of activity [2],
which illustrates the importance of objective measures of
activity. Commercial physical activity tracking wearable devices
have emerged as an increasingly popular method for consumers
to assess their daily activity and calories expended. In addition
to physical activity and energy expenditure (EE), more recent
wearable models are designed to measure heart rate at the wrist.
In 2015, 232 million wearable electronic devices were sold
worldwide, with a projected 18.4% increase in sales for 2016
[3]. With the increase in popularity, wearable-based behavioral
change interventions are becoming more prevalent [4-7]. As
monitors grow as an intervention tool, questions of validity
become paramount and it is important to assess their accuracy
for this purpose.

Accuracy is measured by evaluating the device against a
research-grade criterion measure. Most research has primarily
focused on the accuracy of estimates of EE [7-12]. However,
given the pace of technological change, these existing studies
have largely been completed on devices that would be
considered outdated, such as earlier Fitbit models (One, Zip,
Flex, Ultra), Jawbone Up, and the Nike FuelBand. It is important
to validate current devices, especially those that are most
popular. To this end, our study assesses the Apple Watch, Fitbit
Charge HR, and Garmin Forerunner 225. These devices were
selected based on review of sales data in 3 categories of
wearable devices—smart watches, basic wearable bands, and
portable navigation devices [13-16]. However, it should be
noted that these devices are not the only commercial devices in
the market. These more recent wearable physical activity
devices, which include a measure of heart rate, utilize
photoplethysmography (PPG) to measure heart rate. PPG is a
simple and low-cost optical technique that detects blood volume
changes in the microvascular bed of tissue [17]. PPG uses a
light source to illuminate the tissue of the wrist and a
photodetector to measure variations in light intensity associated
with changes in perfusion.

There have been limited validity studies regarding these more
recent devices. Fitbit Charge HR has been found to
underestimate heart rate and EE [18] with further examination
showing the device to have the greatest error in light to moderate
physical activity and least amount of error in vigorous physical
activity [19]. For Garmin devices, most validation studies focus
on the Garmin Vivofit, although Forerunner models have been
used in built environment studies. For example, the Forerunner
was used to show that, in children, decreased time spent in
outdoor environments is associated with increased body weight
and lower levels of MVPA [20]. We can find no efforts to

validate the Garmin Forerunner 225. Moreover, although the
Apple Watch has become very popular, it has only been used
in one validation study. The Apple Watch was found to
underestimate both heart rate and EE, with a tendency to
underestimate calories expended by more than 100 calories [18].
The need for validation is especially important as each of these
represent additional technology for behavioral interventions.

To date, most studies analyze accuracy over an entire activity
bout in comparison to assessing heart rate accuracy in response
to different levels of physical activity intensity. Assessing
accuracy in this way may lead to inaccurate results, as over a
range of intensities there may be both underestimation and
overestimation of feedback. In the few studies that have assessed
differences between exercise intensities, results have been mixed
depending on device and type of physical activity. Investigators
have found that heart rate measurement error increases with
activity intensity for the Omron HR-500U and Mio Alpha when
jogging, stair climbing, and using the stationary bike [21].
Conversely, another study examining heart rate error during
treadmill activities found the highest percentage error in light
walking and the least error in running for Mio Alpha, Fitbit
Charge HR, Basis Peak, Microsoft Band, and TomTom devices
[19]. Therefore, more research is needed to determine the
accuracy of these devices in response to various physical activity
intensities. Thus, this study will examine 3 popular wearable
devices during sedentary behavior, light activity, moderate
activity, and vigorous activity to understand the accuracy
differences that may occur between intensities.

This Study
Individual heart rate monitoring during physical activity greatly
expands the options for intervention design. Heart rate response
to exercise has been shown to be moderated by both knowledge
about suggested levels of intensity as well as feedback in
meeting those levels [22]. In addition, heart rate feedback has
been shown to increase overall daily activity and percentage of
time spent in MVPA [23]. Finally, participants who monitored
their heart rate following exercise were able to significantly
lower their heart rate during recovery, compared with
participants who did not have access to monitors [22]. Decreased
heart rate recovery rate, or the ability for heart rate to fall rapidly
during early recovery after exercise, is associated with increased
overall mortality [24]. Thus, if proved accurate, use of heart
rate monitors in these devices provides a potentially novel point
of intervention during recovery.

Wearable activity monitors are both popular and of increased
interest as a component of physical activity interventions.
However, little research exists regarding whether these wearable
devices—particularly those that measure heart rate—are reliable
and valid for these purposes. Thus, the purpose of this study
was to compare 3 popular wearable activity monitors with regard
to their accuracy in assessing heart rate and estimates of EE at
various physical activity intensities. The findings from this study
will do much to guide researchers in the selection of wearable
activity monitors for future studies’ intervention design.
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Methods

Participants
A total of 62 students (36 females, 47% nonwhite) aged 18-38
(mean 22.6) years drawn from kinesiology and health courses
at a large southwestern university participated in the study.
Participants began the testing day after being caffeine-free for
12 hours and having fasted for 3 hours. Those who were current
smokers, had a disability that was contraindicated for exercise,
or had tattoos, piercings, or braces where the device would be
worn were excluded from participation. Participants were
compensated with extra credit for their class upon completion
of the study. Approval for the study was obtained from the
Institutional Review Board at The University of Texas at Austin.
Before beginning, all participants provided written informed
consent.

Wearable Devices
Participants simultaneously wore 3 wearable physical activity
monitors during testing: Apple Watch, Fitbit Charge HR, and
Garmin Forerunner 225. The location of each of the 3 devices
(ie, right or left) was randomized before participation.

Apple Watch
The Apple Watch (Apple Inc, Cupertino, CA, USA) is an
accelerometer-based device that provides estimates of heart
rate, distance traveled, calories expended, activity minutes, and
standing time. While using the associated Workout app, Apple
Watch measures heart rate continuously during a workout, using
PPG to calculate beats per minute through green LED lights
paired with light-sensitive photodiodes [25]. The heart rate
sensor is also designed to compensate for low signal levels by
increasing both LED brightness and sampling rate [25]. Calories
expended are reported in both active calories and total calories.

Fitbit Charge HR
The Fitbit Charge HR (Fitbit Inc, San Francisco, CA, USA) is
a triaxial accelerometer–based device that provides estimates
of heart rate, steps, calories expended, distance traveled, floors
climbed, and sleep quality. The Fitbit Charge HR uses a
technology that they label “PurePulse,” which uses LED lights
to measure heart rate. Fitbit suggests wearing the device higher
on the wrist, 3 finger widths above the wrist bone, to improve
accuracy. Calories expended are reported in total calories.

Garmin Forerunner 225
The Garmin Forerunner 225 (Garmin, Ltd, Schaffhausen,
Switzerland) is an accelerometer-based device that provides
estimates of heart rate, steps, calories expended, distance
traveled, and sleep time. The device uses GPS (Global
Positioning System) and has a built-in optical sensor based on
Mio Heart Rate Technology to measure heart rate at the wrist.
Mio Heart Rate Technology tracks heart rate using proprietary
algorithms for LED light sampling. The frequency at which
heart rate is measured varies and depends on the level of
activity—as activity increases, the optical heart rate monitor
uses a higher sampling rate [26]. Calories expended are reported
in total calories.

Criterion Measures
In addition to the 3 wearable physical activity monitors,
participants wore a series of devices to provide criterion
measures against which to judge the accuracy of the wearable
activity monitors.

Polar Heart Rate Monitor
Polar T31 transmitter monitor (Polar Electro, Kempele, Finland)
was used as the criterion measure of heart rate as it is a validated
and reliable measure for heart rate compared with 12-lead ECG
(electrocardiogram) [27]. The heart rate sensor is worn around
the chest and transmits real-time heart rate of the user to a
wristwatch ECG.

Parvo Medics TrueOne 2400
Parvo Medics TrueOne 2400 (Parvo Medics Inc, Sandy, UT,
USA) metabolic measurement system was used as the criterion
measure for EE in this study. TrueOne 2400 uses a Hans
Rudolph pneumotachometer to measure ventilation. EE was
estimated from a direct measurement of oxygen consumption
and carbon dioxide production. TrueOne 2400 volume and gas
were calibrated before each trial. TrueOne 2400 has been
previously found to be a reliable measure of EE for research
[28].

Other Measures

Physical Activity Intensity
ActiGraph GT3X+ (ActiGraph, Pensacola, FL, USA)
accelerometers were used to assess physical activity intensity.

Height
A Perspective Enterprises stadiometer (Perspective Enterprises,
Portage, MI, USA) was used to measure height to the 0.25 cm.
Each participant’s height was measured in workout clothes and
without shoes before participation. Height was measured twice,
and an optional third measurement was taken if the 2
measurements differed by 0.25 cm. Height was entered into
each wearable device and metabolic cart before participation.

Weight
Weight was measured using the Tanita BWB-800 scale (Tanita
Corporation of America, Arlington Heights, IL, USA). Weight
was measured to the nearest 0.1 kg for each participant before
participation and the scale was calibrated before each trial.
Participants’ weights were measured in workout clothes and
without shoes. Weight was measured twice for each participant,
and an optional third measurement was taken if the 2
measurements differed by 0.1 kg. Weight was entered into each
wearable device and metabolic cart before participation.

Ratings of Perceived Exertion
The Borg Rating of Perceived Exertion (RPE) scale was used
to measure the participant’s perceived intensity of exercise. The
scale value ranges from 6 to 20 and can be used to denote heart
rates ranging from 60 to 200 beats per minute [29]. The scale
is anchored by no exertion (6), light (11), somewhat hard (13),
hard (15), very hard (17), and maximal exertion (20).
Participation was suspended if participants indicated they were
at maximal exertion.
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Procedures
Participants completed the consent form, a demographic
information survey, and were screened for fasting and caffeine
consumption before the start of the study. Their participation
was rescheduled if the participants did not comply with this
criterion. Trained graduate research assistants performed
anthropometric measurements. These measurements were used
to initialize the wearable devices as well as the metabolic cart
for each individual before testing.

To avoid unanticipated problems with device functionality, 2
devices for each product (ie, Fitbit #1 and Fitbit #2) were
available for each testing period. The specific device selected
(ie, Fitbit #1 or Fitbit #2) and location for each of the 3 devices
(ie, right or left arm) were randomized across participants. First,
the Polar heart rate strap was placed around the chest and the
accelerometer was placed on a belt, positioned on the right hip.
Each of the 3 wearable devices was then placed and participants
were then fitted with the mouthpiece and nose plug for the
metabolic cart. Although accelerometers were used for physical
activity intensity validation, this study did not compare EE from
this device and therefore will not be used in any analyses.

Protocol
Initial measures were taken during a 10-minute seated baseline
assessment. This was followed by 4 stages of treadmill exercise.
Each stage was 4 minutes in length. The final stage was a
10-minute seated recovery period. The activity routine consisted
of an unmeasured warm-up walking period and measured stages
of walking at 2.5 mph, brisk walking at 3.5 mph, and jogging
at 5.5 mph. There was a 1-minute break between each stage.
RPE was measured at 1 minute and 3 minutes into each 4-minute
stage. To allow sufficient time for participants to reach steady
state, heart rate was assessed 3.5 minutes into each stage of
activity. These were collected in a random order across devices

and averaged together to provide a measure of heart rate for
each device during that stage. EE was assessed using the
metabolic cart. Activity EE estimates were measured for all
stages. Each device was evaluated against the EE estimate of
the metabolic cart. Exercise intensity for each participant was
evaluated through accelerometry.

Statistical Analyses
Descriptive statistics were used to examine associations with
the criterion measures. Pearson correlations were computed to
examine overall group-level associations. Mean absolute
percentage error (MAPE) values were calculated as the average
absolute value of the errors of each device relative to the
criterion measures. Repeated-measures analysis of variance
(ANOVA) and Bland-Altman analyses were performed to
compare the accuracy of the wearable devices to measure each
outcome relative to the criterion measures. Bland-Altman plots
were examined for proportional bias. Two-factor ANOVA was
performed to compare the effects of sex, body mass index
(BMI), and age on the devices. Significant findings were
followed with paired-samples t tests. Mauchly’s tests were used
to test the assumption of sphericity. When violated, degrees of
freedom were corrected using Greenhouse-Geisser estimates.
Cohen's d effect size measures were calculated for each
comparison.

Results

Participant Characteristics
A total of 62 individuals completed the protocol. Of these, 58%
were female (36/62) and 47% were nonwhite (13/62 Hispanic,
8/62 Asian, 7/62 Black/African American, 1/62 other). Ages
ranged from 18 to 38 years (mean 22.6 years). BMI ranged from

17.1 to 45.0 (mean 24.6 kg/m2). Descriptive statistics for the
sample population are provided in Table 1.

Table 1. Physical characteristics of participants (N=62).

Female (n=36)Male (n=26)All (n=62)Characteristics

RangeSDMeanRangeSDMeanRangeSDMean

18-385.2123.0318-292.721.8918-384.3422.55Age, years

1.50-1.880.091.641.58-1.920.081.791.50-1.920.111.70Height, m

46.36-95.6212.6362.6350.44-150.5918.7785.0346.36-150.5918.9972.02Weight, kg

17.14-33.114.123.2518.36-45.025.0826.4717.14-45.024.7724.60Body mass index,

kg/m2

Heart Rate Overview
The correlations between the criterion scores from the Polar
heart rate monitor and the readings from the devices indicate

the strongest association with Apple Watch (r=.59-.99), followed
by the Fitbit Charge HR (r=.16-.99), and finally Garmin
Forerunner 225 (r=.05-.75). Table 2 provides descriptive
statistics of heart rate by exercise intensity per device.
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Table 2. Average heart rate (beats per minute) by exercise intensity per device.

Cohen's dMaximumMinimumSDMeanDeviceStage

106.0046.6712.2072.32Polar T31Start

0.07102.3355.0010.4473.08Fitbit Charge HR

0.04108.0043.0012.0872.84Apple Watch

0.69181.3358.0022.7384.90Garmin Forerunner 225

103.8345.0011.3072.99Polar T31Baseline

−0.15103.3347.6710.7471.36Fitbit Charge HR

0.01105.1745.0011.4573.07Apple Watch

0.48169.3356.3318.3880.32Garmin Forerunner 225

139.0072.0013.6692.45Polar T31Light intensity

0.68179.3373.6717.45103.11Fitbit Charge HR

−0.25117.6765.0011.9489.19Apple Watch

0.77166.6773.6725.69108.31Garmin Forerunner 225

152.0078.0016.44106.84Polar T31Moderate intensity

0.19162.0078.6716.71110.06Fitbit Charge HR

−0.35133.0068.0016.48101.01Apple Watch

0.97184.3385.3323.40126.50Garmin Forerunner 225

197.67112.0021.26150.63Polar T31Vigorous intensity

−0.31192.00107.6717.35144.65Fitbit Charge HR

0.01194.67112.0019.17150.87Apple Watch

−0.13203.6796.6721.80147.85Garmin Forerunner 225

123.1746.8315.1684.47Polar T31Recovery

  −0.13119.8346.8315.1782.57Fitbit Charge HR

−0.03119.8345.1715.2784.02Apple Watch

0.20120.6760.5012.4887.23Garmin Forerunner 225

Figure 1 shows the MAPE for these devices for heart rate by
exercise intensity. The magnitude of errors across all stages was
least for the Apple Watch (1.14%-6.70%), followed by the Fitbit
Charge HR (2.38%-16.99%) and the Garmin Forerunner 225
(7.87%-24.38%). All repeated-measures ANOVA omnibus F

tests were significant at the .05 level; therefore, only pairwise
comparisons between device (Apple Watch, Fitbit Charge HR,
and Garmin Forerunner 225) and criterion measure (Polar heart
rate monitor) are reported.
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Figure 1. Mean absolute percentage error (MAPE; %) of the devices for heart rate from the Polar heart rate monitor criterion. MAPE values are
presented by exercise intensity per device. Error bars represent one standard deviation from the mean score.

Fitbit Charge HR
Fitbit Charge HR was not significantly different from Polar
heart rate monitor at the start (P=.67) or during moderate
intensity (P=.34). There was no proportional bias found in
Bland-Altman analyses. Fitbit Charge HR measured significantly
lower heart rate during baseline (P<.001, d=0.15), vigorous
intensity (P<.001, d=0.31), and recovery (P<.001, d=0.13).
During light intensity, Fitbit Charge HR measured significantly
higher heart rate readings (P<.001, d=0.68).

Apple Watch
Apple Watch was not significantly different from Polar heart
rate monitor at the start (P=.78), during baseline (P=.76), or
vigorous intensity (P=.84). There was no proportional bias found
in Bland-Altman analyses. Apple Watch measured significantly
lower heart rate readings during light intensity (P=.03, d=0.25),
moderate intensity (P<.001, d=0.35), and recovery (P=.004,
d=0.03).

Garmin Forerunner 225
Garmin Forerunner 225 was not significantly different from
Polar heart rate monitor during vigorous intensity (P=.35). There
was no proportional bias found in Bland-Altman analysis.
Garmin Forerunner 225 measured significantly higher heart rate
readings at the start (P<.001, d=0.69) and during baseline
(P<.001, d=0.48), light intensity (P<.001, d=0.77), moderate
intensity (P<.001, d=0.97), and recovery (P=.04, d=0.20).

Energy Expenditure Overview
The correlations between the criterion scores from Parvo Medics
TrueOne 2400 and the readings from the devices indicate the
strongest association with Apple Watch (r=.59-.87), followed
by the Fitbit Charge HR (r=.42-.66), and finally Garmin
Forerunner 225 (r=.18-.73). Table 3 provides descriptive
statistics of EE by exercise intensity per device.
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Table 3. Average energy expenditure (kcal) by exercise intensity per device.

Cohen's dMaximumMinimumSDMeanDeviceStage

2593.0212.97Metabolic cartBaseline

−0.401982.7911.80Fitbit Charge HR

2.271031716.8240.41Apple Watch

1.41126819.2732.36Garmin Forerunner 225

3294.1414.44Metabolic cartLight intensity

1.9645157.5226.32Fitbit Charge HR

0.523996.0817.15Apple Watch

1.0973812.9824.97Garmin Forerunner 225

32124.9819.62Metabolic cartModerate intensity

1.2846137.6827.9Fitbit Charge HR

0.3048107.2421.49Apple Watch

2.27691610.8033.75Garmin Forerunner 225

64229.7537.28Metabolic cartVigorous intensity

0.09882013.6338.34Fitbit Charge HR

0.27812312.5140.35Apple Watch

0.74921616.3647.23Garmin Forerunner 225

28104.2716.61Metabolic cartRecovery

0.3364812.9919.76Fitbit Charge HR

1.831051719.9243.03Apple Watch

1.75841320.5942.65Garmin Forerunner 225

Figure 2 shows the MAPE for these devices for EE by exercise
intensity. The magnitude of errors across all stages was least
for the Fitbit Charge HR (16.85%-84.98%), followed by the
Apple Watch (14.07%-210.84%), and the Garmin Forerunner
225 (30.77%-155.05%). All repeated-measures ANOVA

omnibus F tests were significant at the .05 level; therefore, only
pairwise comparisons between device (Apple Watch, Fitbit
Charge HR, and Garmin Forerunner 225) and criterion measure
(Parvo Medics TrueOne 2400) are reported.
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Figure 2. Mean absolute percentage error (MAPE; %) of the devices for energy expenditure from the TrueOne 2400 metabolic cart criterion. MAPE
values are presented by exercise intensity per device. Error bars represent one standard deviation from the mean score.

Fitbit Charge HR
Fitbit Charge HR was not significantly different than Parvo
Medics TrueOne 2400 during vigorous intensity (P=.70) or
recovery (P=.10). However, Bland-Altman analysis revealed
there was bias for overestimation. Fitbit Charge HR measured
significantly higher EE during baseline (P=.003, d=0.40), light
intensity (P<.001, d=1.96), and moderate intensity (P<.001,
d=1.28).

Apple Watch
Apple Watch measured significantly higher EE than the criterion
measure (Parvo Medics TrueOne 2400) during baseline (P<.001,
d=2.27), light intensity (P<.001, d=0.52), moderate intensity
(P<.001, d=0.30), vigorous intensity (P<.01, d=0.27), and
recovery (P<.001, d=1.83). The two-factor ANOVA showed a
significant interaction effect of sex and device at baseline,
F1,47=16.74, P<.001. The device measured higher EE for males,
t24=12.63, P<.001, and females, t33=10.64, P<.001, as compared
with the Parvo Medics TrueOne 2400. However, the magnitude
of the effect is greater for males (d=2.46) than females (d=1.6).
The two-factor ANOVA showed a significant interaction effect
of BMI and device at baseline F3,47=9.08, P<.001.
Paired-samples t test indicated all BMI categories were
significantly different than the criterion. However, the magnitude
of the effect is greater for those who were classified as
overweight (d=3.05), followed by obese (d=2.95) and normal
weight (d=2.92). During moderate intensity, the two-factor
ANOVA showed a significant interaction for BMI and device

for Apple Watch, F3,48=8.57, P<.001. Paired-samples t test
determined that overweight and obese BMI categories were
significantly different from the criterion; however, normal
weight was not significantly different (P=.96). The magnitude
of the effect is greater for obese (d=0.99) than overweight
(d=0.57) category. During recovery, the two-factor ANOVA
revealed a significant interaction for sex and device for the
Apple Watch, F1,49=4.96, P<.05; both males, t23=10.32, P<.001,
and females, t33=7.3, P<.001, measured higher EE than the
criterion. However, the magnitude of the effect is greater for
males (d=2.58) than females (d=1.7). The two-factor ANOVA
also revealed a significant interaction for BMI and device for
the Apple Watch, F3,49=8.01, P<.001; paired-samples t test
indicated that all BMI categories were significantly different
from the criterion. However, the magnitude of the effect is
greater for overweight (d=2.60), followed by obese (d=2.55)
and normal weight (d=2.26) categories.

Garmin Forerunner 225
Garmin Forerunner 225 measured significantly higher EE than
Parvo Medics TrueOne 2400 during baseline (P<.001, d=1.41),
light intensity (P<.001, d=1.09), moderate intensity (P<.001,
d=2.27), vigorous intensity (P<.001, d=0.74), and recovery
(P<.001, d=1.75).
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Discussion

Principal Findings
This study investigated the accuracy of consumer-grade activity
monitors for estimating heart rate and EE during stages of
sedentary, light, moderate, and vigorous physical activity.
Similar to previous heart rate research [19], this study found
the highest measurement error for all devices (Apple Watch,
Fitbit Charge HR, Garmin Forerunner 225) in light and moderate
physical activity stages. The Apple Watch provided the most
accurate measure of heart rate relative to the criterion Polar
heart rate monitor, as MAPE was between 1.14% and 6.70%
for all stages. Fitbit Charge HR showed reasonable results with
MAPE between 2.38% and 16.99%. The Garmin Forerunner
225 was the least accurate of the wearable devices, with MAPE
between 7.87% and 24.38%. The results indicate the most
favorable outcomes for the Apple Watch; however, it measured
significantly lower heart rate than the criterion measure during
light and moderate physical activity. Fitbit Charge HR produced
reasonably accurate results during moderate physical activity
but measured significantly higher heart rate readings during
baseline and light physical activity and lower heart rate readings
during vigorous physical activity. Garmin Forerunner 225 read
accurately during vigorous physical activity but measured
significantly higher heart rate readings at all other intensities.
Results of the Fitbit Charge HR are similar to previous research,
which found the highest percentage error in moderate-intensity
treadmill activity and the lowest percentage error during
vigorous activity [19].

The performance of the devices to measure EE was not accurate
either. Apple Watch and Garmin Forerunner 225 report
considerably more calories expended than the Parvo Medics
TrueOne 2400 metabolic measurement system, which was used
as the criterion measure. Fitbit Charge HR measured
significantly higher EE for all stages except in vigorous physical
activity and recovery. One previous study [10] found MAPE
for Fitbit Zip (10.1%) and Fitbit One (10.4%) to be much lower
than the results from this study, where MAPE was between
16.85% and 84.98%. Apple Watch has been previously found
to underestimate calories by more than 100 calories [18],
whereas our study found the device to overestimate calories
expended. The differences in results could be due to the previous
studies analyzing overall EE and not reporting EE at specific
bouts of physical activity intensities. In regard to specific
exercise intensity, this study supports previous research that
found the Fitbit device to overestimate EE during moderate
activity [8]. In our study, the error for EE was the highest for
Fitbit Charge HR at light and moderate physical activity.

There are a number of factors that might impact accuracy, such
as design, materials, and engineering specifications. Proper
placement for optimal sampling from most devices is weak or
unknown. Fitbit specified placement higher on the wrist, but
there were no instructions for other devices. It may be that
varying the location of placement may serve to improve
accuracy. Differences in devices in the sampling rate of PPG
may also be a cause of variation. Garmin reports varying
sampling rate with physical activity intensity [26], but this did

not serve to enhance accuracy relative to the other devices.
Additionally, the specific algorithms to determine EE for each
device are not provided. The increased error from previous
studies for the Fitbit device [8,10] suggests that the Fitbit Charge
HR may utilize heart rate in determining EE. Errors in heart
rate readings would therefore contribute to errors in EE
accuracy. The devices are initialized through user’s age, height,
and weight measurements. The lack of further anthropometric
measures (ie, body fat percentage, waist to hip ratio) to aid in
EE assessment could lead to increased errors in estimation.
Future research should examine whether additional
anthropometric measurements reduce the error in these devices.

Implications
Behavioral interventions utilizing Fitbit devices have found
increased step count and daily physical activity minutes in both
adults [5,30,31] and older adults [32]. Likewise, heart rate
feedback has been found to increase overall activity and
percentage of time spent being vigorously active [23]. Thus,
the addition of heart rate monitoring allows further opportunities
for researchers to utilize these devices for interventions to
increase physical activity and physical activity intensity.
However, these data would suggest that, although these are
useful as a stimulus to increase activity, each device is limited
as an outcome measure or indicator of change in physical
activity. As such, researchers would do well to continue to
utilize accelerometers or similar well-validated devices for
measures of physical activity. The inaccuracy with estimates
of EE may be more problematic. Self-monitoring of EE is
significantly associated with weight loss and increased daily
exercise [33]. However, it is less clear whether wearable
physical activity devices aid in weight loss. For example, in one
weight loss intervention study, there were no changes in weight
for those participants who wore a wearable physical activity
device and tracked intake through a food tracking website
compared with participants who completed MVPA and food
diaries [6]. It could be possible that the wearable devices
reported inaccurate EE and consequently participants were
consuming more calories than recommended for weight loss.
Therefore, questions remain about how the accuracy of these
trackers impact interventions. Thus, users and researchers need
to be aware of the measurement error for EE within these
devices.

To our knowledge, this is the first study to establish the validity
of popular wearable devices at distinct physical activity
intensities. Most studies establishing validity only assess the
overall physical activity intensity for an entire bout of physical
activity [18]. Thus, it is difficult to tease apart the differences
in heart rate and EE from each wearable device at specific
physical activity intensities. Additionally, establishing validity
over an entire bout at various physical activity intensities may
overestimate accuracy, as the wearable devices may
overestimate or underestimate the heart rate and EE at different
intensities. In our study, Fitbit Charge HR underestimated heart
rate at resting and vigorous intensities but overestimated heart
rate at light and moderate intensities. If examined overall, these
differences would cancel each other and show minimal
differences. Therefore, establishing validity at specific physical
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activity intensities increases accuracy that we would lose if
examined as an overall bout of activity.

Inclusion of specific physical activity intensities is also an
advantage as most physical activity or exercise bouts typically
stay within certain physical activity intensities. For example,
light-intensity activities are of particular importance as older
adults tend to spend a greater portion of their day performing
at this physical activity level [12], with walking as the most
prevalent activity reported among all sociodemographic statuses
[34]. Following walking, participation in aerobics is most
prevalent in younger women and running most prevalent among
younger men [34]. Thus, it is critical to evaluate these devices
across different intensities. Unfortunately, this analysis did not
find these devices to accurately measure heart rate and EE
during light-intensity walking.

Limitations
There are limitations to this study. This study was conducted
in a laboratory setting and therefore may not be generalizable
to free-living activities. However, it is necessary to establish
validity in a controlled setting, such as in a laboratory, in order
to compare potential confounders that might be experienced in
a field setting. This laboratory-based study was the necessary
first step in device validation against each criterion. Given the
observed heart rate variability between the Garmin Forerunner
225 relative to the Polar heart rate monitor, it is probably
unnecessary to test in field-based studies, as it does not meet
the standards of the criterion in highly controlled settings.
However, because of the relative accuracy with heart rate, it is
reasonable to suggest further field-testing with the Apple Watch
and Fitbit Charge HR for heart rate.

Another limitation is the use of Apple Watch’s EE activity
tracking. Using the Workout app, all stages in this study were
tracked under “indoor run.” Operating indoor run could be a
reason the Apple Watch measured significantly higher EE at
baseline and recovery stages. Other activities included in the
Workout app are, but not limited to, indoor walk, outdoor walk,
elliptical, and other. The differences in algorithms for obtaining
EE under various activities may lead to varying EE estimates.
However, in order to decrease variability between participants

within the study and given that there are no other ways to track
EE than operating the Workout app, indoor run was utilized.
The Apple Watch also reports both active and total calories per
activity. We used total calories in our statistical analyses and
did not use active calories because of the generalizability toward
the other devices, which all reported overall calories per stage.
Further investigation is needed to determine the impact of the
Workout app activities on EE.

The Garmin device’s ability to track workouts is a limitation
of the device. According to Garmin Ltd, the Forerunner 225 is
a GPS running watch, which suggests that the EE algorithm is
based solely on running activities, which may be associated
with the overestimation at baseline and recovery stages.
However, while the differences were significant, both the Apple
Watch and Garmin Forerunner 225 devices recorded little to no
distance measured during these sedentary activities. As such,
the practical impact is likely minimal.

One final limitation is that companies are constantly introducing
new updates of activity tracking wearable devices. However,
these changes are often aesthetic, with no modification of the
underlying technology. For example, while Fitbit models have
changed over time, the basic error rate has been similar across
studies and devices [8,10]. This suggests that although the
devices used in this study underwent software updating, the
effect was likely insignificant.

Conclusions
Despite these limitations, this was one of the first studies to
examine the accuracy of consumer-grade activity tracking
wearable devices in regard to heart rate. The study used a novel
approach to measure accuracy of these devices for heart rate
and EE at specific bouts of physical activity intensities. The
results of this study provide consumers, researchers, and
clinicians the error measurement of 3 popular consumer brands:
Apple Watch, Fitbit Charge HR, and Garmin Forerunner 225.
Future research should continue to reflect the existing
technology and determine why differences between the devices
exist. Interventions targeting physical activity through the use
of wearable devices should consider these results when selecting
a wearable device as an objective measure of physical activity.
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