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Abstract

Background: The use of embedded smartphone sensors offers opportunities to measure physical activity (PA) and human
movement. Big data—which includes billions of digital traces—offers scientists a new lensto examine PA in fine-grained detail
and allows us to track people’s geocoded movement patterns to determine their interaction with the environment.

Objective: Theobjective of thisstudy wasto examinethe validity of the Movn smartphone app (Moving Analytics) for collecting
PA and human movement data.

Methods: The criterion and convergent validity of the Movn smartphone app for estimating energy expenditure (EE) were
assessed in both laboratory and free-living settings, compared with indirect calorimetry (criterion reference) and a stand-alone
accelerometer that iscommonly used in PA research (GT1m, ActiGraph Corp, convergent reference). A supporting cross-validation
study assessed the consistency of activity data when collected across different smartphone devices. Global positioning system
(GPS) and accelerometer datawereintegrated with geographical information software to demonstrate the feasibility of geospatial
analysis of human movement.

Results: A total of 21 participants contributed to linear regression analysis to estimate EE from Movn activity counts (standard
error of estimation [ SEE]=1.94 kcal/min). The equation was cross-validated in an independent sample (N=42, SEE=1.10 kcal/min).
During laboratory-based treadmill exercise, EE from Movn was comparable to calorimetry (bias=0.36 [—0.07 to 0.78] kcal/min,
tg,=1.66, P=.10) but overestimated as compared with the ActiGraph accelerometer (bias=0.93 [0.58-1.29] kcal/min, tgg=5.27,

P<.001). The absolute magnitude of criterion biases increased as a function of locomotive speed (F; ,=7.54, P<.001) but was
relatively consistent for the convergent comparison (F, ,=1.26, P<.29). Furthermore, 95% limits of agreement were consistent

for criterion and convergent biases, and EE from Movn was strongly correlated with both reference measures (criterion r=.91,
convergent r=.92, both P<.001). Movn overestimated EE during free-living activities (bias=1.00 [0.98-1.02] kcal/min, tg;,5=101.49,

P<.001), and biases were larger during high-intensity activities (F3 ¢;20=1550.51, P<.001). In addition, 95% limits of agreement
for convergent biases were heterogeneous across free-living activity intensity levels, but Movn and ActiGraph measures were
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strongly correlated (r=.87, P<.001). Integration of GPS and accelerometer data within a geographic information system (GIS)

enabled creation of individual temporospatial maps.

Conclusions: The Movn smartphone app can provide valid passive measurement of EE and can enrich these data with
contextualizing temporospatial information. Although enhanced understanding of geographic and temporal variation in human
movement patterns could inform intervention development, it also presents challenges for data processing and analytics.

(IMIR Mhealth Uhealth 2017;5(8):€122) doi: 10.2196/mhealth.7167
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Introduction

The World Health Organization (WHO) recognizes physical
inactivity asone of the leading global risk factorsfor morbidity
and premature mortality [1]. Despite the considerable benefits
of regular physical activity (PA; [2,3]), it has been estimated
that 21.4% of the global population is inactive (perform little
or no activity), with greater prevalence of physical inactivity
among most developed countries (27.8%; [4]).

To move forward in PA research, it has been suggested that
“more of the sameis not enough” [5]. Different approaches are
needed to reduce the burden of disease associated with physical
inactivity. Technological innovations such as smartphones and
wearabl e sensors offer potential to improve the reach, enhance
delivery (greater frequency of contact and duration of
intervention), and increase effectiveness of interventions to
improve PA levels. Despitetheir potential, it isunclear whether
these new devices provide research-grade precision
measurement. To address this concern, a number of validation
studies have been conducted [6-8].

Compared with the frequently used ActiGraph accelerometer,
studies have demonstrated acceptable levels of agreement over
periods of 7 days against the Fithit Zip wearable sensor [6] and
CalFit smartphone app [8]. Despite the acceptable measurement
properties of new wearabl e sensors, the benefit of smartphones
isthat they are carried by most people, most of thetime. At the
population level, their ubiquitous use, the big data (millions of
data points) and geospatial information generated by
smartphones may offset any potential measurement inaccuracies
by providing valuable insight into behaviora patterns (eg,
temporal stability) and their contexts. Moreover, the potential
of these technologies are vast. For example, coupled with the
Internet of Things[9], smartphones can be used to track people’s
movement within cities or environments, thereby providing a
rich source of contextual information and the potential to deliver
“just-in-time” interventions. Compared with stand-alone
accelerometers, smartphones offer advantages in terms of
usability and integration of supplementary data. These features
support the delivery of more responsive, engaging, and
context-specific interventions that could improve uptake,
adherence, and effectiveness.

Few published studies have explored the utility of smartphones
to measure both PA and human movement. A recent convergent
vaidity study comparing an Android smartphone activity tracker
against the ActiGraph accelerometer found acceptable
associations and agreement in both laboratory and free-living

http://mhealth.jmir.org/2017/8/€122/

environments [10]. To extend the evidence, further validation
work against criterion measuresis required [11]. Furthermore,
health is geospatial, and if we can see trends in behavior
spatially, we can monitor (and improve) population and
individuals' needs [12]. To illustrate, Gonzélez et al [13] used
anonymized cellular phone data from 100,000 users in New
York, United States, to capture peopl€e’s position over a period
of 6 months. They showed that human trajectories had a high
degree of temporal and spatial regularity. In other words,
humans follow simple reproducible patterns; this in turn has
important implications for interventions to enhance human
mobility [13]. In PA research, the feasibility of linking global
positioning system (GPS) and accel erometer datahas been well
established [14-16]. However, these studies have typically
involved the use of 2 separate devices (accel erometer and GPS)
for limited periods (7-28 days). Smartphone apps offer
advantages over these approaches; they are relatively cheap,
readily available, incorporate native sensors (GPS, gyroscopes,
and accelerometers), and permit passive data collection—thus
requiring minimal input from participants. This has clear
advantages in terms of reducing participant burden for research.

We aimed to examine the validity of the Movn smartphone app
for estimating PA energy expenditure (EE) and quantifying
human movement patterns. Two validation studies were
conducted against criterion and convergent methods, a
supporting cross-validated study assessed the consistency of
activity data when collected across different devices. GPS and
geographic information system (GIS) data were integrated to
demonstrate the feasibility of geospatial analysis.

Methods

A dual-phase cross-sectional study was conducted to determine
the validity of the Movn smartphone app (Moving Analytics)
for assessing EE and human movement patterns during
laboratory-based and free-living daily activities among a
convenience sample of healthy adults. Phase 1 comprised
laboratory-based treadmill exercise at light to vigorous levels
of intensity and free-living daily activities. Phase 2 comprised
a cross-validation during laboratory-based activities among a
separate sample of participants. EE was the main measurement
of interest; it is the most appropriate outcome for validating
accelerometers as it can be directly related to the accepted
methods of PA categorization, compared with robust criterion
data collected viaindirect calorimetry, and allows standardized
comparison with other accelerometer devices [17].
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Study Participants and Recruitment

Inphase 1, atotal of 21 adults (13 female), aged 20 to 55 years,
were recruited in Dublin, Ireland (see Table 1). Participants
were recruited via direct contact through the university and by
word of mouth. Adultswere eligiblefor inclusion provided they
met the following criteria: aged 18 to 65 years, able to give
written informed consent, and able to communicate in English.
In Phase 2, atotal of 42 adults (27 male) aged between 18 and
33 years were recruited from the Greater Los Angeles Area.
Participants were recruited via direct contact through the
University of Southern Californiaand by word of mouth. Phase
1 and 2 study protocols were approved by the Dublin City
University Research Ethics Committee and the institutional
review board of the University of Southern California,
respectively.

Phase 1 Procedures

Upon arrival to the laboratory, participants completed
demographic information, including age and sex, and the
Physical Activity Readiness Questionnaire[18]; al were deemed
safe to exercise. Anthropometric measurements were taken;
height was measured to the nearest 0.1 cm with a portable
stadiometer, and weight was measured to the nearest 0.1 kg on
an electronic scale (Seca).

Reference accelerometry was quantified using the GT1M
(ActiGraph Corp), a dual-axis accel erometer with established
reliability and validity [19]. Epoch duration was set to 1 sduring
laboratory-based activities and 10 sduring free-living activities.
ActiGraph devices were fitted to an elastic belt on participants
right hip at the midaxillary line for the duration of the test.
Comparison accelerometry was quantified using the Moto G
first-generation smartphone (Motorola Mobility LLC) running
Android version 4.3 (Google Inc) and aresearch version of the
Movn app. Movnisacommercially available app—for Android
and Apple iPhone operating systems—that uses inbuilt
smartphone accel erometers to passively quantify time spent in
moderate-to vigorous-intensity physical activities such as
walking and running. Raw accelerometer data were captured at
the maximum frequency permitted by the phone hardware
(at/above 200 Hz) and downsampled to 50 Hz. The Movn app
samples GPS data every 30 min unless movement is detected,
and every minute during periods of movement; this sampling
approach was adopted to bal ance sampling frequency and power
consumption. Movn also allows usersto set daily PA goalsand
can issue prompts throughout the day to facilitate goal
achievement. The smartphone was secured in a phone holder
and positioned adjacent to the ActiGraph accelerometer. The
same phone was used for al the participants.

Following familiarization with the smartphone and
accelerometer, the K4b2 portableindirect calorimeter (Cosmed)
was used to assess resting and exercise EE [20]. A 2-point
calibration procedure was conducted before each testing session
according to the manufacturer’s guidelines. Calibration of the
oxygen (O,) and carbon dioxide (CO,) sensors was performed
with standard gases of known concentrations (gas 1: 0,=20.93%,
C0,=0.04%; gas 2: 0,=15.00%, CO,=5.00%). Respiratory
volume was calibrated using a 3-L syringe. The rate of EE was
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estimated using the following formulaas calculated by the K4b2
system: EE (kcal/min)=(3.781 x V'O,) + (1.237 x V'CO,) if
UN (ureanitrogen)=0, where V"' O,=oxygen uptake (L/min) and
V' CO,=carbon dioxide production (L/min) [20].

A face mask (Hans Rudolf) held in place by a nylon harness
covered the participants' nose and mouth. The mask was
attached to abidirectional digital turbine flow meter to measure
the volumes of inspired and expired air. Heart rate data were
captured using the FT1, achest-worn sensor (Polar Electro Oy).

Once instrumented, participants remained seated for 15 min
while physiological data were recorded; the last 5 min of data
were averaged to calculate resting EE. Participants then
completed four discrete bouts of walking and running on a
motorized treadmill (Quasar Med, H/P Cosmos Sports &
Medical GmbH). Partici pants compl eted 5-min bouts of exercise
at light (4 km/h and 6 km/h), moderate (10 km/h), and vigorous
intensity levels (=12 km/h), separated by 3-min bouts of passive
recovery.

Following laboratory-based activities, participants were
instructed to wear the ActiGraph accelerometer (as described
above) and carry the smartphone (asthey would normally carry
their personal phone) for 24 hours during free-living daily
activities. Participants were instructed to remove the devices
during water-based activities such as swimming, showering,
and bathing. An optional sports armband carry case was
provided to participants who preferred this carry method during
free-living exercise. After 24 hours, participants returned the
phone and accel erometer.

Phase 2 Procedures

Proceduresfor the cross-validation sampl e have been described
elsewhere [21]. In brief, each participant wore a Samsung
Galaxy Nexus S phone, Android version 2.3.3 with Movn app,
installed on the right iliac crest with a belt holder to record
movement. EE was measured by the Oxycon portable indirect
calorimeter (CareFusion) worn in a backpack fitted to the
comfort of the participant. Participants completed three 6-min
bouts of treadmill walking (4, 5, and 6 km/h), separated by 2
min of passive recovery.

Data Handling

Heart rate, calorimeter, and ActiGraph data were downloaded
using the manufacturers software; smartphone data were
downloaded using a text reader, exported for manual analysis,
and synchronized in postprocessing.

Mean values were calculated during the last 2 min of each
laboratory-based activity bout, following similar proceduresin
phase 1 and 2. Free-living accelerometer data were cleaned by
removing nonwear time, equivalent to >60 min of continuous
zero counts. A minimum of 10 hours of available free-living
data were required for the analysis. Data were processed to
generate comparable units of EE for analysis[17].

Statistical Analysis

Statistical analyseswere performed using the Statistical Package
for the Socia Sciences (SPSS) version 21 for Windows (IBM
Corp).

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 8| €122 | p. 3
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MHEALTH AND UHEALTH

To derive estimates of EE from Movn activity counts,
multivariate regression was conducted following established
methods [19] to identify the strongest relationship between
Movn activity counts, participant characteristics, and EE
measured via indirect calorimetry. Estimates of EE were then
used to identify Movn activity count threshol ds associated with
accepted classifications for light (<3 metabolic equivalent of
task [MET]), moderate (3-6 MET), hard (6-9 MET), and very
hard (>9 MET) activity intensity levels [19]. The regression
equation was also applied to phase 2 laboratory-based data to
cross-validate the accuracy of EE estimation among an
independent sample using different smartphone hardware.

EE measurement validity was evaluated following guidelines
proposed by Welk et a [17], who suggest that agreement
between two measurement methods requires demonstration of
three unique characteristics: equivalent group estimates,
association between measurements, and absence of systematic
and/or heterogeneous bias. Furthermore, supplementary analyses
at an individual level are also recommended to determine
whether group-level agreement isconsistent acrossindividuals.

The criterion and convergent validity of Movn EE measurement
were assessed compared with EE measured via indirect
calorimetry during phase 1 |aboratory-based activities and with
EE estimated from ActiGraph movement counts during phase
1laboratory and free-living activities, respectively; t-testswere
conducted to detect systematic criterion and convergent
group-level measurement biases. Simple analyses of variance
were al so conducted to determine whether group-level criterion
or convergent measurement biases were affected by activity
intensity level during laboratory-based activities; significant
main effects were explored with Bonferroni-corrected paired
comparisons(ie, least significant difference P x N(N-1)/2 paired
comparisons). Furthermore, 95% limits of agreement for biases
were cal cul ated to assess absol ute measurement agreement and
homogeneity of biases across the measurement range [22,23].
Relationships between Movn and reference measurement
methods were assessed by calculating Pearson correlation
coefficients and two-way random effects intraclass correlation
coefficients for absolute agreement (ICC).

Supplementary  analyses compared time-synchronized
group-level measurements throughout the laboratory-based
activity protocol to determine agreement between measurement

Table 1. Participant characteristics.
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patterns [17]. Furthermore, individual-level biases were
calculated to determine whether group-level agreement was
consistent across the sample.

To determine the feasibility of using smartphone sensor datato
ascertain the geographic location of activity and patterns of
human movement, accelerometer and GPS datawere combined
to provide an indication of the location and intensity of PA.
Data were imported into ArcGIS version 10.2.2 (Esti)
transformed to location points and interpolated into
two-dimensional (2D) spatial paths and three-dimensional (3D)
spatiotemporal trajectories.

Descriptive dataare reported as mean (standard deviation); bias
data are reported as mean and 95% CI; alpha=.05 for all
hypothesis tests.

Results

Phase 1 participantsincluded 21 adults (13 female) aged 20 to
55 years (see Table 1); phase 2 participants included 42 adults
(27 male) aged 18 to 33 years. All participants were at normal
weight.

Estimating Energy Expenditure

A multivariate regression model including Movn activity counts
and participant body mass was the strongest predictor of

measured EE (Equation 1, r?=.83; SEE=1.94 kcal/min). The
relationship between measured and predicted EE is shown in
Figure 1.

Equation 1: EE (kcal)=0.00063 x activity level (countsmin) +
0.121 x body mass (kg) — 5.66

Equation 1 was used to identify Movn activity count thresholds
that correspond with accepted classifications of light (<3 MET),
moderate (3-6 MET), hard (6-9 MET), and very hard (=9 MET)
activity intensity levels [19]; thresholds derived from phase 1
laboratory-based data are presented in Table 2. A correction
factor (2121) was applied to the smartphone accel erometer data
to facilitate scale congruence and allow comparison between
Movn and ActiGraph activity counts.

When applied to the cross-validation sample (phase 2), Equation
1 estimation accuracy was lower during laboratory-based

walking (r?=.24; SEE=1.10 kcal/min).

Demographics Phase 1 Phase 2
Mean (SD) Mean (SD)
N (men/women) 21 (8/13) 42 (27/15)
Age, inyears 27(7.9) 26 (3.8)
Height (cm) 171.2(7.3) 172 (8)
Weight (kg) 70.5 (11.6) 68 (12.0)
Body mass index (kg/m?) 231(26) 220(3.0)
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Table 2. Movn activity count thresholds for classifying activity intensity level.

Activity intensity level® MET®range Activity (counts/min)
Light <3 <1253

Moderate 3-6 1253-1272

Hard 6-9 1273-6987

Very hard =9 >6987

8Activity intensity level classification adapted from Freedson et al [19].
BMET: metabolic equivalent of task.

Figure 1. Relationship between measured energy expenditure (EE; indirect calorimetry) and Movn app EE derived from multivariate regression of
Movn activity counts on measured EE during phase 1 laboratory-based activities.
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Laboratory-Based Activities

Criterion Validity

Table 3 summarizes EE during phase 1 laboratory-based
treadmill exercise, assessed with indirect calorimetry, Movn,
and ActiGraph. Movn overestimated EE compared with the
criterion indirect calorimetry method (Table 3), but the small
magnitude did not represent a systematic measurement bias
(t5=1.66, P=.10). A dtatistically significant main effect of
activity intensity level was detected on measurement biases
(F14=7.54, P<.001), indicating systematic variance across
laboratory-based activity levels. The Movn app overestimated
EE at rest and slower locomotive speeds and underestimated
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EE at faster |locomotive speeds (Table 3). Bonferroni-corrected
paired comparisons revealed that the absol ute EE measurement
bias at 12 km/h was statistically significantly larger than all
other speeds with the exception of 10 km/h. Furthermore, the
EE measurement bias at 10 km/h was statistically significantly
smaller than during rest.

The 95% limits of agreement for criterion EE measurement
biases were moderate at most activity intensity levels (Figure
2), indicating acceptable absolute measurement agreement.
Biaseswererelatively consistent across the measurement range;
however, variance was dightly wider at faster locomotive speeds
(10-12 km/h, Table 3). Finally, Movn and criterion EE measures
were strongly corrdlated (r=.91, 1CC=.95, both P<.001),
indicating excellent relative measurement agreement.
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Figure2. The 95% limits of agreement for phase 1 laboratory-based criterion energy expenditure measurement biases, categorized by activity intensity
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Convergent Validity

Compared with EE derived from the convergent reference
ActiGraph device during phase 1 laboratory-based activities,
Movn systematically overestimated EE (t59=5.27, P<.001, Table
3). There was no statistically significant main effect of activity
intensity level (F;4=1.26, P<.29), indicating convergent
measurement biases were relatively consistent across
laboratory-based activity levels.
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The 95% limits of agreement for convergent EE measurement
biaseswere also moderate at all activity intensity levels (Figure
3), indicating acceptable absolute measurement agreement.
Once again, measurement error wasrel atively consistent across
the measurement range; however, similar to the criterion
anaysis, variance was dightly wider at faster locomotive speeds
(10-12 km/h, Table 3). Finally, Movn and criterion EE measures
were strongly correlated (r=.92, 1CC=.93, both P<.001),
indicating excellent relative measurement agreement.
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Table 3.

Activity Energy expenditure (kcal/min) Biases (kcal/min)

Calorimeter Movn ActiGraph Criterion Convergent

Mean (SD) Mean (95% Cl)
Rest 1.75(0.64) 3.25(1.80) 1.83 (1.68) 1,60 (0.85-2.35)%¢ 1.30 (0.65-1.96)
4km/h 4.15(1.20) 4.66 (1.69) 4.10 (1.83) 0,52 (-0.04t0 1.08)° 0.59 (0.22-0.95)
6 km/h 6.42 (2.13) 6.95 (2.45) 6.67 (2.30) 0.74 (-0.05to 1.52)° 0.40(-0.02t00.82)
10km/h 11.94 (2.22) 11.78 (2.18) 10.26 (2.52) 0,53 (~1.67 10 0.60) 1.08 (0.01-2.15)
12 km/h 14.15 (2.68) 11.76 (2.97) 10.87 (1.86) ~1.90 (-3.37 t0 ~0.42)*° 1.05(-0.81t02.92)
Total 7.08 (4.79) 7.45 (4.15) 6.54 (3.90) 0.36 (-0.07 t0 0.78) 0.93 (0.58-1.29)f

&€gystematic difference in bias between locomotive speeds (P<.001-.01, Bonferroni-corrected).

%Rest.
Bakmm/h.
Cekmvh.
d10kmvh.
e12kmih.

foverall systematic bias compared with the ActiGraph device (P<.001).

Energy expenditure=average during third and fourth min of each intensity bout.
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Figure 3. The 95% limits of agreement for phase 1 laboratory-based convergent energy expenditure measurement biases, categorized by activity

intensity level.

Supplementary Analyses

Supplementary analyses comparing time-synchronized
group-level measurements throughout the phase 1
laboratory-based activity protocol indicate that Movn and
calorimetry EE measurement patterns were very similar at low
and moderate activity intensity levels (Figure 4; [17]); however,
two important trends were identified. First, the Movn EE
measurement pattern diverts substantially below the criterion
calorimetry measurement late in the exercise protocol during
the fastest locomotive speeds; differing measurement patterns
at faster speeds indicate that the Movn app may be less valid
for quantifying high-intensity locomotive activities. Second,
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notable asynchronicity between Movn and caorimeter EE
measurement patterns reflects the expected latency between
changes in energy demands (ie, instant change in locomotive
speed) and physiological EE (ie, gradual increase in oxygen
consumption).

Examination of individual-level measurement biases reveaed
relatively small overestimation of total EE among the majority
of participants; however, EE was substantially overestimated
for 2 participants and underestimated for 6 participants (Figure
5; [17]). This inconsistency suggests Movn may have more
utility for group-level surveillance tool than individual-level
measurement.
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Figure4. Supplementary analysis of therelative accuracy of measured (indirect calorimetry) and estimated (Movn app) energy expenditure (EE) during
phase 1 laboratory-based activities. Minute-by-minute EE measured by the Movn app and criterion reference cal orimeter.
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Figure5. Supplementary analysisof therelative accuracy of measured (indirect calorimetry) and estimated (Movn app) energy expenditure (EE) during
phase 1 laboratory-based activities. Mean EE measurement biases across individual participants.
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Sensor wear time compliance was|lower than anticipated during
phase 1 free-living activities. After removing nonwear time,
only 8 participants met minimum data requirements. Participants
recorded an average of 766 (SD 189) min of activity on valid
days, yielding a total free-living convergent reference sample
of 6124 min. Table 4 summarizes EE during phase 1 free-living
activities, assessed with Movn and ActiGraph devices.
Compared with the convergent reference ActiGraph, Movn
overestimated EE during free-living activities (Table 4); the

http://mhealth.jmir.org/2017/8/€122/

mean bias was larger than during laboratory-based activity and
represented a systematic bias between devices (t51,3=101.49,
P<.001). Consistent with laboratory-based activities, a
statistically significant effect of activity intensity level wasalso
detected on free-living measurement biases (F3¢;,0=1550.51,
P<.001), indicating systematic variance in measurement biases
across commonly used levelsfor classifying free-living activity
intensity (Table 2). Movn overestimated EE during all
free-living activity levels and, with the exception of light- and
moderate-intensity activity levels, bias magnitudes grew with
activity intensity level (Table 4). Heterogeneous measurement
biases during free-living activity are presented in Figure 6,
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which has been graphically categorized by individual participant
(n=8) to highlight both the variancein resting EE, and relatively
consistent pattern of bias heterogeneity between individuals.
Positive and negative biases appear relatively symmetrical
within participants (Figure 6). Further investigation indicates
negative measurement biases may reflect periods of smartphone
noncarry time; however, as it was not possible to validate this

Table 4. Energy expenditure during phase 1 free-living activities.

Maddison et al

assumption, we conservatively treated the data as measurement
error.

Finally, despite the systematic bias, EE measures from Movn
and ActiGraph were strongly correlated (r=.87, ICC=.83, both
P<.001), indicating excellent relative measurement agreement
during free-living activities.

Level of intensity Energy expenditure (kcal/min)

Bias (kcal/min)

Movn ActiGraph Mean (95% Cl)
Mean (SD) Mean (SD)
Light (<3 metabolic equivalent of ~ 2.43 (1.15) 1.61(1.34) 0.83 (0.81-0.84)¢4
task [MET])
Moderate (3-6 MET) 2.32(0.86) 1.01(0.65) 1.31 (0.69-1.93)¢
Hard (6-9 MET) 4.19 (1.49) 2.24 (1.6) 1.96 (1.87-2.04)20d
Very hard (=9 MET) 7.66 (1.19) 4,25 (2.01) 3.41 (3.16-3.66)%°
Total 2.73 (1.51) 1.73 (1.45) 1.00 (0.98-1.02)¢

& d%/stematic difference in biases between activity intensity levels (P<.001-.02, Bonferroni-corrected).

3 ight.

bModerate.

CHard.

dVery hard.

€Overall systematic bias compared with the ActiGraph device (P<.001).

Figure6. The 95% limits of agreement for phase 1 free-living convergent energy expenditure measurement biases; categorized by individua participants

who recorded =10 hours activity data per day.
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Table 5. Accuracy of global positioning system (GPS) location data.

Maddison et al

Accuracy radius (m)2 Location samples n (%) Median accuracy radius (m)
<25 246 (32.3) 19

26-50 307 (40.3) 30

51-75 29 (3.8) 57

76-100 45 (5.9) 9

>100 134 (17.6) 2370

Total 761 (100.0) 30

368% probability of the true position lying within specified radii of the recorded location coordinates.

Understanding Geospatial Human Movement

Free-living accelerometry yielded 30,666 records; during this
time, Movn logged 761 GPS coordinate pairs. The majority of
GPS data (553/761, 72.7%) had acceptable location
measurement accuracy (68% probability of true position lying
within a50-m radius of recorded location; [24]) and the median
location accuracy radius was 30 m (Table 5); however, almost
20% of GPS location data were characterized by low
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RenderX

measurement accuracy (accuracy radius>100 m, median=2370
m).

Figure 7 presents an example of mapped daily location datafor
1 participant; blue and red markers indicate accuracy radii of
<50 m and >50 m, respectively. Straight pathswereinterpolated
between sequential |ocations; arrows show movement direction.
The circled location is likely erroneous given the significant
deviation from previous and subsequent locations over a
relatively short time and sharp turning angle (see the yellow
highlighted path).
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Figure7. Example of part|C| pant location markers and |nterpol ated spatlal path
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Figure 8. Detailed example of a participant’s daily movement. Position is depicted on the two-dimensional plane, and time is depicted on the vertical
plane. Graduated shading of the movement path indicates activity level (dark shading=higher activity level). Orange point markers represent locations

with an accuracy of >50 m.

23:47

23:00

21:00

19:00

17:00

15:00

13:00

11:00

Intensity of physical activity Light ~ Moderate

Thetemporal variability of activity intensity level isnot readily
displayed by the two dimensions, and dense concentrations of
location markers makeit difficult to resolve movement direction
sequences. To address this, a time-geography approach [25]
was used to present an enhanced 3D illustration of activity
patterns; position is depicted on atypical 2D plane, time on the
vertical plane, and intensity level using graduated shading
(Figure 8). Duration, sequence, and movement information can
be observed or inferred from such spatiotemporal trajectories,
for example, with the exception of the segmentsthat link to less
accurate locations (ie, vertices with orange marker points), the
main concentration of pointsand pathsindicate that thisnominal
participant spent the majority of the day (approximately 11:00
AM-17:40 PM) conducting light-intensity activities around a
central location. In the evening (approximately 17:40 PM-18:40
PM), the participant traveled a relatively long distance with
higher-intensity PA.

Discussion

Principal Findings

This study sought to examine the validity of the Movn
smartphone app for assessing PA and human movement patterns.
In agreement with previousresearch, Movn activity countswere
strongly related to measured EE, and the SEE for the predictive
function compared favorably with that reported by Freedson et
al [19]. Activity counts associated with thresholds for
categorizing intensity levelswere lower than those reported by
Freedson et a [19], possibly because of differences between
algorithms that convert raw accelerometer output signals (ie,
voltage) into activity counts. Compared with indirect cal orimetry
in a controlled laboratory setting, an absence of systematic

http://mhealth.jmir.org/2017/8/€122/

RenderX

Spatiotemporal trajectory

GPS accuracy <50

Hard

overall measurement bias, moderate limits of agreement, and
very strong correlations demonstrated good agreement for
Movn-derived estimates of EE. Agreement was not as strong
when using adifferent model smartphonein the cross-validation
model, and this may be explained by differences between
integrated solid state accelerometer chips.

Together, these data suggest that Movn could provide acceptable
PA measurement precision in controlled |aboratory settings;
however, greater error variability at higher activity intensity
levels suggeststhat it may be better suited to quantifying general
daily PAsthan higher intensity exercisetraining. Thesefindings
are comparable with the recent validations of Android
smartphone-based activity measurement tools, which
demonstrated strong correlations but larger measurement error
a higher activity intensity levels when compared with the
ActiGraph GTX3 accelerometer [7,8].

During 24 hours of free-living activity, Movn overestimated
EE compared with the commonly used and validated ActiGraph
accelerometer; biaseswere, once again, larger and more variable
during higher intensity activities. Nonetheless, Movn and
reference estimates of EE were strongly related, and these data
compare favorably to other data comparing smartphones and
the Fitbit Zip wearabl e sensor with the ActiGraph in free-living
settings[6,7]. Differencesin measurement units preclude more
detailed comparisons of measurement validity.

Interindividual variability revealed in exploratory supplementary
analyses indicated the Movn app may be most suitable for
group-level monitoring. As smartphone apps can be more
feasibly and affordably distributed acrosslarge popul ationsthan
wearable sensors such as the ActiGraph, this approach holds
considerable potential for large-scal e popul ation-based research.
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It was feasible to integrate smartphone-collected geospatial and
accelerometry datawithin aGlSto provideinsight into temporal
movement patterns (location and intensity). |n combination with
the potential for large-scale population surveillance, the
capability to augment EE data with mapped movement patterns
highlights the potential for smartphone-based measurement
toolsto support novel research evaluating the drivers and effects
of interventions and policies that impact PA. However, such
large-scal e anal yses al so present challengesfor data processing
and analytics.

Collectively, this study and previous works highlight the value
of smartphones as an acceptable measure of PA in both
laboratory-based and free-living contexts. Given their ubiquity,
integrated sensor features (accelerometry, gyroscope,
inclinometer, and GPS), and passive data collection,
smartphones offer additional value compared with existing
measurement approaches. Further valueis added by the capacity
to generate large datasets that could be used to understand
temporal, location, and contextual factors that affect PA. Such
information could be used to provide point of decision prompts
or behavior change strategies to increase PA and decrease
sedentary behavior.

The integration of geospatial and accelerometry data within a
GIS in this study demonstrates the potential of using
smartphones for describing the context (ie, time and location
of activity) of human movement patterns. This approach has
been demonstrated but has typically relied on separate devices
to collect activity and geospatial data, which adds participant
burden and limits the duration of observation (7-14 days).
Passive smartphone data collection reduces participant burden
and permits sustained data collection, for aslong asthe app is
installed and individuals continue to charge their smartphones.
Thisisexemplified by many commercially available smartphone
apps that currently harness these features (eg, Moves, Human,
and Movn). Smartphones offer pragmatic advantages over
stand-alone GPS devices, although the maximum data capture
frequency is typically lower (approximately 1 Hz vs 5+ Hz)
[26]. Increased sampling frequencies have the potentia to
improve GPS measurement accuracy but would have a
detrimental effect on smartphone battery life and may only offer
additional benefits during activities with rapidly fluctuating
movement patterns [26]. In this study, the Movn app was
configured to record GPS location every 30 min, or when
activity was detected via accel erometry to optimize smartphone
battery life. More frequent sampling would increase the
resolution of geospatial movement patterns but may limit the
maximum recording duration because of faster power
consumption.

This study has important implications for future research.
Smartphones can passively measure PA in large population
groups without the use of dedicated measurement tools and
provide opportunities to enrich traditional PA measurement
with contextualizing temporal and geopositional data. Future
work could leverage existing integration between smartphones,
smartwatches, and consumer-grade wearable activity trackers
to capture PA during periods of smartphone noncarry time.
Temporal and positional contextual data provide opportunities
to understand peoples’ movement patterns, and this may help

http://mhealth.jmir.org/2017/8/€122/
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to identify and capitalize on optimal opportunities for PA
intervention. Utilizing the big data generated by smartphone
apps offers opportunities to provide detailed information on
how and where people move and whether these patterns are
stable over time. If patterns can be predicted, then interventions
could be delivered via smartphones to promote PA and reduce
sedentary behavior. Geospatial data could be linked with other
sensors or data sources via the Internet of Things to provide
“just-in-time” interventions such as promoting active transport
options (nearby cycling or walking routes) rather than driving
a motor vehicle. Such an approach would be consistent with
the notion of smart city research, which harnesses the Internet
of Thingsfor public and environmental health surveillance[9].

Smart citiesfocusinvestment on digital infrastructure, including
information and communication technology rather than
traditional physical infrastructure. Whereas smart city
technologies typically focus on system efficiencies (traffic and
waste management, etc), they offer potential to promote PA
and health [9,27]. To fully maximize the benefits of smartphone
data, it will be necessary to devel op big dataanalytical methods
to extract, process, and interpret large quantities of data. To
achieve this, PA researchers need to develop expertise in these
techniques or collaborate with people who have appropriate
expertise in big data processing and analytics.

Strengths and Limitations

Strengths of this study include the use of indirect calorimetry
as acriterion reference for the validation of EE estimation, the
use of a cross-validation sample to assess the validity of EE
estimation on different smartphones, and the integration of
geospatia and accelerometry data within a GIS. A limitation
of this research relates to the data reduction methods of
smartphone data. Unlike research-grade accelerometers, there
are no established methods for managing smartphone
accelerometer data. Periods of negative EE measurement bias
may have indicated smartphone noncarry time; however, as
methods for classifying phone and individual inactivity have
yet to be determined, it was not possible to validate this
assumption. We applied criteria typically used for
accelerometers (removing >60 min of consecutive zero values),
which may have assisted with agreement between methods but
do not differentiate smartphone noncarry time from true
inactivity. Further research is needed to characterize data
patterns that can distinguish these use patterns, and this will
have a significant impact on how smartphone data are
interpreted. The increasingly common inclusion of embedded
gyroscopic sensors could help to overcome this problem. It
should be noted that stand-alone wearable accelerometers are
also subject to thislimitation, and prolonged nonwear time may
result in greater datalossthan intermittent smartphone noncarry
time. Researchers should consider these limitations and select
the type of measurement tool that best suits their experimental
objectives. Additional limitations include the number and
characteristics of participants and the limited period of
free-living activity monitoring. As the primary sampling unit
in this study is sensor observations not individuals (ie, 50 Hz
accelerometer data), the study is appropriately powered to
achieve validation objectives. Because participants were hea thy
adults, these results may not generalize to populations with
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muscul oskeletal limitations or medical conditions that modify
the energetic demands of comparable PAs. Finaly, the short
24-hour free-living validation period may limit the range of
activitiesand activity intensity levelsincluded in the free-living
analysis. Although high frequency sensor sampling enables
ample statistical power for validation objectives, future research
may consider longer data collection periods that may include a
wider range of activities.

Conclusions

Maddison et al

levels, however, measurement validity was reduced during
higher intensity activities. Given their ubiquity, integrated
sensors, passive data collection, and potential to connect with
external data streams, smartphones provide an ideal opportunity
to enhance understanding of the nature and context of human
movement, particularly at a population level. This presents
future challenges for data processing and analytics, as well as
opportunities to inform novel, responsive, and individualized
interventional strategies.

The Movn smartphone app provided valid measurement of
physica activity EE at low and moderate activity intensity
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