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Abstract

Background: Wearable sensors enable long-term monitoring of health and wellbeing indicators. An objective evaluation of
sensors’ accuracy is important, especially for their use in health care.

Objective: The aim of this study was to use a wrist-worn optical heart rate (OHR) device to estimate heart rate (HR), energy
expenditure (EE), and maximal oxygen intake capacity (VO2Max) during running and to evaluate the accuracy of the estimated
parameters (HR, EE, and VO2Max) against golden reference methods.

Methods: A total of 24 healthy volunteers, of whom 11 were female, with a mean age of 36.2 years (SD 8.2 years) participated
in a submaximal self-paced outdoor running test and maximal voluntary exercise test in a sports laboratory. OHR was monitored
with a PulseOn wrist-worn photoplethysmographic device and the running speed with a phone GPS sensor. A physiological model
based on HR, running speed, and personal characteristics (age, gender, weight, and height) was used to estimate EE during the
maximal voluntary exercise test and VO2Max during the submaximal outdoor running test. ECG-based HR and respiratory gas
analysis based estimates were used as golden references.

Results: OHR was able to measure HR during running with a 1.9% mean absolute percentage error (MAPE). VO2Max estimated
during the submaximal outdoor running test was closely similar to the sports laboratory estimate (MAPE 5.2%). The energy
expenditure estimate (n=23) was quite accurate when HR was above the aerobic threshold (MAPE 6.7%), but MAPE increased
to 16.5% during a lighter intensity of exercise.

Conclusions: The results suggest that wrist-worn OHR may accurately estimate HR during running up to maximal HR. When
combined with physiological modeling, wrist-worn OHR may be used for an estimation of EE, especially during higher intensity
running, and VO2Max, even during submaximal self-paced outdoor recreational running.

(JMIR Mhealth Uhealth 2017;5(7):e97) doi: 10.2196/mhealth.7437
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Introduction

Advances in wearable sensors enable long-term monitoring of
health and wellbeing indicators in various conditions and
activities in both consumers and patients. Recently, significant
progress in the size, power consumption, and accuracy of various
different sensing technologies has led to an introduction of
affordable wearable sensors with a reasonable battery life and
capability to monitor, for example, physical activity, sleep, heart
function, and so on. However, the reliability and accuracy of
the produced information has been questioned and significant
differences between different brands have been found [1].
Therefore, an objective scientific evaluation of available
wearable sensors is essential for the progress of their use,
especially for health applications such as chronic disease
prevention and management.

Heart rate (HR) monitoring provides valuable information on
physiology and health status during sports, daily life, and sleep.
Chest strap HR monitors have been used during sports to
quantify and control training loads since the late 1980s. The
main limitation for the wide and long-term use of chest strap
HR monitors, especially in female users, is the discomfort that
is caused by the tightness of the chest strap and possible skin
irritations. Therefore, their application has remained relatively
limited, especially in real-life wearable monitoring.

Wearable optical HR (OHR) monitoring technology based on
photoplethysmography (PPG) has been significantly improved
recently because of miniaturized low-power hardware and
improved embedded algorithms. OHR technology can be applied
on almost any part of the body, such as on the wrist, and can
hence overcome some challenges of chest strap HR monitors
in their usability and long-term use. However, relatively few
scientific studies have reported OHR technology performance
and accuracy in laboratory or real-life conditions. Olenick et al
evaluated a Mio Alpha wrist OHR device during a graded
treadmill exercise test until volitional fatigue and found a strong
correlation between OHR and ECG-based HR [2]. In a study
by Parak and Korhonen [3], wrist and forearm OHR devices
were evaluated during multiple physical activities (walking,
running, and biking) with a 5% agreement ranging from 76%
to 78%. Delgado-Gonzalo et al evaluated the accuracy and
reliability of two different wrist OHR devices (PulseOn and
Mio Alpha) against ECG-derived HR in laboratory conditions
during a wide range of physical activities and found the mean
absolute error of PulseOn to be 3% and Mio Alpha to be 6%
during laboratory protocol [4]. Similar or better accuracy was
seen during normal outdoor sports activities [4]. In general,
wrist-worn OHR devices seem to provide good accuracy during
running, but less so in some other activities, such as biking and
weight lifting [5-7]. These studies suggest that the currently
available high-end OHR devices are reaching acceptable
accuracy for HR monitoring during cardiovascular sports such
as running, while different brands and devices may experience
significant differences in their performance.

Exercise HR is itself a valuable parameter. For example, it
allows a real time control of training loads. However, exercise
HR alone is challenging to interpret for users, and an estimation

of more advanced physiological parameters during exercise
would be beneficial to allow a more insightful analysis of the
training. An estimation of momentary oxygen consumption and
total energy expenditure (EE) for each training session and an
estimation of changes in physical performance achieved by
regular training are examples of these insightful parameters. An
indirect calorimeter is one of the most accurate reference
methods for estimating EE. This method is based on the analysis
of respiratory gases and is commonly used in laboratory settings.
HR has also been used for estimating oxygen consumption.
Montgomery et al [8] evaluated the accuracy of oxygen
consumption and EE estimation based on chest strap HR
monitors and found a slight underestimation with a 6%
coefficient of a variation of 6% for oxygen consumption and
13% for EE. Keytel et al [9] reported a correlation coefficient
of .913 between the chest strap HR-based method and indirect
calorimeter-based EE. Running speed can also be used to
estimate oxygen consumption; in runners, a strong correlation
(>.99) has been reported [10,11]. Robertson et al [12] found a
significant correlation between EE estimates based on indirect
calorimetry and a HR chest strap based method during low
intensity exercise and maximum intensity exercise. However,
Wallen et al observed poor accuracy in an EE estimation of four
OHR smart watches as compared with indirect calorimetry [13].

Physical performance may be estimated by the maximal oxygen
consumption (VO2Max) of a person. VO2Max can be measured
directly with an expiratory gas analyzer during a maximal
voluntary exercise test. Running speed may also be used to
estimate VO2Max [14]. By estimating the oxygen consumption
and speed during submaximal exercise, it is possible to estimate
VO2Max without maximal exercise testing [15]. LeBoeuf et al
found good accuracy of an OHR sensor placed in the ear in the
assessment of EE and VO2Max: −0.7 (SD 7.4%) and −3.2 (SD
7.3%) [16]. However, to our knowledge, the accuracy of a
wrist-worn OHR on the estimation of EE, oxygen consumption,
or VO2Max has not been widely studied.

The objectives of the current study were to use OHR to estimate
HR, EE, and VO2Max during running and to evaluate the
accuracy of the estimated parameters (HR, EE, and VO2Max)
against a chest strap HR and respiratory gas analysis derived
from golden reference values.

Methods

Subjects
Twenty-four healthy adults (13 males and 11 females)
participated in the study (Table 1). The inclusion criteria were
age (18-55 years), BMI (18-30), normal self-reported health
status, experience in treadmill running, and a self-estimated
ability and willingness to continue the exercise protocol with
an increasing load until exhaustion. The health status of the
subjects was evaluated in advance through a self-reporting
questionnaire and a verbal interview by a trained sports
laboratory physiologist about the subjects’ capabilities to reach
maximum performance. The subjects provided signed informed
consent to participate in the study and they were told that they
could withdraw from the study or protocol at any time, if they
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so desired. The study followed the ethical guidelines of the Helsinki declaration.

Table 1. Demographics of the participants.

FemaleMaleAllParameter

111324No. of participants

35.4 (7.2)36.8 (9.1)36.2 (8.2)Age in years, mean (SD)

167.2 (3.5)180.0 (5.6)174.1 (8.0)Height in cm, mean (SD)

61.1 (5.2)76.1 (9.0)69.2 (10.6)Weight in kg, mean (SD)

21.8 (1.7)23.4 (1.8)22.7 (1.9)BMIa in kg/m2, mean (SD)

aBMI: body mass index.

Study Protocol
The study protocol included two parts: (1) a submaximal outdoor
running test and (2) a maximal voluntary exercise test in the
sports laboratory. The submaximal outdoor running test was
performed in regular outdoor conditions in Finland with the aim
of providing data from uncontrolled and sometimes challenging
conditions, where subjects would train and perform their fitness
tests when provided with self-testing equipment, such as a PPG
wrist device and a mobile phone. The data from the submaximal
outdoor running tests was used to estimate VO2Max, based on
wrist PPG and mobile phone GPS data. The maximal voluntary
exercise was performed to provide a standardized reference
(“ground truth”) for VO2Max for each individual and to compare
EE from a wrist PPG against a standard respiratory gas
analysis-based EE reference during running. The order of the
tests was randomized with a maximal time difference of 7 days.

The submaximal outdoor running test was performed on a
pre-defined outdoor track with a flat surface. The subjects were
instructed to run at a self-determined pace for at least 20 min,
targeting moderate to vigorous subjectively assessed intensity,
and to run 5 km. HR was monitored with an optical wrist worn
heart rate monitor (PulseOn, Espoo, Finland) and GPS data with
a mobile phone (Samsung S3 Galaxy Trend). A Polar V800 HR
monitor (Polar Electro, Kempele, Finland) with a built-in GPS
sensor was used as a reference for the distance. The GPS
reference for the distance was necessary, as the subjects
performed the actual running test without continuous supervision
and, hence, had a possibility to vary their running route to some
extent. The PulseOn mobile app was used to track and store HR
and running speed during the test. Field tests were performed
outdoors between November 2014 and January 2015 in Finland
in regular winter training conditions, that is, during days when
it was not raining or snowing, the testing track was not too
slippery to cause health risks, and the temperature was above
-10 °C. The subjects were instructed to wear their own outdoor
sports clothing as appropriate for the current weather during the
test. These conditions are typical outdoor training conditions
in Finland and, hence, provide a good benchmark for challenging
real outdoor training conditions that are faced by ordinary
citizens while training.

The maximal voluntary exercise test was performed in a sports
testing laboratory with a treadmill (OJK-2, Telineyhtymä, Kotka,
Finland). The indoor temperature during the tests was 20 °C.

During the test, the subjects wore a face mask from the
respiratory gas analyzer (Metalyzer 3B, Metasoft Studio 4.8,
Cortex Biophysik GmbH, Leipzig, Germany), the PulseOn wrist
HR device, and a chest strap HR device (RS800CX, Polar
Electro, Kempele, Finland). The treadmill inclination was set
to 0.6°. After setting up the measurement devices and instructing
the user about the study protocol and the use of the treadmill,
the subject performed a warm-up run at 8 km/h for 6 min. Then,
the subject stood still for 6 min and the first blood sample was
taken, after which the actual test started. The running speed was
increased by 1 km/h, which was maintained for 3 min to reach
a stable metabolism at each load. The initial running speed was
set so that the predicted number of loads that the subject would
be able to complete would be between 8 and 10. Between
transitions, the treadmill was stopped for 20-30 s, during which
a blood sample was drawn from the subject’s finger to estimate
the blood lactate (Biosen C_Line, EKF Diagnostic, 42
Barleben/Magdeburg, Germany). The test was continued until
the subject wanted to stop (a stop signal was agreed upon in
advance) or the following end criteria, based on
recommendations by the Finnish Sports Testing Society, were
met: (1) predicted maximum heart rate was reached, (2)
measured VO2 was stabilized or started to decrease, (3) blood
lactate level increased above a threshold, or (4) respiratory
exchange ratio was >1.1. After the test, the subject was allowed
to recover for 3 min, which was followed by a 7 min cool down
jog at a self-selected speed. After this, the final blood sample
was taken.

Energy Expenditure and Maximal Oxygen Intake
Capacity Estimation From Optical Heart Rate
PulseOn OHRs recorded during submaximal and maximal tests
were re-analyzed offline because of the randomized order of
the field and laboratory tests. VO2Max was calculated from the
submaximal test and EE was calculated from the maximal
exercise test. HR, GPS data, and personal subject information
(height, weight, gender, and age) were used for calculations.
Both maximal HR estimated during the maximal exercise test
and maximal HR estimated from the subject’s age (208 − 0.7
× age [17]) were used for the VO2Max calculation. VO2Max

estimated offline from the submaximal test was used for the EE
estimation during the maximal exercise test.

The estimation of total EE was based on a method developed
earlier [18]. Neural networks were used to derive momentary
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oxygen consumption (VO2) from HR. Differences in the
HR-VO2 relationship during the different exercise phases (on
and off phases) were included in the model. Personal maximal
HR and estimated VO2Max were used for the calculation of the
momentary VO2 value. EE was then estimated from VO2,
respiratory quotient (RQ), and caloric equivalent [18]. RQ
describes the ratio between carbon dioxide produced and oxygen
consumed in metabolism, varying from 0.70 to 1.00. RQ has a
well-established deterministic relationship with the caloric
equivalent, which describes the amount of energy expended per
one liter of consumed oxygen, varying from 4.69 to 5.05 kcal/l
O2 [19]. Both exercise intensity and duration affect the RQ and
caloric equivalent. An increase in exercise intensity results in
an increased RQ and caloric equivalent, due to the increased
oxidation of carbohydrate and decreased oxidation of fat. A
prolonged exercise duration has an opposite effect, due to the
increased oxidation of fat and decreased oxidation of
carbohydrate. When the momentary VO2 and caloric equivalent
are known, it is possible to calculate the momentary EE. The
total EE can be calculated by summing up the momentary EE
values.

VO2Max was estimated from OHR and GPS speed recorded
during the self-paced running test by a company (Firstbeat,
Jyväskylä, Finland) [20]. The method is based on a linear
relationship between VO2 and the running speed. First, speed
and OHR data are segmented to different HR ranges and the
reliability of different data segments is estimated by calculating
the correlation between HR and speed and comparing that to
the variance of the data in that segment. In case of a wide
variance and low correlation, the segment is discarded as being
unreliable. Then, the most reliable data segments are used to
estimate VO2Max by utilizing the relationship between HR and
speed. Finally, VO2Max is estimated as the reliability weighted
average of the segments.

Data Analysis
A maximal voluntary exercise test was used to determine the
reference (“ground truth”) VO2Max, as well as measure EE during
the test. EE was measured by averaging the measured EE, based
on a respiratory gas analysis for each minute. Equations defined
by Weir [21] were used to calculate EE, based on respiratory
gas measurements. VO2Max was determined by using criteria
defined by the Finnish Society of Sport Sciences [22].

HR data from a chest belt acquired during the laboratory test
was analyzed with Firstbeat Sports software (Firstbeat,
Jyväskylä, Finland, version 4.5). After applying an artifact
correction algorithm to the signals, the maximum HR value was
observed. A second-by-second chest strap HR was used as a
reference for the OHR signal during the maximal voluntary test,
and the acquired maximum HR value was used as the measured
maximum HR in the further analysis.

Statistical Analyses
The HR estimation accuracy of the wrist PPG device was
estimated during the maximum exercise test by comparing HR
from the wrist PPG device with chest strap-based HR. First, the
data were re-sampled at 1.5 s sampling intervals. HR signals

were synchronized in time by maximizing the cross-correlation
between the signals at t=0. Then, the HR data was averaged
over 5 s non-overlapping windows. HR accuracy was estimated
by the following parameters [3,4].

Reliability: The percentage of time that the absolute error is
smaller than 10 bpm.

Accuracy: The complement of the relative error (ie, 100% mean
absolute percentage error).

The difference between VO2Max estimated with a wrist PPG
device and GPS data during a submaximal test and with a gas
analyzer during a maximal exercise test was compared by
calculating the bias, mean absolute error (MAE), mean absolute
percentage error (MAPE), and correlation coefficient (either
Pearson when data was normally distributed or Spearman when
this was not the case) between the estimates. Bland-Altman
plots were constructed to allow a visual presentation of the
agreement between the two estimation methods and their
average error (bias), as well as 95% confidence limits of
agreement.

The difference between EE estimated from the wrist PPG device
and respiratory gas analysis was calculated during the maximum
exercise test. The analysis was carried out separately for light
intensity (below aerobic threshold) and medium heavy intensity
(between aerobic and anaerobic thresholds). The estimation was
only performed from light to medium heavy intensity levels, as
higher intensity levels can change the body acid-base balance,
which can distort the indirect calorimetry method [23]. The
aerobic and anaerobic thresholds of the subjects were determined
by the guidelines of the Finnish Society of Sport Sciences
[22,24]. Bland-Altman plots were generated for a visual analysis
of the error, and bias, MAE, MAPE, and correlation coefficients
were calculated for the data.

The normal distribution of data was examined by the
Shapiro-Wilk test. The difference between the methods was
tested with a paired t test in case normal distribution was
confirmed and with the Wilcoxon signed rank test when normal
distribution could not be confirmed. Pearson correlation
coefficient was computed between normally distributed
parameters, while Spearman rank correlation coefficient was
used for the other parameters not meeting the normal distribution
assumption. The strength of the correlation coefficients was
interpreted based on the following definitions: weak (r ≤.5),
moderate (r=.5–.7) and strong (r ≥.7). All statistical tests were
performed as two-sided and the level of significance was set at
P<.05.

All data analysis was carried out with MathWorks Matlab
(version 8.5). All statistical testing was carried out with IBM
SPSS statistics (version 22).

Results

Heart Rate Accuracy During Treadmill Running
HR estimated with a wrist PPG device appeared to closely
follow HR monitored with a chest strap (Table 2). In most cases,
wrist PPG HR estimated HR accurately over the entire protocol,
even up to maximum HR and running speeds, as shown in
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Figure 1 (parts A and B). In a few cases, there were occasional
outliers, as shown in Figure 1 (part C: in the worst case, OHR
artifacts during the beginning of the recording are likely related
to poor perfusion before fully warming up, while at the end, the
subject was struggling to maintain the running speed, resulting

in non-rhythmic hand motions because the subject was aiming
to gain support from the treadmill handles.). This can also be
seen in Figure 2, which presents the Bland-Altman plot of the
HR during the entire laboratory protocol from a wrist OHR
device and chest strap HR.
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Figure 1. Comparison of HR from chest strap (black line) and wrist PPG device (red line) during maximum exercise test: (A) best accuracy, (B) average
accuracy, and (C) worst case.
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Figure 2. Bland−Altman plot comparing the wrist PPG device and chest strap HR device during maximum exercise protocol in all 24 subjects (solid
horizontal line: bias, dashed lines: 95% confidence limits of agreement).

Figure 3. Bland−Altman plot comparing the phone GPS distance measured by the PulseOn app and a reference tracker distance estimation during
outdoor running protocol (solid horizontal line: bias, dashed lines: 95% confidence limits of agreement).
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Maximal Oxygen Intake Capacity Estimation
VO2Max estimated with a wrist PPG device and phone GPS data
with a PulseOn app was close to VO2Max measured during
maximum exercise tests in laboratory conditions (Tables 3 and
4). VO2Max estimates were slightly underestimated with the
submaximal test with the PulseOn app with a MAPE of 5.2%
(4.7% for males and 5.8% for females), when measured
maximum HR was used in the estimation. The distance

estimated by a phone GPS was underestimated on average by
5.0% (−270m) (Figure 3). However, this error did not correlate
with the VO2Max error. When an age-based maximum HR
estimate was used, the error slightly increased (Table 4). There
was no statistically significant difference between the estimates
when the measured maximum HR was used in the estimation.
Figure 4 presents the Bland-Altman plot of the VO2Max

estimates, which shows a tendency towards larger errors with
lower VO2Max values.

Table 2. Accuracy of wrist optical heart rate device during treadmill running up to maximum speed.

Accuracy, %Reliability, %Activity

97.196.9Rest when standing

98.395.3Ramp-up running

98.195.4Entire protocol

Table 3. Maximal oxygen uptake (VO2Max) estimated from optical heart rate data and based on measured maximum heart rate value.

Female (n=11)Male (n=13)All (N=24)Performance metric

−0.82−1.28−1.07Bias (ml ·kg−1·min−1)

3.192.422.75SDa (ml ·kg−1 ·min−1)

2.512.292.39MAEb (ml ·kg−1·min−1)

5.84.75.2MAPEc

.42(Te).08(Te).06(Wd)Statistical test (P value)

r=.69, (P<.05) (Peg)r=.77, (P<.01) (Peg)ρ=0.86, (P<.01)(Spf)Correlation coefficient

aSD: Standard deviation.
bMAE: Mean absolute error.
cMAPE: Mean absolute percentage error.
dW: Wilcoxon test.
eT: Paired t test.
fSp: Spearman correlation coefficient.
gPe: Pearson correlation coefficient.
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Table 4. Maximal oxygen uptake (VO2Max) estimated from optical heart rate data and based on an age-based maximum heart rate estimate.

Female (n=11)Male (n=13)All (N=24)Performance metric

−1.46−1.52−1.49Bias (ml ·kg−1 ·min−1)

3.352.702.95SDa (ml ·kg−1 ·min−1)

2.962.582.76MAEb (ml ·kg−1 ·min−1)

6.85.25.9MAPEc, %

.18(Te).07(Te).03(Wd)Statistical test (P value)

r=.63, (P<.05) (Peg)r=.73, (P<.01) (Peg)ρ=0.87, (P<.01)(Spf)Correlation coefficient

aSD: Standard deviation.
bMAE: Mean absolute error.
cMAPE: Mean absolute percentage error.
dW: Wilcoxon test.
eT: Paired t test.
fSp: Spearman correlation coefficient.
gPe: Pearson correlation coefficient.

Figure 4. Bland−Altman plot of VO2Max estimates from the PulseOn app (wrist PPG device + phone GPS) during a submaximal exercise test versus
gas analyzer based estimate during maximal exercise tests−dots represent data when age−based maximum HR is used for an estimation, while an asterix
represents estimations based on true measured maximum HR (solid horizontal line: bias, dashed lines: 95% confidence limits of agreement).

Energy Expenditure
Data from one male subject was excluded from the EE
estimation analysis due do failure in respiratory gas analysis
data acquisition, and results are reported for the remaining 23
subjects. Error in the EE estimation was lower (MAPE 6.7%)

in the higher intensity exercise (above the aerobic threshold,
but below the anaerobic threshold), but increased in lower
intensities (Tables 5 and 6, and Figure 5). A wrist PPG device
tended to underestimate the EE during treadmill running. The
correlation with respiratory gas estimated EE was high (>.93)
during higher intensity exercise, especially in females.

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 7 | e97 | p. 9http://mhealth.jmir.org/2017/7/e97/
(page number not for citation purposes)

Parak et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Statistical error analysis of energy expenditure during light intensity.

Female (n=11)Male (n=12)All (N=23)Performance metric

−9.41−14.24−11.93Bias (kcal)

10.9516.4513.99SDa (kcal)

10.6515.2813.05MAEb (kcal)

16.316.616.5MAPEc, %

.02 (Te).01 (Te)<.001 (Wd)Statistical test (P value)

r=.79, (P<.01) (Peg)r=.88, (P<.01) (Peg)ρ=0.77, (P<.01) (Spf)Correlation coefficiente

aSD: Standard deviation.
bMAE: Mean absolute error.
cMAPE: Mean absolute percentage error.
dW: Wilcoxon test.
eT: Paired t test.
fSp: Spearman correlation coefficient.
gPe: Pearson correlation coefficient.

Figure 5. Bland−Altman plot comparing an energy expenditure estimation with a wrist PPG device and gas analyzer during a maximum exercise
test−the asterisk denotes data before the aerobic threshold, while dots represent data between aerobic and anaerobic thresholds (solid horizontal line:
bias, dashed lines: 95% confidence limits of agreement).
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Table 6. Statistical error analysis of energy expenditure during medium heavy intensity.

Female (n=11)Male (n=12)All (N=23)Performance metric

−4.28−6.78−5.58Bias (kcal)

3.1012.249.00SDa (kcal)

4.3410.437.52MAEb (kcal)

5.18.26.7MAPEc, %

.001(Td).08(Td).007 (Td)Statistical test (P value)

r=.99, (P<.01) (Pee)r=.93, (P<.01) (Pee)r=.97, (P<.01) (Pee)Correlation coefficient

aSD: Standard deviation.
bMAE: Mean absolute error.
cMAPE: Mean absolute percentage error.
dT: Paired t test.
ePe: Pearson correlation coefficient.

Discussion

Principal Findings
We estimated HR, EE, and VO2Max based on wrist PPG and
phone GPS speed and evaluated their accuracy during running
based on golden reference methods. OHR appeared to be
accurate during running; the MAPE was 1.9% and reliability
95.4% during a maximal voluntary exercise test. This is well
in line with the earlier results [4] and suggests that high-end
consumer-grade OHR devices are capable of accurately
monitoring HR during running, even up to a maximum HR.

The accuracy of more advanced parameters estimated from
OHR is dependent, both on the accuracy of the OHR and on
the validity of the analytical models. We used an HR-based
estimation of the EE, and an HR and running speed-based
estimation of the VO2Max developed earlier by a company
(Firstbeat, Jyväskylä, Finland), which is widely available in
various sports products. EE estimation with this method has
been validated earlier [8], suggesting a slight underestimation
of EE by 13% when a chest strap HR was used. In our study,
the overall EE estimation accuracy is well in line with this. EE
estimation was the most accurate during medium or hard
intensity with a MAPE of 6.7% (males 8.2% and females 5.1%).
During light intensity, the error increased to 16.5% (males
16.6% and females 16.3%). Differences in the EE estimation
based on HR may be related to individual differences in the
basic metabolism, a thermogenesis effect due to diet or
metabolic effect, which affects the body mass ratio [25]. For
comparison, 10.1-18.2% MAE has been reported for EE
estimation by activity trackers [26]. The EE estimates based on
OHR and indirect calorimetry had strong correlations for all
(N=23) subjects during light intensity (ρ=0.77), while at a higher
intensity their correlation was close to 1 (r=.97). The results are
comparable to a similar study by Robertson et al [12], who used
a chest strap HR with the same EE estimation method [18] and
reported moderate (r=.57) to strong (r=.85) correlations during
low and high intensity exercise, respectively. However,
significant differences between different OHR devices have
been reported. Recently, Wallen et al studied the EE estimation

accuracy of four different OHR devices against indirect
calorimetry and found only one device (Samsung Gear S) to
have a strong correlation (r=.86) with the reference, while the
other three devices exhibited only a weak correlation to
reference EE [13]. Our results suggest that a wrist-worn OHR
may offer a similar estimation of true EE during running to
chest strap HR based methods when a high quality OHR device
and proper physiological model are applied in EE estimation.

The level of fitness may be quantified by the estimation of
VO2Max. We used OHR and a mobile-based speed estimation
to estimate VO2Max during self-paced outdoor running in real
and challenging outdoor conditions during winter in Finland.
These conditions may be considered the “worst case” training
conditions and, for example, the temperature difference may
increase the observed estimation error for VO2Max. The analytical
method was based on the well-known HR versus speed
relationship and on detecting the most reliable data periods for
VO2Max estimation during the exercise [20]. We compared this
estimate with the golden standard of the VO2Max estimation,
that is, respiratory gas analysis acquired during a maximal
voluntary exercise test in a sports laboratory. The results suggest
that OHR and speed-based VO2Max estimation during self-paced
running are able to quite accurately estimate VO2Max, even in
these challenging outdoor conditions; we found a MAPE of
5.2% (males 4.7% and females 5.8%) for VO2Max when an
individually measured HR maximum was used in the estimation.
When age-estimated maximum HR was used, the error increased
slightly. A significant contribution to the inaccuracy originated
from phone GPS tracking, which underestimated the distance
by 5% on average and led to a corresponding underestimation
of the VO2Max. In addition, during the outdoor testing, there
were challenging weather conditions (cold and winter), which
posed challenges for PPG HR estimation because of potentially
poor perfusion, increasing the potential error for the OHR during
field conditions. These weather conditions may also have
affected the real VO2Max. Also, differences in running efficiency
affect the correspondence between the running speed and the
true physical load, and, hence, increase the error in HR and
speed-based VO2Max estimation. There was also a tendency for
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the OHR and speed-based analysis to overestimate the VO2Max

in individuals with a lower real VO2Max. In summary, the results
suggest that the method may be used to estimate VO2Max

relatively accurately during self-paced running, even in
challenging outdoor conditions.

Limitations and Strengths
This study has several strengths, but also weaknesses. To our
knowledge, this is the first study to report both EE and VO2Max

estimation accuracy, based on OHR data. We used a realistic
or even challenging setting (self-paced outdoor running in
winter) to estimate VO2Max. This is a setting that can be applied
by an ordinary user, and as such, the method can be directly
applied by healthy users to estimate their fitness levels. We used
the golden standard (gas analyzer and controlled sports
laboratory with maximal voluntary exercise) as a reference for
EE and VO2Max. The main weakness of the study is that it had
a relatively small study population; however, despite this, the
results can be considered to be at least indicative. In addition,
the outdoor tests were carried out in a challenging environment
(winter, cold, and sometimes potentially slightly slippery roads),
increasing the error of the outdoor VO2Max estimation. On the
other hand, this provides the worst case scenario, and the results
were still within an acceptable error margin. Finally, the study
included only one wrist OHR device, which limits the
generalizability of the results. Only a single device was used
for practical reasons—wearing several devices in both laboratory

and outdoor conditions would have complicated the study
implementation. The PulseOn device was chosen for the study
because, at the time of data collection, to our knowledge, other
available wrist OHR devices did not support estimation of
VO2Max together with accurate data logging capability. However,
the results are not without generalizability. The applied VO2Max

and EE estimation algorithm [18,20] has been validated with a
chest strap HR monitor [12], is commercially widely available,
and could be applied with other accurate OHR devices as well.
Hence, we do not consider the results of the study to be specific
to applied wrist devices only, but to OHR technology in general.

Conclusions
We applied a commercially available OHR device to estimate
HR, EE, and VO2Max during running and evaluated their
accuracy against golden standard methods. The results show
that current high-end wrist OHR devices may provide accurate
HR that can be compared with a chest strap HR, during running,
up to a maximum HR. When combined with proper analytics,
OHR may be used to quite accurately estimate EE, especially
during moderate to medium heavy intensity activities. An
estimation of VO2Max during self-paced outdoor running using
OHR and a mobile phone’s GPS data and proper HR analytics
also allows a relatively accurate estimation of a fitness level
(VO2Max). Wrist PPG devices accompanied by phone apps
provide a reliable alternative for training monitoring in realistic
conditions.
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