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Abstract

Background: Only one in five American meets the physical activity recommendations of the Department of Health and Human
Services. The proliferation of wearable devices and smartphones for physical activity tracking has led to an increasing number
of interventions designed to facilitate regular physical activity, in particular to address the obesity epidemic, but also for
cardiovascular disease patients, cancer survivors, and older adults. However, the inconsistent findings pertaining to the accuracy
of wearable devices for step counting needs to be addressed, as well as factors known to affect gait (and thus potentially impact
accuracy) such as age, body mass index (BMI), or leading arm.

Objective: We aim to assess the accuracy of recent mobile devices for counting steps, across three different age groups.

Methods: We recruited 60 participants in three age groups: 18-39 years, 40-64 years, and 65-84 years, who completed two
separate 1000 step walks on a treadmill at a self-selected speed between 2 and 3 miles per hour. We tested two smartphones
attached on each side of the waist, and five wrist-based devices worn on both wrists (2 devices on one wrist and 3 devices on the
other), as well as the Actigraph wGT3X-BT, and swapped sides between each walk. All devices were swapped
dominant-to-nondominant side and vice-versa between the two 1000 step walks. The number of steps was recorded with a tally
counter. Age, sex, height, weight, and dominant hand were self-reported by each participant.

Results: Among the 60 participants, 36 were female (60%) and 54 were right-handed (90%). Median age was 53 years (min=19,
max=83), median BMI was 24.1 (min=18.4, max=39.6). There was no significant difference in left- and right-hand step counts
by device. Our analyses show that the Fitbit Surge significantly undercounted steps across all age groups. Samsung Gear S2
significantly undercounted steps only for participants among the 40-64 year age group. Finally, the Nexus 6P significantly
undercounted steps for the group ranging from 65-84 years.

Conclusions: Our analysis shows that apart from the Fitbit Surge, most of the recent mobile devices we tested do not overcount
or undercount steps in the 18-39-year-old age group, however some devices undercount steps in older age groups. This finding
suggests that accuracy in step counting may be an issue with some popular wearable devices, and that age may be a factor in
undercounting. These results are particularly important for clinical interventions using such devices and other activity trackers,
in particular to balance energy requirements with energy expenditure in the context of a weight loss intervention program.

(JMIR Mhealth Uhealth 2017;5(6):e88) doi: 10.2196/mhealth.7870
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Introduction

Obesity is a major health concern in the United States, with
estimates of overweight or obese Americans >20 years old
ranging between 68.5-75.3% [1,2]. Despite efforts to curb the
obesity epidemic, its prevalence remains high [1-3]. Moreover,
only 1 in 5 Americans meet the physical activity
recommendations set forth by the Centers for Disease Control
(CDC) of at least 150 minutes of moderate-intensity activity
(defined as approximately 3-6 metabolic equivalents of task
[METs]) or 75 minutes of vigorous-intensity exercise (>6 METs)
per week [4]. The ubiquitous nature of mobile devices, including
smartphones and wearable devices, makes them potentially
useful to increase physical activity levels, and improve
adherence to exercise programs. According to the Pew Research
Center, approximately 80% of Americans own a smartphone
[5]. Additionally, the landscape for wearable technology has
changed drastically over the past 5 years, with nearly 400
devices commercially available [6] and over 127 million
wearable devices sold in North America alone in 2016 [7].
Between 2013 and 2018, the wearable device market is expected
to grow ten-fold, from under US $2 billion dollars to US $19
billion dollars [7]. The wide adoption of wearable technology
in the United States offers unique ways to track behavior, and
possibly to intervene effectively and efficiently to help users or
patients adopt a healthy lifestyle.

There is mounting evidence that mobile health strategies and
wearable devices could improve health behavior interventions,
in particular for chronic conditions across the socioeconomic
gradient [8-11] and across age groups [12]. Although it is not
clear whether smartphone apps and wearable devices are
effective for weight loss [13] or physical activity prescription
[14,15], these devices may still be useful to increase physical
activity participation levels, and thus could potentially improve
quality of life regardless of weight loss outcomes [16-19].
Nonetheless, and despite technological advancements, it is still
unclear how accurate recent smartphones and wearable devices
are with respect to activity tracking, and what factors affect
accuracy. For instance, Case et al [20] show that a convenient
sample of wearable devices and smartphone apps are accurately
counting steps, albeit in a young population sample (mean age
28.1 years, standard deviation [SD] 6.2). Wen et al [21] showed
that step counting is also accurate in a small sample (5) but that
activity duration, energy expenditure, and sleep patterns are not
adequately captured by current devices. Recently Kroll et al
[22] also showed that heart rate may not be accurately measured
by wrist-worn devices, in particular if the user is not in sinus
rhythm. The devices of interest do not measure step count
directly, but do so by using tri-axial accelerometer data collected
at the wrist or at the waist [23], and use proprietary algorithms
to infer step count. Moreover, these algorithms assume a normal
gait, which is not affected by pathologies or loss of lower limb
strength. Therefore, where a device is worn (such as wrist or
waist, dominant hand or nondominant hand) could affect step
counts. Preliminary work suggests that devices measuring at
the wrist tend to undercount steps in a laboratory setting
compared to waist-based devices, but that in free-living
conditions, the trend is reversed [24]. Additionally, at low

speeds, accelerometers on commercial wearable devices may
not be precise enough to accurately count steps [23], for instance
for post-stroke patients who may need to wear wrist-based
devices at the ankle [25], or for older users. Older patients
exhibit loss of muscular strength, which can affect gait patterns
[26-28], and consequently may lead to mobile devices either
overcounting or undercounting steps in this specific population.

The discrepancies between such studies suggest that it is useful
to assess what potential variables affect step count. It is not
known whether user characteristics such as weight, height,
gender, or age affect the accuracy of step counting for such
tools. Age is a particularly interesting variable, given the
evidence on gait changes among older adults [26,27], variations
in accelerometry data in older adults [28], as well as the
additional walking need of older adults [29-32]. Moreover,
height, weight, and dominant hand are also variables of interest
since the devices considered in this study do not count steps
directly; rather, they infer step counts based on internal
accelerometer data at the wrist or at the waist. Walking 10,000
steps per day is a widely recommended goal to meet the current
guidelines of the CDC [33-35], even though it may fall short in
terms of energy expenditure and health benefits [36].
Smartphones and wearable devices are both commonly used
technologies to monitor and track physical activity, and could
possibly help users adhere to a healthy lifestyle [37], so it is
critical to properly assess the step counting accuracy of such
commonly used devices, with a particular focus on age groups.

The purpose of this paper is to address this gap in the current
literature for a representative set of five wrist-worn devices
(Apple Watch, Samsung Gear S2, Garmin 735XT, Garmin
Vivofit, Fitbit Surge), two smartphones (iPhone 6s Plus, Nexus
6P) and the research-grade ActiGraph wGT3X-BT. This
selection was made to reflect the two most common mobile
operating systems (OSs; namely Android and iOS), the range
of price points, and the most commonly purchased device brands
(Fitbit, Garmin) available on the market. To this effect, we
model and assess the accuracy of recent smartphones and
wearable devices across three age groups.

Methods

Device Selection
As of 2016, there are an estimated 394 wearable devices from
266 companies that are capable of activity tracking [6], not
including smartphones or smartphone apps, with a majority of
these devices being worn at the wrist. We selected a
representative sample of the most recent wrist-based devices
(2015 and later) and smartphones that counted steps without
the need of an additional foot pod (small accelerometer device
that can be affixed to shoe laces). Since foot pods measure
walking or running cadence directly, they are typically more
accurate than devices measuring at the wrist or at the hip. Most
current devices can communicate with a foot pod using
Bluetooth or Bluetooth Low Energy and thus can have greater
accuracy. However, foot pods can be burdensome for the user.
Therefore, we restricted this study to wrist-worn devices and
smartphones (hip measurement). Additionally, we selected
devices to reflect the most popular brands on the market (Garmin
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and Fitbit), as well as the various price points of such tools,
ranging from under US $100 (Garmin Vivofit) to over US $400
(Garmin 735XT). Two mobile OSs currently share over 98%
of the mobile OS market, with Android comprising over 80%
of sales (multiple brands, multiple models) between 2009 and
2016, and Apple’s iPhone (multiple models) representing an
additional 18% [38,39]. Consequently, we added both leading
mobile OS’s newest devices (ie, the Android
Huawei-manufactured Google Nexus 6P and the iPhone 6S
Plus). Both devices include step counting capabilities. We also
included the smart-watches of the leading mobile OSs (ie, the
Apple Watch 2 for iOS, and the Samsung Gear S2 for Android).
Finally, we included ActiGraph’s wGT3X-BT as a
research-grade wearable device for physical activity. We decided
to refrain from incorporating physical activity mobile apps in
the study since the counts are intrinsically linked to each
device’s internal step counter, and therefore it would be difficult
to disentangle the measurements from the devices and
measurements from the apps, especially given the proprietary
black-box nature of such systems. Moreover, with over 165,000
apps for health and fitness alone [40], this approach fell beyond
the scope of this study, but rather within the scope of an app
evaluation [14,15].

Participant Recruitment
After receiving approval from the University of Florida
Institutional Review Board (IRB201601145), we recruited
participants using flyers that were disseminated across campus.
Twenty participants were recruited in each of the following age
groups: 18-39 years, 40-64 years, and 65-84 years, for a total
of 60 participants. Subjects were recruited among people without
a contraindication to exercise, and who were able to walk
comfortably on a treadmill for 20 minutes at a speed between
2 and 3 miles per hour.

Research Procedures and Data Collection
The purpose and the protocol of the study were explained to
participants, who were then consented by the study team (AL,
MDS). Each participant received a US $10 gift card for
participating in the study, and were instructed that they would
be asked to do two walks of 1000 steps on a treadmill, at a
self-selected speed between 2 and 3 miles per hour. Participants
were instructed that the treadmill would be started at 2 miles
per hour, upon which they would start walking without holding
onto the treadmill, and steps would be recorded. The speed was
progressively increased to an acceptable level by the study team
(AL, MDS), as instructed by the participant. After consent,
participants self-reported sex, age, height, weight, and dominant
hand. In the first 1000-step walk, the Fitbit Surge, Garmin
Vivofit, and Apple Watch were attached to the right wrist of
the participants, and the Samsung Gear S2 and Garmin 735XT
were attached to the left wrist. This choice was dictated by the
width of each device. The iPhone 6S Plus was attached to the
right hip with a belt clip, and the Nexus 6P was affixed to the
left hip. Devices were then swapped right to left and vice versa
in the second 1000-step walk. The Actigraph wGT3X-BT was
kept centered at the back of the waist during both walks. The

number of steps were tallied with a manual tally counter by one
of the team members (AL, MDS). The number of steps for each
device was recorded at the end of each walk. Additionally, the
Apple Watch and the Samsung Gear S2 were not synchronized
to their respective smartphones (iPhone 6S Plus and the Nexus
6P) to ensure reliability of the data.

Statistical Methods
We computed summary statistics for the participants’
characteristics. To estimate the counted steps from each device
while controlling for correlated observations and covariates, we
fitted a repeated measures mixed-effects model, in which the
participant was the independent sampling unit. The outcome of
the model was steps counted by the devices (ie, the smartphones,
the actigraph, or the wrist-based devices); the distribution of
this outcome was not skewed. The predictor variables in the
full model included age, sex, body mass index (BMI), dominant
hand, device, age-by-variable interactions, and
device-by-variable interactions. Age-by-variable interactions
included age-by-sex, age-by-BMI, age-by-dominant hand, and
age-by-device. Similarly, device-by-variable interactions
included device-by-sex, device-by-BMI, and
device-by-dominant hand. The order of the predictors was fixed
in the order listed above. An unstructured covariance model
was assumed, which accounted for unequal variance across
devices. We used a backwards selection strategy [41] for the
full model in every cell. Predictor variables were removed by
considering added-last tests (based on Cronbach alpha=0.05)
until we arrived at the reduced, final model. We then computed
estimated steps and confidence intervals for each device from
the final model.

In the model, age was categorized as: 18-39 years old, 40-64
years old, and 65-84 years old. Our preliminary analysis revealed
that there was no significant difference in left- and right-hand
step counts for each device. Therefore, we averaged the
measurements obtained from the two walks for each
participant-by-device for modeling. In addition, we set a cutoff
of 250 steps as a likely point of device failure (less than 1 out
of every 4 steps counted). All step outcomes less than 250 were
excluded from the model. We chose to use BMI as a predictor
in place of height and weight, as these two variables were highly
correlated and would introduce collinearity to the model. We
conducted all analyses using SAS 9.4 (SAS Institute, Cary, NC).

Results

We summarized the characteristics of the study participants in
Table 1. The age of our study participants ranged between 19
and 83 years, with an average of 49.5 (SD 19.4). Overall, 60%
(36/60) of the study participants were female. This percentage
is the highest in the 65-84 year old group, in which 73.7%
(14/19) of the participants were female. Overall, 90% (54/60)
of the study participants were right-handed. The BMI of the
study participants ranged between 18.4 and 39.6, with an
average of 25.2 (SD 4.6). The BMI was lowest in the 18-39
year old group with a mean of 23.0, and highest in the 65-84
year old group, with a mean of 27.0.
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Table 1. Participant characteristics. One BMI observation was missing.

Age 65-84 (n=19)Age 40-64 (n=20)Age 18-39 (n=21)Total (N=60)Characteristics

70.9 (4.3)53.7 (7.0)26.2 (5.1)49.5 (19.4)Age, mean (SD)

Sex, n (%)

14 (73.7)11 (55.0)11 (52.4)36 (60.0)Female

5 (26.3)9 (45.0)10 (47.6)24 (40.0)Male

Dominant hand, n (%)

15 (79.0)19 (95.0)20 (95.2)54 (90.0)Right

4 (21.0)1 (5.0)1 (4.8)6 (10.0)Left

27.0 (5.4)25.7 (4.6)23.0 (2.7)25.2 (4.6)BMI, mean (SD)

Table 2. Steps by device by age group (averaged across two measurements).

AgeDevice

65-84 (n=19)40-64 (n=20)18-39 (n=21)

SDMeanSDMeanSDMean

43.4995.044.4986.16.31003.9Actigraph

118.81015.938.4970.959.0964.9Apple Watch

85.5945.681.5943.957.6959.7Fitbit Surge

38.2978.729.4994.037.9987.8Garmin 735XT

170.3953.522.6992.311.5994.5Garmin Vivofit

56.91018.0129.61035.0186.41021.2iPhone 6S Plus

158.3900.926.1988.341.3997.1Nexus 6P

47.9969.184.2959.416.0988.0Samsung Gear S2

Table 3. Final reduced model type 3 fixed effects.

P-valueF valueDenominator Degrees of FreedomNumerator Degrees of FreedomEffect

0.45990.7955.82Age group

0.81640.05481Sex

0.13582.30471BMI

0.15322.1054.41Dominant hand

0.00363.5649.57Device

0.02872.0076.314Age group x device

Table 4. Predicted means of steps for each device by age (adjusted for BMI, dominant hand, and sex).

Age 65-84Age 40-64Age 18-39Device

1002.7(984.4, 1021.1)997.2 (976.8, 1017.6)1008.7 (989.2, 1028.2)Actigraph, mean (CI)

1023.6 (987.0, 1060.2)980.1 (942.9, 1017.4)970.2 (934.4, 1006.0)Apple Watch, mean (CI)

953.3 (917.5, 989.0)950.8 (913.7, 988.0)965.0 (930.0, 999.9)Fitbit Surge, mean (CI)

986.4 (967.7, 1005.0)1003.3 (983.5, 1023.2)993.9 (973.5, 1014.4)Garmin 735XT, mean (CI)

961.2 (916.3, 1006.2)1002.9 (957.4, 1048.3)999.8 (956.3, 1043.4)Garmin Vivofit, mean (CI)

1025.7 (961.4, 1090.1)1045.1 (980.4, 1109.8)1026.5 (964.7, 1088.2)iPhone 6S Plus, mean (CI)

908.6 (860.7, 956.4)981.8 (932.8, 1030.9)1002.4 (956.2, 1048.6)Nexus 6P, mean (CI)

976.8 (950.1, 1003.6)966.7 (939.2, 994.3)993.3 (966.6, 1020.1)Samsung Gear S2, mean (CI)

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 6 | e88 | p. 4https://mhealth.jmir.org/2017/6/e88/
(page number not for citation purposes)

Modave et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We summarized the step counting characteristics of the study
devices in Table 2.

We summarized the results from the mixed-effects models in
Table 3 and Table 4. In the final model, we identified one
significant interaction after backwards selection: age-by-device
(P=0.030; Table 3). The other interactions, including the
device-by-BMI interaction, were not significant and therefore
removed from the final model. Device was also a significant
predictor of step count (P=0.004; Table 3).

Based on the final model, we produced model-based estimates
of the steps counted by each device stratified by age group
(Table 4). We considered undercounting as devices with counts
that differed from 1000 in a statistically significantly fashion,
with predicted means under the 1000 step target. Similarly,
overcounting was considered a statistically significant count
over 1000. The estimated steps from the Actigraph, Apple
Watch, Garmin 735XT, Garmin Vivofit, and iPhone 6S Plus
were not significantly different from 1000, across the age
groups. Conversely, the Fitbit Surge consistently significantly
undercounted steps. The estimated steps from Fitbit Surge for
the 40-64 and 65-84 year old groups were 950.8 (95% CI
913.7-988.0) and 953.3 (95% CI 917.5-989.0) respectively,
which were significantly lower than the targeted 1000 steps.

The steps counted by the Fitbit Surge for the 18-39 age group
were 965.0 (95% CI 930.0-999.9), which is much closer, but
still significantly lower than 1000. In addition, the Nexus 6P
undercounted steps in the 65-84 year old group, with an
estimated count of 908.6 steps (95% CI 860.7, 956.4). The
Samsung Gear S2 undercounted steps in the 40-64 year old
group, with an estimated count of 966.7 steps (95% CI 939.2,
994.3). However, the same device did not significantly
undercount steps for the older age group, with an estimated
count of 976.0 steps (95% CI 950.1, 1003.6).

Discussion

Principal Findings
The ubiquity of smartphones and other wearable devices, and
their various physical activity tracking functionalities, have led
to an increasing reliance on such devices as tools for
participation in exercise programs. Such functionalities include
step tracking, global positioning system functions (eg, distance,
pace, elevation, map), heart-rate monitoring (either wrist-based,
or with a chest strap), or calorie expenditure. Although some
evidence suggests that step-counting is accurate for some
wrist-worn devices and smartphone apps [20,21], this is not
consistent across all walking speeds, in particular lower speeds
[23], or whether devices are worn at the wrist or waist [24].
Given the proprietary nature of algorithms inferring step counts
from tri-axial accelerometer data, it was important to identify
variables that potential impact the step count accuracy of such
devices, in particular age, height, weight, and dominant or
nondominant hand.

Our study indicates that height, weight, BMI, and dominant
hand do not seem to impact the accuracy of step-counting
devices. Conversely, our results suggest that the Fitbit Surge
undercounted steps for all age groups, the Nexus 6P

underestimated step counts for the 65-84 year old group, and
the Samsung Gear S2 underestimated step counts for the 40-64
year old age group, but not the older age group (Table 4). Our
hypothesis is that subtle gait changes and slower walking among
older populations could explain why some devices tend to
undercount steps in these groups. This theory is consistent with
the findings of Fortune et al [23] linking walking speed and
accuracy. Therefore, device manufacturers should ensure that
algorithms inferring step counts from tri-axial accelerometer
data be updated to account for such subtle changes. However,
the Samsung Gear S2 only underreported step counts in the
middle age group. This result is somewhat surprising, as we
would anticipate that the devices underestimating step counts
would perform worse in the older age group than in the middle
group, if the main factor affecting count was gait changes
associated to aging. A possible explanation is that the level of
conditioning could be a confounding factor in our study, as
strength and endurance training affect gait in older age groups
[31]. Indeed, lack of strength in older adults is associated with
gait changes [26-28]; this explanation also remains consistent
with the findings in Fortune et al [23]. Therefore, additional
work is needed when controlling for physical fitness levels.
Additionally, unlike Tudor-Locke et al [24], we did not observe
significant differences in step counting between waist- and
wrist-based devices. Although Case et al [20] report good
accuracy for their devices, their population sample was
significantly younger, and their convenient device selection did
not intersect with ours. Moreover, in previous studies [20,23,24]
all devices used were at least 2 years old; the difference observed
could be explained by technological and/or algorithmic changes
in the devices used. Finally, Wen et al [21] reported that step
counting for their choice of devices is accurate. However, the
sample size of participants in that study was significantly
smaller, and their study focused on longitudinal consistency
(eg, internal validity of devices) rather than comparison between
devices.

A major strength of this study is that, to the best of our
knowledge, it is the first that evaluates the impact of age, BMI,
and dominant hand on the accuracy of the newer generation of
wearable devices and smartphones with respect to step counting.
Although BMI and dominant hand do not appear to impact the
ability of devices to estimate step counts, age does affect
estimates of step counts for some devices. Therefore, additional
work needs to be done to evaluate the impact of wrist patterns
and gait on the accuracy of step counting, and explore what
other potential factors influence the results. Nonetheless, from
a physical activity program adherence and weight loss
perspective, one could argue that since less accurate devices
tend to underestimate step counts, they should still be
recommended for tracking steps, and could lead to additional
exercise.

Limitations
A potential weakness of the study is that we tested step counting
in idealized conditions, indoor, on a treadmill. In real-world
conditions, especially difficult terrain, we may see far more
variation in step counts, given the changes in gait and wrist
movements. Additionally, it is not uncommon to see different
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gaits between normal walking conditions versus walking on a
treadmill.

Conclusion
Over the past 5 years, wearable devices, smartphones, and apps
have become more ubiquitous, and have become widely
recommended tools of behavioral change for weight loss by the
general press, the health and fitness industry, and health care
providers. In this study, we evaluated the accuracy of a selection
of recently available wearable wrist-worn devices and
smartphones with respect to step counting, as well as the impact
of several variables of interest, most notably age. Our final
reduced model after backward selection shows that BMI, height,

weight, and dominant hand do not seem to impact the accuracy
of step count. However, age does affect accuracy, and some
devices tend to underestimate the number of steps walked by
older users of wearable devices. This finding may be a minor
issue for people trying to lose weight by adhering to a
10,000-step walking program, as they may walk more than
planned. However, older and/or slower participants focusing
on increasing physical activity may be negatively affected, and
may struggle mentally if they fall short of 10,000 steps. What
is not clear yet is whether current levels of physical fitness and
activity impact the accuracy of such devices; this warrants
further investigation.
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