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Abstract

Background: Inertial sensors are one of the most commonly used sources of data for human activity recognition (HAR) and
exercise detection (ED) tasks. The time series produced by these sensors are generally analyzed through numerical methods.
Machine learning techniques such as random forests or support vector machines are popular in this field for classification efforts,
but they need to be supported through the isolation of a potentially large number of additionally crafted features derived from
the raw data. This feature preprocessing step can involve nontrivial digital signal processing (DSP) techniques. However, in many
cases, the researchers interested in this type of activity recognition problems do not possess the necessary technical background
for this feature-set development.

Objective: The study aimed to present a novel application of established machine vision methods to provide interested researchers
with an easier entry path into the HAR and ED fields. This can be achieved by removing the need for deep DSP skills through
the use of transfer learning. This can be done by using a pretrained convolutional neural network (CNN) developed for machine
vision purposes for exercise classification effort. The new method should simply require researchers to generate plots of the
signals that they would like to build classifiers with, store them as images, and then place them in folders according to their
training label before retraining the network.

Methods: We applied a CNN, an established machine vision technique, to the task of ED. Tensorflow, a high-level framework
for machine learning, was used to facilitate infrastructure needs. Simple time series plots generated directly from accelerometer
and gyroscope signals are used to retrain an openly available neural network (Inception), originally developed for machine vision
tasks. Data from 82 healthy volunteers, performing 5 different exercises while wearing a lumbar-worn inertial measurement unit
(IMU), was collected. The ability of the proposed method to automatically classify the exercise being completed was assessed
using this dataset. For comparative purposes, classification using the same dataset was also performed using the more conventional
approach of feature-extraction and classification using random forest classifiers.

Results: With the collected dataset and the proposed method, the different exercises could be recognized with a 95.89%
(3827/3991) accuracy, which is competitive with current state-of-the-art techniques in ED.

Conclusions: The high level of accuracy attained with the proposed approach indicates that the waveform morphologies in the
time-series plots for each of the exercises is sufficiently distinct among the participants to allow the use of machine vision
approaches. The use of high-level machine learning frameworks, coupled with the novel use of machine vision techniques instead
of complex manually crafted features, may facilitate access to research in the HAR field for individuals without extensive digital
signal processing or machine learning backgrounds.
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Introduction

Background
Inertial sensors are ubiquitous in everyday objects such as
mobile phones and wristbands and can provide large amounts
of data regarding movement activity. Analysis of such data can
be diverse, but in general terms can be characterized as complex
operations using a broad range of machine learning techniques
and highly sophisticated signal processing methods. The latter
is required to extract salient features that can improve
recognition performance. These features are not only complex
to calculate, but also making a priori reasoned arguments toward
their effectiveness in improving overall results is difficult. The
temptation to include additional features in an attempt to
improve classification accuracy may result in pipelines
(infrastructure) with excessive complexity, yielding slower
processing and increased resource usage. To counter this
proliferation of features, it is common to use dimensionality
reduction techniques including linear approaches such as
principal component analysis and increasingly common
nonlinear methods principally based on manifold learning
algorithms.

In contrast to this complex tool, we propose a method to classify
human activity from inertial sensor data based on images and
using deep learning-based machine vision techniques. This
approach reduces the amount of deep domain knowledge needed
in terms of digital signaling processing (DSP), down to some
basic steps of preprocessing and segmentation, substituting
instead a neural network that can learn the appropriate features
independent of a user-driven feature candidature step.
Convolutional networks are not trivial to work with, but the
recent availability of higher level deep learning frameworks
such as TensorFlow [1] and the use of transfer learning, a
technique to reuse already trained convolutional neural networks
(CNNs), considerably reduces the skills needed to set up and
operate such a network.

In this study, we sought to demonstrate a novel application of
machine vision techniques as a classification method for inertial
measurement unit (IMU) data. The main goal of this work was
to develop a novel data analysis pathway for researchers who
are most interested in this type of work, such as medical and
exercise professionals. These individuals may not have the
technical background to implement existing state-of-the-art data
analysis pathways. We also aimed to evaluate the efficacy of
our new classification technique by attempting to detect five
commonly completed lower-limb exercises (squats, deadlifts,
lunges, single-leg squats, and tuck jumps) using the new data
analysis pathway. The accuracy, sensitivity, and specificity of
the pathway were compared with recently published work on
the same dataset.

Related Work
The three main topics in this section are as follows: (1) a brief
overview of the current human activity recognition (HAR) and
exercise detection (ED) literature, (2) an account of some of the
newer advances in the field that are using neural networks for
certain parts of the feature discovery and reduction process, and
(3) an introduction to transfer learning, highlighting its benefits
in terms of time and resource savings, and working with smaller
datasets.

Activity Classification for Inertial Sensor Data
Over the past 15 years, inertial sensors have become increasingly
ubiquitous due to their presence in mobile phones and wearable
activity trackers [2]. This has enabled countless applications in
the monitoring of human activity and performance spanning
applications in general HAR, gait analysis, the military field,
the medical field, and exercise recognition and analysis [3-6].
Across all these application spaces, there are common challenges
and steps which must be overcome and implemented to
successfully create functional motion classification systems.

Human activity recognition with wearable sensors usually
pertains to the detection of gross motor movements such as
walking, jogging, cycling, swimming, and sleeping [5,7]. In
this field of motion tracking with inertial sensors, the key
challenges are often considered to be (1) the selection of the
attributes to be measured; (2) the construction of a portable,
unobtrusive, and inexpensive data acquisition system; (3) the
design of feature extraction and inference methods; (4) the
collection of data under realistic conditions; (5) the flexibility
to support new users without the need for retraining the system;
and (6) the implementation in mobile devices meeting energy
and processing requirements [3,7]. With the ever-increasing
computational power and battery life of mobile devices, many
of these challenges are becoming easier to overcome.

Whereas system functionality is dependent on hardware
constraints, the accuracy, sensitivity, and specificity of HAR
systems are most reliant on building large, balanced, labeled
datasets; the identification of strong features for classification;
and the selection of the best machine learning method for each
application [3,8-10]. Investigating the best features and machine
learning methods for each HAR application requires an
individual or team appropriately skilled in signal processing
and machine learning and a large amount of time. They must
understand how to compute time-domain, frequency-domain,
and time-frequency domain features from inertial sensor data
and train and evaluate multiple machine learning methods (eg,
random forests [11], support vector machines [12], k-nearest
neighbors [13], and logistical regression [14]) with such features
[3-5]. This means that those who may be most interested in the
output of inertial sensor based activity recognition systems (eg,
medical professionals, exercise professionals, and
biomechanists) are unable to design and create the systems
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without significant engagement with machine learning experts
[4].

The above challenges in system design and implementation are
replicated in activity recognition pertaining to more specific or
acute movements. In the past decade, there has been a vast
amount of work in the detection and quantification of specific
rehabilitation and strength and conditioning exercises [15-17].
Such work has also endeavored to detect aberrant exercise
technique and specific mistakes that system users make while
exercising, which can increase their chance of injury or decrease
their body’s beneficial adaptation due to the stimulus of exercise

[17,18]. The key steps in the development of such systems have
been recently outlined as (1) inertial sensor data collection, (2)
data preprocessing, (3) feature extraction, and (4) classification
(Figure 1) [4]. Whereas the first step can generally be completed
by exercise professionals (eg, physiotherapists and strength and
conditioning coaches), the remaining steps require skills outside
that included in the training of such experts. Similarly, when
analyzing gait with wearable sensors, feature extraction and
classification have been highlighted as essential in the
development of each application [19,20]. This again limits the
type of professional who can create such systems and the rate
at which hypotheses for new systems can be tested.

Figure 1. Steps involved in the development of an inertial measurement unit (IMU)-based exercise classification system.

Neural Networks and Activity Recognition
In the past few years, CNNs have been applied in a variety of
manners to HAR, in both the fields of ambient and wearable
sensing. Mo et al applied a novel approach utilizing machine
vision methods to recognize twelve daily living tasks with the
Microsoft Kinect. Rather than extract features from the Kinect
data streams, they developed 144×48 images using 48 successive
frames from skeleton data and 15×3 joint position coordinates
and 11×3×3 joint rotation matrices. These images were then
used as input to a multilayer CNN which automatically extracted
features from the images that were fed in to a multilayer
perceptron for classification [21]. Stefic and Patras utilized
CNNs to extract areas of gaze fixation in raw image training
data as participants watched videos of multiple activities [22].
This produced strong results in identifying salient regions of
images that were then used for action recognition. Ma et al also
combined a variety of CNNs to complete tasks, such as
segmenting hands and objects from first-person camera images
and then using these segmented images and motion images to
train an action-based and motion-based CNN [23]. This novel
use of CNNs allowed an increase in activity recognition rates
of 6.6%, on average. These research efforts demonstrated the
power of utilizing CNNs in multiple ways for HAR.

Research utilizing CNNs for HAR with wearable inertial sensors
has also been published recently. Zeng et al implemented a
method based on CNNs which captures the local dependency
and scale invariance of an inertial sensor signal [24]. This allows
features for activity recognition to be identified automatically.
The motivation for developing this method was the difficulties
in identifying strong features for HAR. Yang et al also
highlighted the challenge and importance of identifying strong
features for HAR [25]. They also employed CNNs for feature
learning from raw inertial sensor signals. The strength of CNNs
in HAR was again demonstrated here as its use in this
circumstance outperformed other HAR algorithms, on multiple
datasets, which utilized heuristic hand-crafting of features or

shallow learning architectures for feature learning. Radu et al
also recently demonstrated that the use of CNNs to identify
discriminative features for HAR when using multiple sensor
inputs from various mobile phones and smartwatches, which
have different sampling rates, data generation models, and
sensitivities, outperforms classic methods of identifying such
features [26]. The implementation of such feature learning
techniques with CNNs is clearly beneficial but is complex and
may not be suitable for HAR system developers without strong
experience in machine learning and DSP. From a CNN
perspective, these results are interesting and suggest significant
scope for further exploration for machine learning researchers.
However, for the purposes of this paper, their inclusion is to
both succinctly acknowledge that CNN has been applied to
HAR previously and to distinguish the present approach which
seeks to use well developed CNN platforms tailored for machine
vision tasks in a transfer learning context for HAR recognition
using basic time series as the only user created features.

Transfer Learning in Machine Vision
Deep learning-based machine vision techniques are used in
many disciplines, from speech, video, and audio processing
[27], through to HAR [21] and cancer research [28].

Training deep neural networks is a time consuming and resource
intensive task, not only needing specialized hardware (graphics
processing unit [GPU]) but also large datasets of labeled data.
Unlike other machine learning techniques, once the training
work is completed, querying the resulting models to predict
results on new data is fast. In addition, trained networks can be
repurposed for other specific uses which are not required to be
known in advance of the initial training [29]. This arises from
the generalized vision capabilities that can emerge with suitable
training. More precisely, each layer of the network learns a
number of features from the input data and that knowledge is
refined through iterations. In fact, the learning that happens at
different layers seems to be nonspecific to the dataset, including
the identification of simple edges in the first few layers, the
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subsequent identification of boundaries and shapes, and growing
toward object identification in the last few layers. These learned
visual operators are applicable to other sets of data [30]. Transfer
learning then is the generic name given to a classification effort
when a pretrained network is reused for a task for which it was
not specifically trained for. Deep learning frameworks such as
Caffe [31] and TensorFlow can make use of pretrained networks,
many of which have been made available by researchers in
repositories such as the Caffe Model Zoo, available in their
github repository.

Retraining requires not only a fraction of the time that a full
training session would need (min/h instead of weeks), but more
importantly in many cases, allows for the use of much smaller
datasets. An example of this is the inception model provided
by Google, whose engineers reportedly spent several weeks
training on ImageNet [32] (a dataset of over 14 million images
in over 2 thousand categories), using multiple GPUs and the
TensorFlow framework. In their example [33], they use in the
order of 3500 pictures of flowers in 5 different categories to
retrain the generic model, producing a model with a fair
accuracy rating on new data. In fact, during the retraining stage,
the network is left almost intact. The final classifier is the only
part that is fully replaced, and “bottlenecks” (the layer before
the final one) are calculated to integrate the new training data
into the already “cognizant” network. After that, the last layer
is trained to work with the new classification categories. This
happens in image batches of a size that can be adapted to the

needs of the new dataset (alongside other hyperparameters such
as learning rate and training steps).

Each step of the training process outputs values for training
accuracy, validation accuracy, and cross entropy. A large
difference between training and validation accuracy can indicate
potential “overfitting” of the data, which can be a problem
especially with small datasets, whereas the cross entropy is a
loss function that provides an indication of how the training is
progressing (decreasing values are expected).

Methods

Study Design
Given the potential advantages of transfer learning in machine
vision for the purposes of HAR, we next describe an exemplar
study where we apply these ideas for the purposes of classifying
exercise data from inertial sensors. This very specific example
is sufficiently comprehensive in scale, and scope to represent
a typical use case for the approach which to reiterate will use
pretrained CNNs with one lightweight additional training step,
to classify inertial sensor data based on images generated from
the raw data (Figure 2). The level of DSP skills to perform this
analysis will be shown to be much lower compared with other
methods of classifying this type of data with other machine
learning techniques that rely on engineered features (Figure 1).

This section contains all the details required to replicate this
approach, focusing on how the data was collected, and how our
system was set up and used.

Figure 2. Depiction of the changes between traditional methods and the one presented in this paper, in particular steps 3 and 4.
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Data Collection

Participants
A total of 82 healthy volunteers aged 16-38 years (59 males,
23 females, age: 24.68 years [SD (standard deviation) 4.91],
height: 1.75m [SD 0.09], body mass: 76.01kg [SD 13.29]) were
recruited for the study. Participants did not have a current or
recent musculoskeletal injury that would impair performance
of multi-joint, lower-limb exercises. All participants had been
completing each of the five exercises as part of their training
regime for at least one year. The human research ethics
committee at University College Dublin approved the study
protocol and written informed consent was obtained from all
participants before testing. In cases where participants were
under the age of 18 years, written informed consent was also
obtained from a parent or guardian.

Procedures
The testing protocol was explained to participants upon their
arrival at the laboratory. Following this, they completed a
10-min warm-up on an exercise bike (Lode BV, Groningen,
The Netherlands), maintaining a power output of 100W at 75-85
revolutions per min. Next, an IMU (SHIMMER, Dublin, Ireland)
was secured on the participant by a chartered physiotherapist
at the spinous process of the 5th lumbar vertebra (Figure 3).
The orientation and location of all the IMUs was consistent for
all the study participants across all exercises.

A pilot study was used to determine an appropriate sampling
rate and the ranges for the accelerometer and gyroscope on
board the IMU. In the pilot study, squat, lunge, deadlift,
single-leg squat, and tuck jump data were collected at 512
samples/s. A Fourier transform was then used to determine
signal and noise characteristics of the signal that were all found
to be less than 20 Hz. Therefore, a sampling rate of 51.2
samples/s was deemed appropriate for this study based upon
the Shannon sampling theorem and the Nyquist criterion [34].
The Shimmer IMU was configured to stream tri-axial
accelerometer (±16 g) and gyroscope (±500 ˚/s) data with the
sensor ranges chosen based upon data from the pilot study. Each
IMU was calibrated for these specific sensor ranges using the
Shimmer 9DoF Calibration application.

After completion of their warm up, participants proceeded to
do one set of 10 repetitions of bodyweight squats, barbell
deadlifts at a load of 25kg, bodyweight lunges, and bodyweight
single-leg squats (Figure 4). A chartered physiotherapist
demonstrated the correct technique for each of the exercises.
Participants familiarized themselves with each exercise, and
their technique was assessed to be correct by the physiotherapist.
Correct technique for squats, lunges, and deadlifts was defined
using guidelines from the National Strength and Conditioning
Association [35]. Single leg squats were completed according
to the scoring criteria outlined by Whatman et al [36]. Finally,
each participant completed the 10-second tuck jump test while
attempting to maintain good form throughout [37].

Figure 3. Inertial measurement unit (IMU) position: the spinous process of the 5th lumbar vertebra.
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Figure 4. The five exercises completed for this study: bodyweight squat (upper left), bodyweight lunge (upper middle), barbell deadlift (lower left),
single leg squat (lower middle), and tuck jump (right).

Preparation for Transfer Learning
Based on the previous design for an IMU-based exercise
classification system (Figure 1), with this new method the
feature extraction step is not needed (Figure 2) as the CNN will
take care of automatically both training the model and
discovering the features by itself. The segmentation process is
directly followed by the classification task (training and
inference).

Convolutional Neutral Network (CNN) Infrastructure
Working with convolutional networks is not a trivial task.
Fortunately, since the advent of deep learning in the last few
years, a number of frameworks such as TensorFlow and Caffe
have appeared in the market and are readily available for
researchers. Most of these frameworks are open source,
supported by large companies or universities, and provide not
only helper libraries for numerical computation and machine
learning but also a flexible architecture and the possibility to
almost trivially use multiple central processing units (CPUs)
and GPUs if available.

The authors used TensorFlow for the particular results provided
in this paper, but any other framework or higher level library
would suffice. Installing TensorFlow can be cumbersome, but
Google provides a Docker container [38] with all the
components to run TensorFlow out of the box. Documentation
and scripts are also provided to retrain [39] networks and query
[40] the new classifier. The aforementioned Docker container
and scripts were used in this paper with minimal modifications.

The preprocessing and segmentation of inertial data to create
the images that are fed into the CNN were prepared with
MATLAB (2012, The MathWorks), as explained in the
following section.

Data Preparation
Six signals were collected from the IMU; accelerometer x, y,
and z; and gyroscope x, y, and z. Data were analyzed using
MATLAB. To ensure the data analyzed applied to each
participant’s movement and to eliminate unwanted
high-frequency noise, the six signals were low pass filtered at
fc=20 Hz using a Butterworth filter of order n=8.

The filtered signals were then programmatically segmented into
epochs that relate to single, full repetitions of the completed
exercises. Many algorithms are available to segment human
motion during exercise. These include the sliding window
algorithm, top-down, bottom-up algorithms, zero-velocity
crossing algorithms, template-base matching methods, and
combination algorithms of the above [4]. These algorithms all
have advantages and disadvantages. For the purpose of the
creation of a functioning exercise detection classifier, a simple
peak-detection algorithm was used on the gyroscope signal with
the largest amplitude for each exercise. The start and end points
of each repetition were found by looking for the corresponding
zero-crossing points of the gyroscope signal leading up to and
following the location of a peak in the signal. Example results
of the segmentation algorithm used on the gyroscope x signal,
from an IMU positioned on the spine during 3 repetitions of the
deadlift exercise, are provided (Figure 5).
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Each extracted repetition of exercise data was resampled to a
length of 250 samples. The six signals were then plotted using
the MATLAB subplot function. The first subplot, gyroscope x
(sagittal plane) was plotted between the y-axis range of ±250
°/s. Subplots 2 and 3, gyroscope y and z (frontal and transverse
plane) were plotted between the y-axis range of ±100 °/s.
Accelerometer x (subplot 4) was plotted in the y-axis range of

±3 m/s2 and accelerometer y and z (subplots 5 and 6) were

plotted in the range ±15 m/s2. Axes labels and markers were
programmatically hidden, and the blank space between each
subplot was minimized. Following this, the graphs were saved
as 470x470 JPEG files. Examples of the generated JPEG files
are provided (Figure 6).

Retraining and Using the New Model
Transfer learning is the main technique used in this paper. This
reuses an already trained CNN for classification purposes. In
this case, the framework TensorFlow was used, which provides
access to a model called “inception” trained on over 14 million
images and also provides example scripts to retrain the network,
that is, discarding the provided classifier and adjusting the values
of the last layer of the network according to the new data
provided. The retraining scripts expect to find the images in a
particular folder (passed as a parameter) and layout (Figure 7),
that is, a folder for each category that the new classifier will
learn to identify, containing training pictures in jpg format.

During training, the network will automatically identify the
features to use to create the classifier.

There are a number of hyperparameters that can be changed
depending on the new data used to retrain, such as the validation
and training split of data to be used, the size of the batches to
train on, or the learning rate applied (probably the most
important of all for fine tuning and avoiding extra computation).
The only parameter changed in this work was the number of
steps, from a default 4000 iterations to 96,000 steps. This
number provides high accuracy without showing signs of
overfitting (see Results section).

The output of the training phase is simply two files, one with
new weights (the retrained network) and a second file with
labels for the data trained (the default names are
retrained_graph.pb and retrained_labels.txt). These two files
are all that is needed to predict results coming from new data.
The classifier can be queried with the classify_image script
mentioned previously.

Retraining and querying are actions that can be performed in a
multitude of ways, with different frameworks and in different
configurations. This work is about making things accessible
and available. The Docker container for Tensorflow, with the
documentation and helper scripts, was the simplest route the
authors could find.

Figure 5. Detection of peak, start, and end points of exercise repetitions (neighboring zero crossing values to the peak locations).

Figure 6. Samples of the generated plots (JPEG files) which were used as training and test data in this study.
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Figure 7. Folders containing images for the five exercises (Bodyweight squat: SQ, bodyweight lunge: LUL, barbell deadlift: DL, single leg squat:
SLSL, and tuck jump: TJ).

Results

As mentioned in the previous section, each training batch
outputs training and validation accuracy and a cross entropy
(loss function) amount, alongside with final validation accuracy.
Rolled averages for those four values for training sessions of
96,000 steps are shown (Figure 8).

As observed, the cross entropy keeps falling steadily, and the
average difference between training and testing is not very large,
so overfitting is not an issue. Averaged over 5 runs of training,
the final accuracy result was a 95.89% (3928/3991) for 96,000
steps. Figure 9 shows a confusion matrix for this method.

Figure 10 is an illustration of a misclassified plot. Part (a) of
the image shows a typical lunge signal, whereas part (c) shows
a typical single leg squat signal. Part (b) in the middle shows
an example of a lunge repetition misclassified as a single leg

squat. The issue seems to be concentrated in the top part of the
image. The most likely reason for the odd lunge signal shape
is that the subject may have looked over their shoulder or twisted
for some reason during the repetition, and the final result is
confusing the classifier, as it would confuse an expert looking
directly at the plot.

These results are equivalent with a recently published method
on the same dataset whereby the accuracy was found to be
94.1% [17]. Figure 11 shows the confusion matrix for this
feature-based classification effort, and as it can be seen, the
results are similar. However, leave-one-subject-out-cross-
validation was used in this instance, so the results are not
directly comparable.

The emphasis on this work, though, is in the ease of setup by
using transfer learning and the need of only basic digital
processing skills to prepare the data, when compared with other
methods in this area.

Figure 8. Training (blue) and validation (green) accuracy during training phase, with final accuracy (orange) and cross entropy (red) for 96,000 steps.
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Figure 9. Confusion matrix for the machine vision-based classification method.

Figure 10. A lunge signal (a), a lunge signal misclassified as a single leg squat (b), and a single leg squat signal (c) for comparison.

Figure 11. Confusion matrix for the feature based classification method.
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Discussion

Principal Findings
An analysis of the data collected with the method proposed
obtained an average 95.89% (3827/3991) classification accuracy,
which is competitive with current state-of-the-art techniques.
This high level of accuracy indicates that the distinctive
waveforms in the plots for each of the exercises can be
generalized among different participants, and the patterns
created are appropriate for classification efforts. These results
are coupled with the underlying recurrent theme for this
work—to enable a more approachable entry path into the HAR
and ED fields. To do so, high-level machine learning
frameworks, coupled with a novel use of machine vision
techniques, are used in two main ways: first, to avoid the
complexity of manually crafted features only available through
advanced DSP techniques, and second, to facilitate
dimensionality reduction by allowing the CNN to take care of
both feature extraction and classification tasks.

Comparison With Prior Work
The methodology employed and the results achieved in this
paper can be directly compared with a recently published ED
paper on the exact same dataset [17]. In this recently published
work, identical filtering and segmentation methodologies were
employed. However, a vast amount of additional signals and
data processing were required to achieve classification with the
lumbar worn IMU. As well as the 6 signals from the
accelerometer and gyroscope used in this paper, 12 additional
signals were used for classification. These were magnetometer
x, y, and z, magnitude of acceleration, magnitude of rotational
velocity, and the IMU’s three-dimensional (3-D) orientation as
represented by a rotation quaternion (W, X, Y, and Z) and Euler
angles (pitch, roll, and yaw). Furthermore, 19 features were
then computed from the segmented epochs of the 18 signals.
These features were namely “mean,” “RMS,” “standard
deviation,” “kurtosis,” “median,” “skewness,” “range,”
“variance,” “max,” “index of max,” “min,” “index of min,”
“energy,” “25th percentile,” “75th percentile,” “level crossing
rate,” “fractal dimension,” and the “variance of both the
approximate and detailed wavelet coefficients using the
Daubechies 4 mother wavelet to level 7.” This resulted in a total
of 342 features per exercise repetition. These features and their
associated exercise label were used to evaluate and train a
random forests classifier with 400 trees. Following
leave-one-subject-out-cross-validation an accuracy result of
94.64% was achieved with this method. This recent work also
demonstrated the laborious process of identifying the most
important features for classification that can improve the
efficiency of the reported technique used.

Although the accuracy result achieved in this recent work
(94.64%) is slightly less than that presented in this paper
(95.89%), the results should not be directly compared. This is
because the additional signals used by O’Reilly et al [17] and
the different method of cross-validation utilized in both studies
to compute accuracy mean it is not a perfectly like-for-like
comparison. However, it can be stated that similar levels of
accuracy have been achieved with both methods. Most

importantly, the ease of implementation of the classification
method presented here greatly exceeds that presented by
O’Reilly et al [17]. Most notably, the need to use additional
signals and derive many features from them has been eliminated.
This minimizes the signal processing and machine learning
experience needed by the person investigating the possibility
of creating a classifier. This is in line with the core objective of
this paper.

Limitations
Simplicity was of utmost importance when designing this novel
classification method for accelerometer and gyroscope data.
Subsequently, maximal possible accuracy may not have been
achieved. Utilizing a better understanding on how to
parameterize the retraining effort and other techniques such as
fine tuning (a method to reuse certain parts of a pretrained
network instead of simply changing the last layer and classifier),
could produce better results. A better understanding on how to
deal with the type of data we are using could be beneficial. In
general, machine vision work is plagued with issues such as
partial occlusion, deformation, or viewpoint variation, which
the data in this work does not suffer from. Due to that, and also
to make the baseline of this work as simple as possible, no data
augmentation or any kind of image processing techniques has
been used. The results reported have been obtained only with
resources from readily available frameworks, mostly on default
settings.

It should also be noted that the presented method of classifying
inertial sensor data with machine vision techniques has only
been evaluated on exemplar samples of exercises that were
conducted in a laboratory setting. Results are of high accuracy
and competitive, with recent work on the same dataset [17] and
therefore, act as a proof of concept for the method. However,
the method has not yet been evaluated in classifying inertial
sensor data arising from free-living activities and other HAR
classification tasks. Future work should investigate the method’s
efficacy in such areas. Of key importance will be to simplify
each application’s preprocessing and segmentation of the inertial
sensor data.

Conclusions
This paper has described a novel application approach for the
classification of inertial sensor data in the context of HAR.
There are two stand-out benefits of the machine vision approach
described. The first is the ease of setting up the infrastructure
for the CNNs involved through the use of transfer learning. The
second is the reduction in the depth of digital signal processing
expertise required on the part of the investigator. Due to the
many difficulties in creating inertial sensor based activity
recognition systems, the authors believe there is a need for a
system development path which is easier to use for people who
lack significant background in signal processing and machine
learning. In particular, the new development pathway should
eliminate the most difficult tasks conventionally identified with
this area, that is, feature development or extraction and
dimensionality reduction for the best machine learning method
for each new application (Figure 1). The new development
pathway, although eliminating these steps, does not compromise
the attainment of high quality classification accuracy, sensitivity,
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and specificity which is currently achieved through their
successful implementation by appropriate experts (Figure 4).
The exemplar study described here illustrates that the method
is very competitive in comparison with customized solutions.
Either way, the new pathway, at the very least, will allow for
the easier testing of hypotheses relating to new inertial
sensor-based activity classification systems, that is, is the
classification possible at all based on the collected dataset?
Ideally, it should also achieve equivalent.

Whereas the presented method does successfully eliminate the
need for feature crafting and identification of optimal
classification algorithms, it does not eliminate the process of
signal preprocessing and signal segmentation before performing
classification. Therefore, there remains some complexity in the
process of achieving exercise classification when using the
machine vision technique. However, the authors consider the
process of filtering, segmenting, and plotting inertial sensor
signals considerably less complex than identifying and
computing strong features and an optimal classification method
for the classification of inertial sensor data.

Future Work
Even though the current infrastructure used is readily available,
certain skills such as familiarity with Docker or with Python
data science stacks and basic DSP skills are still needed. The
creation of a full package that could be installed on the
researcher’s machine could be an avenue to explore. Also the
preprocessing and segmentation steps to prepare the data could
be simplified by providing a set of scripts.

A number of professional machine vision companies exist in
the market, and some provide online services that allow
retraining of their custom models and could also be used for
this type of work, avoiding the need for setting up the CNN
infrastructure locally.

The availability of this technology on Android mobile devices
is something that the authors are also pursuing. TensorFlow
may provide some initial support in this area. Finally, although
this paper emphasizes the lack of a necessity to present features
other than the basic time series, it is clear that augmentation
with derived features presents further opportunities for
performance tweaking. For researchers more comfortable with
such feature development, this application avenue is worth
exploring.

Acknowledgments
The Insight Centre for Data Analytics is supported by Science Foundation Ireland under grant number SFI/12/RC/2289. This
project was also partly funded by the Irish Research Council as part of a Postgraduate Enterprise Partnership Scheme with Shimmer
(EPSPG/2013/574).

Conflicts of Interest
None declared.

References

1. Arxiv. 2016 Mar 16. TensorFlow: large-scale machine learning on heterogeneous distributed systems URL: https://arxiv.
org/abs/1603.04467 [accessed 2017-07-25] [WebCite Cache ID 6sDHItHpX]

2. Perez A, Labrador M, Barbeau S. G-Sense: a scalable architecture for global sensing and monitoring. IEEE Network 2010
Jul;24(4):57-64. [doi: 10.1109/MNET.2010.5510920]

3. Lara OD, Labrador MA. A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutorials
2013;15(3):1192-1209. [doi: 10.1109/SURV.2012.110112.00192]

4. Whelan DF, O'Reilly MA, Ward TE, Delahunt E, Caulfield B. Technology in rehabilitation: evaluating the single leg squat
exercise with wearable inertial measurement units. Methods Inf Med 2017 Mar 23;56(2):88-94. [doi: 10.3414/ME16-02-0002]
[Medline: 27782290]

5. Preece SJ, Goulermas JY, Kenney LP, Howard D, Meijer K, Crompton R. Activity identification using body-mounted
sensors--a review of classification techniques. Physiol Meas 2009 Apr;30(4):R1-33. [doi: 10.1088/0967-3334/30/4/R01]
[Medline: 19342767]

6. Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors 2014;14(7):11957-11992. [doi:
10.3390/s140711957]

7. Kim E, Helal S, Cook D. Human activity recognition and pattern discovery. IEEE Pervasive Comput 2010;9(1):48 [FREE
Full text] [doi: 10.1109/MPRV.2010.7] [Medline: 21258659]

8. Sugawara E, Nikaido H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with
those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother 2014 Dec;58(12):7250-7257 [FREE
Full text] [doi: 10.1128/AAC.03728-14] [Medline: 25246403]

9. Moreno-Torres JG, Saez JA, Herrera F. Study on the impact of partition-induced dataset shift on k-fold cross-validation.
IEEE Trans Neural Netw Learn Syst 2012 Aug;23(8):1304-1312. [doi: 10.1109/TNNLS.2012.2199516] [Medline: 24807526]

10. Razavi HA, Kurfess TR. Detection of wheel and workpiece contact/release in reciprocating surface grinding. J Manuf Sci
Eng 2003;125(2):394. [doi: 10.1115/1.1559160]

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 8 | e115 | p. 11http://mhealth.jmir.org/2017/8/e115/
(page number not for citation purposes)

Dominguez Veiga et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
http://www.webcitation.org/

                                            6sDHItHpX
http://dx.doi.org/10.1109/MNET.2010.5510920
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.3414/ME16-02-0002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27782290&dopt=Abstract
http://dx.doi.org/10.1088/0967-3334/30/4/R01
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19342767&dopt=Abstract
http://dx.doi.org/10.3390/s140711957
http://europepmc.org/abstract/MED/21258659
http://europepmc.org/abstract/MED/21258659
http://dx.doi.org/10.1109/MPRV.2010.7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21258659&dopt=Abstract
http://aac.asm.org/cgi/pmidlookup?view=long&pmid=25246403
http://aac.asm.org/cgi/pmidlookup?view=long&pmid=25246403
http://dx.doi.org/10.1128/AAC.03728-14
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25246403&dopt=Abstract
http://dx.doi.org/10.1109/TNNLS.2012.2199516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24807526&dopt=Abstract
http://dx.doi.org/10.1115/1.1559160
http://www.w3.org/Style/XSL
http://www.renderx.com/


11. Flaxman AD, Vahdatpour A, Green S, James SL, Murray CJ, Population Health Metrics Research Consortium (PHMRC).
Random forests for verbal autopsy analysis: multisite validation study using clinical diagnostic gold standards. Popul Health
Metr 2011 Aug 04;9:29 [FREE Full text] [doi: 10.1186/1478-7954-9-29] [Medline: 21816105]

12. Singh KP, Basant N, Gupta S. Support vector machines in water quality management. Anal Chim Acta 2011 Oct
10;703(2):152-162. [doi: 10.1016/j.aca.2011.07.027] [Medline: 21889629]

13. Dudani SA. The distance-weighted k-nearest-neighbor rule. IEEE Trans Syst, Man, Cybern 1976 Apr;SMC-6(4):325-327.
[doi: 10.1109/TSMC.1976.5408784]

14. Bishop CM. Pattern Recognition and Machine Learning. New York, NY: Springer; 2006.
15. Giggins O, Kelly D, Caulfield B. Evaluating rehabilitation exercise performance using a single inertial measurement unit.

2013 Presented at: Pervasive Computing Technologies for Healthcare; May 5-8, 2013; Venice, Italy p. 49-56. [doi:
10.4108/icst.pervasivehealth.2013.252061]

16. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation.
J Neuroeng Rehabil 2012;9:21 [FREE Full text] [doi: 10.1186/1743-0003-9-21] [Medline: 22520559]

17. O'Reilly M, Whelan D, Ward T, Delahunt E, Caulfield B. Technology in S&C: tracking lower limb exercises with wearable
sensors. J Strength Cond Res 2017 Feb 15:- Epub ahead of print. [doi: 10.1519/JSC.0000000000001852] [Medline:
28234711]

18. Bassett SF. The assessment of patient adherence to physiotherapy. NZ J Physiother 2003;31(2):60-66.
19. Nyan MN, Tay FE, Seah KH, Sitoh YY. Classification of gait patterns in the time-frequency domain. J Biomech

2006;39(14):2647-2656. [doi: 10.1016/j.jbiomech.2005.08.014] [Medline: 16212968]
20. Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors 2012;12(2):2255-2283. [doi:

10.3390/s120202255]
21. Mo L, Li F, Zhu Y, Huang A. Human physical activity recognition based on computer vision with deep learning model.

2016 Presented at: Instrumentation and Measurement Technology Conference; May 23-26, 2016; Taipei, Taiwan p. 1-6.
[doi: 10.1109/I2MTC.2016.7520541]

22. Stefic D, Patras I. Action recognition using saliency learned from recorded human gaze. Image Vis Comput 2016
Aug;52:195-205. [doi: 10.1016/j.imavis.2016.06.006]

23. Ma M, Fan H, Kitani KM. Going deeper into first-person activity recognition. 2016 Presented at: IEEE Conference on
Computer Vision and Pattern Recognition; June 27-30, 2016; Seattle, WA p. 1894-1903. [doi: 10.1109/CVPR.2016.209]

24. Zeng M, Nguyen LT, Yu B, Mengshoel OJ, Zhu J, Wu P, et al. Convolutional neural networks for human activity recognition
using mobile sensors. 2014 Presented at: 6th International Conference on Mobile Computing, Applications and Services;
November 6-7, 2014; Austin, Texas p. 197-205. [doi: 10.4108/icst.mobicase.2014.257786]

25. Yang, J., Nguyen, M.N., San, P.P., Li, X. and Krishnaswamy, S., Yang JB, Nguyen MN, San PP, Li XL, Krishnaswamy
S. Deep convolutional neural networks on multichannel time series for human activity recognition. 2015 Presented at:
Proceedings of the 24th International Conference on Artificial Intelligence; July 25-31, 2015; Buenos Aires, Argentina p.
3995-4001.

26. Radu V, Lane ND, Bhattacharya S, Mascolo C, Marina M, Kawsar F. Towards multimodal deep learning for activity
recognition on mobile devices. 2016 Presented at: Proceedings of the 2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct; September 12-16, 2016; Heidelberg, Germany p. 185-188. [doi:
10.1145/2968219.2971461]

27. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015 May 28;521(7553):436-444. [doi: 10.1038/nature14539]
[Medline: 26017442]

28. Cruz-Roa AA, Arevalo OJ, Madabhushi A, González OF. A deep learning architecture for image representation, visual
interpretability and automated basal-cell carcinoma cancer detection. Med Image Comput Comput Assist Interv 2013;16(Pt
2):403-410. [Medline: 24579166]

29. Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. Arxiv. 2014. CNN features off-the-shelf: an astounding baseline
for recognition URL: https://arxiv.org/abs/1403.6382 [accessed 2017-07-25] [WebCite Cache ID 6sDKO67Go]

30. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? 2014 Presented at:
Proceedings of the 27th International Conference on Neural Information Processing Systems; December 08-13, 2014;
Montreal, Canada p. 3320-3328.

31. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al. Caffe: convolutional architecture for fast feature
embedding. 2014 Presented at: Proceedings of the 22nd ACM international conference on Multimedia; November 03-07,
2014; Orlando, FL p. 675-678. [doi: 10.1109/72.279181]

32. Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. ImageNet: a large-scale hierarchical image database. 2009 Presented at:
2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009); June 20-25, 2009;
Miami, FL. [doi: 10.1109/CVPR.2009.5206848]

33. Tensorflow. TensofFlow image retraining example URL: https://www.tensorflow.org/how_tos/image_retraining/ [accessed
2017-02-07] [WebCite Cache ID 6o6I1SMkw]

34. Jerri A. The Shannon sampling theorem - its various extensions and applications: a tutorial review. Proc IEEE 1977
Nov;65(11):1565-1596. [doi: 10.1109/PROC.1977.10771]

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 8 | e115 | p. 12http://mhealth.jmir.org/2017/8/e115/
(page number not for citation purposes)

Dominguez Veiga et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://pophealthmetrics.biomedcentral.com/articles/10.1186/1478-7954-9-29
http://dx.doi.org/10.1186/1478-7954-9-29
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21816105&dopt=Abstract
http://dx.doi.org/10.1016/j.aca.2011.07.027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21889629&dopt=Abstract
http://dx.doi.org/10.1109/TSMC.1976.5408784
http://dx.doi.org/10.4108/icst.pervasivehealth.2013.252061
http://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-9-21
http://dx.doi.org/10.1186/1743-0003-9-21
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22520559&dopt=Abstract
http://dx.doi.org/10.1519/JSC.0000000000001852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28234711&dopt=Abstract
http://dx.doi.org/10.1016/j.jbiomech.2005.08.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16212968&dopt=Abstract
http://dx.doi.org/10.3390/s120202255
http://dx.doi.org/10.1109/I2MTC.2016.7520541
http://dx.doi.org/10.1016/j.imavis.2016.06.006
http://dx.doi.org/10.1109/CVPR.2016.209
http://dx.doi.org/10.4108/icst.mobicase.2014.257786
http://dx.doi.org/10.1145/2968219.2971461
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26017442&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24579166&dopt=Abstract
https://arxiv.org/abs/1403.6382
http://www.webcitation.org/

                                            6sDKO67Go
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://www.tensorflow.org/how_tos/image_retraining/
http://www.webcitation.org/

                                            6o6I1SMkw
http://dx.doi.org/10.1109/PROC.1977.10771
http://www.w3.org/Style/XSL
http://www.renderx.com/


35. Earle RW, Baechle TR. NSCA's Essentials of Personal Training. Champaign, IL: Human Kinetics; 2004.
36. Whatman C, Hing W, Hume P. Physiotherapist agreement when visually rating movement quality during lower extremity

functional screening tests. Phys Ther Sport 2012 May;13(2):87-96. [doi: 10.1016/j.ptsp.2011.07.001] [Medline: 22498149]
37. Myer GD, Ford KR, Hewett TE. Tuck jump assessment for reducing anterior cruciate ligament injury risk. Athl Ther Today

2008 Sep 01;13(5):39-44 [FREE Full text] [Medline: 19936042]
38. Docker. Tensorflow docker conatiner URL: https://hub.docker.com/r/tensorflow/tensorflow/ [accessed 2017-02-07] [WebCite

Cache ID 6o6I63rVr]
39. Github. Image retraining script URL: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/

image_retraining/retrain.py [accessed 2017-02-07] [WebCite Cache ID 6o6IAPV4K]
40. Github. Image classification script URL: https://github.com/tensorflow/models/blob/master/tutorials/image/imagenet/

classify_image.py [accessed 2017-02-07] [WebCite Cache ID 6o6IE43KZ]

Abbreviations
3-D: three-dimensional
CNN: convolutional neural network
CPU: central processing unit
DSP: digital signal processing
ED: exercise detection
GPU: graphics processing unit
HAR: human activity recognition
IMU: inertial measurement unit
SD: standard deviation

Edited by G Eysenbach; submitted 16.02.17; peer-reviewed by L Mo, G Norman; comments to author 30.03.17; revised version
received 10.05.17; accepted 31.05.17; published 04.08.17

Please cite as:
Dominguez Veiga JJ, O'Reilly M, Whelan D, Caulfield B, Ward TE
Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation
JMIR Mhealth Uhealth 2017;5(8):e115
URL: http://mhealth.jmir.org/2017/8/e115/
doi: 10.2196/mhealth.7521
PMID: 28778851

©Jose Juan Dominguez Veiga, Martin O'Reilly, Darragh Whelan, Brian Caulfield, Tomas E Ward. Originally published in JMIR
Mhealth and Uhealth (http://mhealth.jmir.org), 04.08.2017. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in JMIR mhealth and uhealth, is properly cited. The
complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/, as well as this copyright and
license information must be included.

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 8 | e115 | p. 13http://mhealth.jmir.org/2017/8/e115/
(page number not for citation purposes)

Dominguez Veiga et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.ptsp.2011.07.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22498149&dopt=Abstract
http://europepmc.org/abstract/MED/19936042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19936042&dopt=Abstract
https://hub.docker.com/r/tensorflow/tensorflow/
http://www.webcitation.org/

                                            6o6I63rVr
http://www.webcitation.org/

                                            6o6I63rVr
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py
http://www.webcitation.org/

                                            6o6IAPV4K
https://github.com/tensorflow/models/blob/master/tutorials/image/imagenet/classify_image.py
https://github.com/tensorflow/models/blob/master/tutorials/image/imagenet/classify_image.py
http://www.webcitation.org/

                                            6o6IE43KZ
http://mhealth.jmir.org/2017/8/e115/
http://dx.doi.org/10.2196/mhealth.7521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28778851&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

