
Original Paper

Concussion Assessment With Smartglasses: Validation Study of
Balance Measurement Toward a Lightweight, Multimodal,
Field-Ready Platform

Joseph P Salisbury1,2, PhD; Neha U Keshav2, PhD; Anthony D Sossong1,2,3,4, MD; Ned T Sahin1,2,5, PhD
1Neural Sensing and Biometrics Division, TIAX LLC, Lexington, MA, United States
2Empowerment Lab, Brain Power, LLC, Cambridge, MA, United States
3Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
4Harvard Medical School, Boston, MA, United States
5Department of Psychology, Harvard University, Cambridge, MA, United States

Corresponding Author:
Ned T Sahin, PhD
Empowerment Lab
Brain Power, LLC
1 Broadway 14th Fl
Cambridge, MA, 02142
United States
Phone: 1 617 758 4100
Email: sahin@post.harvard.edu

Abstract

Background: Lightweight and portable devices that objectively measure concussion-related impairments could improve injury
detection and critical decision-making in contact sports and the military, where brain injuries commonly occur but remain
underreported. Current standard assessments often rely heavily on subjective methods such as symptom self-reporting.
Head-mounted wearables, such as smartglasses, provide an emerging platform for consideration that could deliver the range of
assessments necessary to develop a rapid and objective screen for brain injury. Standing balance assessment, one parameter that
may inform a concussion diagnosis, could theoretically be performed quantitatively using current off-the-shelf smartglasses with
an internal accelerometer. However, the validity of balance measurement using smartglasses has not been investigated.

Objective: This study aimed to perform preliminary validation of a smartglasses-based balance accelerometer measure (BAM)
compared with the well-described and characterized waist-based BAM.

Methods: Forty-two healthy individuals (26 male, 16 female; mean age 23.8 [SD 5.2] years) participated in the study. Following
the BAM protocol, each subject performed 2 trials of 6 balance stances while accelerometer and gyroscope data were recorded
from smartglasses (Glass Explorer Edition). Test-retest reliability and correlation were determined relative to waist-based BAM
as used in the National Institutes of Health’s Standing Balance Toolbox.

Results: Balance measurements obtained using a head-mounted wearable were highly correlated with those obtained through
a waist-mounted accelerometer (Spearman rho, ρ=.85). Test-retest reliability was high (intraclass correlation coefficient,
ICC2,1=0.85, 95% CI 0.81-0.88) and in good agreement with waist balance measurements (ICC2,1=0.84, 95% CI 0.80-0.88).
Considering the normalized path length magnitude across all 3 axes improved interdevice correlation (ρ=.90) while maintaining
test-retest reliability (ICC2,1=0.87, 95% CI 0.83-0.90). All subjects successfully completed the study, demonstrating the feasibility
of using a head-mounted wearable to assess balance in a healthy population.

Conclusions: Balance measurements derived from the smartglasses-based accelerometer were consistent with those obtained
using a waist-mounted accelerometer. Additional research is necessary to determine to what extent smartglasses-based accelerometry
measures can detect balance dysfunction associated with concussion. However, given the potential for smartglasses to perform
additional concussion-related assessments in an integrated, wearable platform, continued development and validation of a
smartglasses-based balance assessment is warranted. This approach could lead to a wearable platform for real-time assessment
of concussion-related impairments that could be further augmented with telemedicine capabilities to integrate professional clinical
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guidance. Smartglasses may be superior to fully immersive virtual reality headsets for this application, given their lighter weight
and reduced likelihood of potential safety concerns.

(JMIR Mhealth Uhealth 2018;6(1):e15) doi: 10.2196/mhealth.8478
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Introduction

Background
Mild traumatic brain injury (mTBI), also known as concussion,
is a common injury in both sports, with an estimated annual
incidence of 1.6-3.8 million in the United States alone [1], and
modern war, with 297,478 diagnoses in US service members
between 2000 and 2016 [2]. Prompt identification of a concussed
individual and removal from activity is the most effective
method to facilitate rapid recovery immediately following injury
[3-6]. Unrecognized and untreated mTBI can put athletes and
service members at greater risk for more substantial TBI, as
well as chronic encephalopathy, later [7-10]. Unfortunately,
failure to detect concussions in a timely fashion is common in
both the sporting arena [11,12] and military [13], as the
immediate symptoms can be subtle and difficult to detect.

Concussion is considered one of the most complex injuries in
sports medicine to diagnose, assess, and manage [14]. Accurate
diagnosis and recovery monitoring of concussion is further
complicated as recommended assessments, including the
Standardized Concussion Assessment Tool (SCAT) and Military
Acute Concussion Evaluation (MACE), rely heavily on patient
symptom self-reporting [15]. Concussions can escape detection
in committed athletes who are motivated to remain in the game
[16], which further highlights the need for unbiased and
objective sideline assessments [17]. In a military setting, service
members who experience concussions are frequently under
severe levels of physiological and emotional stress and may be
unable to recognize or recall symptoms [13]. Injuries are
frequently embedded in longer, continuous missions, where
removing oneself from active combat to report a mild injury
often does not occur [13]. Furthermore, concussion assessments
commonly used in these settings, including MACE, lack
diagnostic utility as early as 12 hours after injury [18]. Thus,
improved, more objective methods for detection and recovery
monitoring following concussions are a priority for both athletic
organizations [19-21] and US Department of Defense health
care providers [22-24].

Approach
Concussion diagnosis and recovery monitoring requires a
multifaceted and multimodal approach [25]. Concussion results
in a range of clinical signs and symptoms, including impaired
movement, balance, oculomotor function, attention, memory,
and emotional functioning [26]. Unbiased and objective
assessments of reaction time, balance, oculomotor function, and
heart rate variability using an automated, digitized platform
could substantially enhance the field recognition of concussion
[25,27]. Although any single measure may not be precise enough
to confidently diagnose concussion, a standardized combination

of these measures could produce a sufficient concussion
diagnostic metric. A lightweight and portable tool combining
appropriate measures in a rapid assessment battery would be
useful in both contact sports and the battlefield, where fast-paced
and disorganized environments often obscure incidents of injury
[25,28].

Considering the variety of assessments necessary, we examined
whether smartglasses, an emerging computing platform, could
be leveraged to provide a lightweight, portable, and wearable
solution for measuring concussion-related impairments.
Smartglasses, such as Glass (Google/X, Mountain View, CA),
typically have a built-in 9-axis inertial measurement unit (IMU)
that includes a 3-axis accelerometer, along with a gyroscope
and magnetometer. Accelerometer-based balance assessments
have garnered increased attention because of the widespread
availability of accelerometers as a component of consumer
smartphones [29,30]. The balance accelerometer measure
(BAM) was developed as part of the National Institutes of
Health’s (NIH) Standing Balance Toolbox to provide a low-cost
assessment [31], which can be administered through the use of
an iOS app. Likewise, the Sway balance app [32-36] for iOS
was designed to provide an easily accessible method for
quantitative balance assessment and has obtained FDA (Food
and Drug Administration) clearance.

Smartglasses could enable self-administered balance
assessments, as well as rehabilitative feedback, by providing
real-time audio/visual instruction to the user while monitoring
balance via the IMU. Although balance would only be one
component of a concussion diagnostic metric, smartglasses
could also deliver other relevant assessments, including
vestibulo-ocular and cognitive assessments. Smartglasses could
also serve as a processing hub for integration with other
wearable sensors, including wearable electrophysiological
devices. Finally, smartglasses could enable remote/telemedicine
concussion diagnosis. A medical professional could receive
data from the wearable sensor platform while communicating
in real time with the injured or some untrained personnel to
determine the need for further care [37].

Goal of This Study
In this report, we sought to determine to what extent
smartglasses-based balance measurement corresponded with a
consumer smartphone attached at the waist, as in the NIH
Toolbox Standing Balance Test. The objective of this study was
to demonstrate the feasibility of obtaining quantitative balance
measurements with smartglasses. These results could motivate
future research in how smartglasses may be used to measure
balance dysfunction and other concussion-related impairments.
Although there exist multiple static balance protocols, the NIH
Toolbox Standing Balance Test stances were used in this
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proof-of-concept study, given the availability of detailed
methods and reference data available [31,38,39] for comparison
between devices.

Methods

Subjects
A total of 42 individuals participated in this study (Table 1).
Procedures were approved by the Asentral, Inc. Institutional
Review Board (Newburyport, MA, USA) and the US Army
Human Research Protection Office. Subjects were recruited
from the public. An informed consent form describing the nature
of the study, as well as the exclusion criteria, was completed
by all participants.

Participants were required to be between the ages of 18 and 39
years, weigh no more than 250 pounds, and possess normal
hearing and normal or corrected-to-normal vision. Each of these
criteria was confirmed by participant self-report. Participants
were excluded if they reported any preexisting condition that
may alter their ability to balance normally. A set of specific
conditions that could affect balance were described for
participants. Specific conditions listed for participants included
multiple sclerosis, Parkinson’s disease, Huntington’s disease,
other movement disorders, stroke, cervical spine or physical
mobility issues, more than 1 fall in the past 6 months not as a
result of an accident, current pregnancy, dizziness or vertigo,
any lower extremity injury that required medical attention in
the last 3 months, and any surgeries within the last year. All
participants attested they were not taking any medication to
lower blood pressure or to control a heart problem. All
participants also attested they were not under instruction by a
supervising physician to avoid full/unrestricted physical activity.
Individuals were also screened based on self-report for history
of a diagnosed seizure disorder (or any seizures within the last
3 years), as well as extreme sensory sensitivity. All participants
also attested to having no diagnosed macular degeneration,
glaucoma, or cataracts, or any chronic or acute conditions
resulting in pain, including diabetes or a history of joint
replacement.

Experimental Setup
Before administering the BAM protocol, subjects were outfitted
with a gait belt. An Android smartphone (Samsung Galaxy S5,
Samsung Galaxy S6, or LG Electronics/Google Nexus 5) was
attached to the gait belt using a protective case with clip. The
smartphone was attached upright, with the screen facing away

from the subject. The subject was also given a pair of Glass
Explorer Edition (henceforth, Glass) by the facilitator to wear.
Subjects who normally wore glasses were given the option to
wear Glass over or without their regular glasses. Subjects were
asked to read a sentence on the display screen to confirm the
screen was adjusted properly. A test exercise was administered
on Glass to ensure subjects could (1) operate Glass by tapping
on the side and (2) could hear a tone played from Glass.

The BAM protocol was administered as previously described
[39]. The BAM protocol includes 6 standing conditions: (1)
solid surface, feet together, eyes open, and (2) eyes closed; (3)
foam surface (Airex Balance Pad, Specialty Foams,
Switzerland), feet together, eyes open, and (4) eyes closed; (5)
solid surface, tandem standing, eyes open, and (6) eyes closed
(Figure 1). During each stance, all subjects were asked to stand
quietly for 60 seconds and to look (in eyes-open conditions) at
a symbol placed centrally at eye level 1 m from the subject.
Subjects were instructed by the facilitator regarding stance
following the instructions adapted from the NIH Toolbox
Standing Balance Test [31,40]. Stance was also described on
the smartglasses display screen. Subjects initiated each set of
data collection by tapping the side of the smartglasses. A timer
was displayed on Glass showing time remaining and a tone was
played at the end of each timed stance. All subjects completed
2 attempts of all stances on the same day.

A trained study facilitator was present during the study and was
ready to prevent the participant from falling. The study
facilitator observed participants for failure to hold the
demonstrated pose. Failures were recorded if (1) participant’s
arms came off his/her chest, (2) participant’s knees bent, (3)
participant’s feet moved out of original position (move or swivel
out or are lifted), (4) participant bent forward at the waist (more
than 45°), (5) participant opened his/her eyes during an
eye-closed pose, or (6) participant says something like “I cannot
do that” or “I do not feel safe trying that.”

Data Acquisition
An Android app was developed to synchronize recording of
device IMU data between smartglasses and the waist-mounted
smartphone (Figure 2). The app was installed on both Glass and
the Android smartphones before testing. The app allowed Glass
to pair with a smartphone via Bluetooth. Messages sent via
Bluetooth from Google Glass to the smartphone were used to
initiate a timer on Google Glass and begin storing IMU values
(sampled at 50 Hz).

Table 1. Subject demographics (N=42).

Mean (SD, range) or n (%)Demographics

23.8 (5.2, 18-37)Age in years, mean (SD, range)

16 (38)Gender, female, n (%)

68 (3, 62-76)Height in inches, mean (SD, range)

152 (32, 110-241)Weight in pounds, mean (SD, range)
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Figure 1. Balance accelerometer measure (BAM) protocol conditions. (1, 2) Feet together on a firm surface used for conditions 1 (eyes open) and 2
(eyes closed). (3, 4) Feet together on a foam surface used for conditions 3 (eyes open) and 4 (eyes closed). (5, 6) Feet in tandem stance on a firm surface
used for conditions 5 (eyes open) and 6 (eyes closed).
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Figure 2. Accelerometer data (ACC) collection with smartphone and smartglasses. (A) Axes of accelerometer on Android smartphone compared with
(B) Glass. (C) Example comparison of low-pass filtered ACC (z-axis) collected during a trial of condition 6 in Glass (red) compared with waist-mounted
smartphone (blue).

Upon completion of each stance, time-stamped IMU data were
saved on the device as a comma-delimited plain text file. When
running on Google Glass, the app provides instructions on
stance, a timer, and a tone that plays at the end of each stance
session. At the end of each study session, data were transferred
from respective devices to secure cloud storage.

Data Analysis
Data files were imported into MATLAB 2016b (MathWorks,
Native, MA, USA) for analysis, which included use of the Signal
Processing Toolbox, the Statistics and Machine Learning
Toolbox, and custom scripts. The first 10 seconds of data were
discarded to ensure stability of measures (50 seconds of data

total). Accelerometer data (ACC) from each trial was low-pass
filtered using a fourth-order, Butterworth filter with a cutoff
frequency of 1.25 Hz [39]. The normalized path length (NPL;
mG/sec; higher values indicate more sway) of the
anterior-posterior (AP) postural sway data was calculated as
previously described [39]. NPL was also calculated from the
combined ACC magnitude.

Trials recorded as failures by the study facilitator were excluded
from further analysis. Smartglasses-based measurements of
NPL along different axes were compared with smartphone
measurements using Spearman rank correlation coefficient [41].
For comparison of differences between stances, the
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nonparametric Kruskal-Wallis test was used to compare mean
ranks [42,43]. Normality of measurements within stance
conditions was evaluated by the Anderson-Darling test [44].
Significant differences between correlation coefficients were
determined by treating them as Pearson coefficients and using
the standard Fisher z-transformation to compare using a standard
normal procedure [45]. Test-retest reliability of NPL
measurements was estimated for each condition between the 2
sessions by calculating the 2-way random, single-measure
intraclass correlation coefficient, ICC2,1, and corresponding
95% CI [46,47]. NPL was standardized as previously described
[39], and the composite score was calculated by adding together
the standardized values across all 6 conditions.

Results

Measurement of Anterior-Posterior Sway with
Smartglasses Correlates With Measurement at Waist
All 42 subjects successfully passed both trials on conditions 1
through 3, similar to previous reports [39]. Both trials of the
eyes closed/foam surface condition (condition 4) were passed
successfully by 37 subjects (88%). One subject failed a trial of
the eyes-open/tandem stance condition (condition 5). Thirty
subjects (71%) successfully passed 2 trials of the eyes
closed/tandem stance condition (condition 6). All observed
failures were recorded as feet moving out of the original position
and/or arms coming off the chest. Overall, 2 trials on all 6
conditions were successfully passed by 28 subjects (66%).

NPL AP sway measured from the head was strongly correlated
(Spearman rank correlation coefficient=.85) with NPL AP sway
measured from the waist (Figure 3). Mean NPL AP sway
measured from the waist was in good agreement with previously
reported values [39], although we observed a higher mean for
condition 6. The mean (SD) composite score was 21.4 (18.0),
which was in good agreement with the previously reported value
of 19.6 (15.3) for healthy subjects.

Although NPL measured from the head was generally larger
than NPL measured from the waist in each trial, mean NPL AP

sway measured from the head in each condition was observed
to follow a similar trend as the means measured from the waist.
Significant differences (Kruskal-Wallis, P<.001) were found
between each set of eyes-open and eyes-closed conditions as
well as between standing on feet together/firm surface compared
with foam surface or tandem stance.

Correlation Between Measurements Was Significantly
Stronger When Calculating Normalized Path Length
From All Three Axes
Measuring sway along the ACC’s AP axis was previously shown
to be sufficient to differentiate healthy subjects from subjects
with vestibular disorders [39]. However, the additional ACC
acquired from commercial off-the-shelf (COTS) smart devices
may further enhance measurement accuracy, particularly along
the mediolateral x-axis. Indeed, the NPL calculated using all 3
axes (total NPL) was found to have a significantly stronger
correlation (Spearman rank correlation coefficient=.90, P<.001)
between head- and waist-based measurements (Figure 4). Mean
total NPL measured in each condition followed similar trends
as using AP NPL only for both waist- and head-based
measurements.

Test-Retest Reliability of Measures Were Comparable
Between Head and Waist
Previously, the test-retest reliability of NPL AP measured from
the waist was found to be generally good (ICC≥0.74) across all
conditions, except for condition 6 [39]. Here, same-day
test-retest reliability of AP NPL measured from the head with
smartglasses was found to be very good (Figure 5), with an
ICC2,1 (95% CI) of 0.85 (0.81-0.88). This was comparable to
our estimation of the test-retest reliability of waist-based AP
NPL, which was 0.84 (0.80-0.88), agreeing with previously
reported values.

Using total NPL, we found a slight improvement in test-retest
reliability in both head- and waist-based measurements. ICC2,1

(95% CI) was found to be 0.87 (0.83-0.90) in the case of
head-based measurement, as opposed to 0.90 (0.88-0.92) in the
case of waist-based measurement.

Figure 3. Anterior-posterior (AP) sway measured with smartglasses is highly correlated with waist-based accelerometry. (A) AP sway measured from
the head was strongly correlated with AP sway measured from the waist (pooled data from all conditions with 95% prediction bands). Geometric mean
and 95% CI for waist-based (B) and head-based (C) measurements of AP normalized path length (NPL) by condition.
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Figure 4. Total sway magnitude measured with smartglasses is highly correlated with waist-based accelerometry. (A) Total sway measured from head
was more strongly correlated with sway measured from the waist. Geometric mean and 95% CI for waist-based (B) and head-based (C) measurement
of total normalized path length (NPL) by condition.

Figure 5. Head-mounted smartglasses have comparable test-retest reliability to waist-mounted balance accelerometer measurement. Test-retest intraclass
correlation coefficient, ICC2,1, for accelerometer measures of postural sway along anterior-posterior (AP) (A=head, B=waist) and all axes (C=head,
D=waist). NPL: normalized path length.

Discussion

Principal Findings
To the best of our knowledge, this is the first study assessing
the feasibility of using COTS smartglasses to perform
quantitative standing balance measurement. This study indicates
that head-based measurement of AP or total sway with
smartglasses following the BAM protocol produces similar
results to waist-based measurement. This included similar
relative differences between test conditions as well as similar
test-retest reliability. Condition effects observed with this
protocol previously supported the validity of waist AP NPL as
a measure of balance. Similar to these previous findings, sway
measured with smartglasses was larger with eyes closed than

with eyes open for all stance conditions. Sway was also larger
in tandem stance and on foam surface conditions compared with
corresponding conditions with feet together on a firm surface.
These condition effects previously indicated that ACC measured
from the waist was sensitive to changes in the sensory modalities
available for balance, including vision and somatosensation
[48]. In this study, we demonstrate that head-based ACC
measurement using COTS smartglasses has a comparable
sensitivity for measuring these differences.

Comparison With Prior Work and Future Implications
The current wide availability of smartphones with IMU
technology has made them an attractive platform to develop
physical health assessments on. Along with standing balance,
smartphone-based measurements are also being developed to
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objectively quantify a range of related functional mobility
assessments [49-53]. Similarly, there are a growing number of
dedicated wearables that have been developed to provide
research- and clinical-grade balance, gait, full-body kinematics,
and other functional mobility assessments. An important
distinction between using the sensors in a smartphone compared
with wearable hardware built for a specific function is that
smartphones are already widely used by the population. Thus,
smartphone-based assessments can be immediately accessible
on this multifunctional platform. The multifunctional versatility
of such a device could be particularly transformative in the
battlefield, where there are practical limitations to amount of
equipment that can be transported in various circumstances [28].
When considering the broader goal of having an objective
balance assessment as only one component of a multifactorial
concussion battery, neuroimaging and biomolecular assays
could provide more definitive results and aid in differential
diagnosis. However, the equipment needed to provide this level
of certainty would be less practical for point-of-injury
assessment and triage when a software-based assessment on a
multipurpose device could sufficiently determine the need for
additional care.

Leveraging the wide availability of COTS hardware to develop
objective clinical assessments and rehabilitative strategies has
motivated research into not just smartphones. The Nintendo
Wii Balance Board [54-57] and Microsoft Kinect [58-60] are
also being used in physical medicine. Indeed, there are now
several FDA-cleared Kinect applications suitable for use in the
clinic or at home that provide exercise guidance and remotely
accessible patient performance metrics [61,62]. The
sophistication of sensor-rich COTS hardware enables health
care apps to be developed without the costs typically associated
with dedicated health care equipment design, manufacturing,
quality control, storage, distribution, etc. Admittedly,
smartglasses are far from reaching the ubiquity of these devices.
However, the market for smartglasses is projected to reach 3.4
million units by 2020, with health care being a major driver of
smartglasses’ growth [63]. Smartglasses have been shown to
be well tolerated in children and adults with autism spectrum
disorder, providing evidence to support their use as an assistive
device [64-66]. In the longer term, decline in costs, the
solidification of applications and model features, and technology
saturation of smartphone and tablet markets could push
smartglasses to become a dominant consumer computing device
[63]. It is this context, considering the potential future
widespread availability of lightweight and portable
head-mounted wearables, which motivates the research study
described here.

Critically, it was not the objective of this study to determine
whether smartglasses would provide a more sensitive measure
than smartphones or act as a replacement for gold standard
methods of clinical assessment. Rather, with this feasibility
demonstrated, it can be discussed how smartglasses could have
specific advantages over other COTS devices for assessment
and rehabilitation of balance dysfunction related to brain injury.
Recently, it was reported that a fully immersive head-mounted
virtual reality (VR) system was successfully used to obtain
repeatable balance assessment measurements in an elderly
population [67]. Higher fall risk participants were found to
change their tilt in the AP direction at a significantly higher
rate. Although minimal simulator sickness was generally
reported in this study, at least one participant dropped out of
the study because of this issue. There were also significant
differences in nausea pre- and postmeasurement. In terms of
head-mounted wearables, smartglasses may be preferable to
fully immersive VR headsets as they do not completely obscure
external vision, which suggests they could be a safer alternative
(Figure 6). Smartglasses could provide real-time feedback to
correct balance instability during movement in an actual
environment, such as through audio [68-70], and Glass has been
shown to be feasible for external rhythmic cueing to improve
gait in Parkinson’s patients [71]. Furthermore, fully immersive
VR headsets often include foam that is pressed against the user’s
face that can quickly become unsanitary, leading to hygiene
concerns and the potential for disease transmission when used
in a clinical setting [72]. Thus, smartglasses may be preferable
in clinical use for not just balance assessment/feedback but also
VR-based vestibular-ocular motor and cognitive assessments.

Limitations
This study is primarily a proof-of-concept demonstrating that
measurements obtained from the IMU of a specific COTS
head-mounted wearable (Glass) can provide quantitative balance
measurements. These head-based measurements are comparable
with waist-based measurements when following the NIH
Standing Balance Toolbox protocol. This report only describes
one quantitative balance measurement derived from
accelerometry, NPL, although there are a variety of methods to
preprocess these types of data [73]. A variety of subjective and
objective assessments exist to both identify and characterize
balance deficits [74]. A comprehensive characterization of
measures obtainable from smartglasses against a clinical force
plate system would provide a more thorough assessment of the
concurrent validity of head-based measurement. Recently
published pilot results from an elderly population using a force
plate system support the potential for head-based measurement
using COTS hardware in clinical assessment of balance [67].
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Figure 6. Fully immersive head-mounted device compared with partially immersive smartglasses. Fully immersive virtual reality headsets, such as
Oculus Rift (left), completely block external stimuli, limiting their use in concussed populations where dizziness, nausea, and sensitivity to light are
common persistent symptoms. Smartglasses, such as Glass (right), could provide a safer, more portable, and lighter-weight alternative. Of note, Glass
weighs only 1.3 ounces—more than 10 times less than Oculus Rift.

Stances in the BAM protocol and NIH Standing Balance
Toolbox were used in this study as a standard for preliminary
comparison, given the availability of detailed methods and
baseline data [31,38,39]. However, it has been previously
suggested that as this protocol was not designed with the goal
of concussion assessment, it may have limited use in this domain
in comparison with other protocols. In one report, BAM was
found not to effectively discriminate between healthy and
concussed adolescents. Rather, expert scoring of the Balance
Error Scoring System (BESS) protocol was able to identify
patients from healthy participants with 60% sensitivity and 82%
specificity [48]. The BESS protocol is similar to the BAM
protocol with 6 conditions in total. However, in BESS, all
conditions are performed with eyes closed and hands positioned
on the hip, with 3 stances (feet together, single leg, and tandem
stance) performed on both firm and foam surfaces. A modified
BESS protocol, which eliminates the foam surface conditions,
has been included as part of the SCAT sideline concussion
evaluation since the second edition [75]. Although the modified
BESS protocol may lack sensitivity, instrumenting the modified
BESS with a waist-based inertial sensor led to superior
diagnostic classification of recently concussed individuals
compared with BESS alone, albeit in a relatively small sample
size of 13 recently concussed individuals and 13
demographically matched controls [76]. In summary, future
evaluations should consider whether other procedures are
necessary, depending on study goals.

The study presented here is limited by its exclusive use of
healthy subjects. Further research is necessary to determine
whether measurements using a head-mounted device can detect
deficits in postural sway related to specific medical conditions.
Although the BAM protocol was unable to sufficiently
discriminate concussed adolescents, postural sway as measured
by waist-based BAM using this protocol was able to discriminate

between persons with peripheral vestibular impairments and
those without balance impairment [39]. In general, postural
sway measurement alone currently lacks the sensitivity and
specificity needed to confidently diagnose concussions. It is
important to reiterate that our study goal was to demonstrate
the feasibility of obtaining objective and quantitative
measurements of postural sway with a head-mounted wearable.
We hypothesize this would serve as only one component of a
concussion assessment battery that could be automatically
administered using COTS smartglasses as a platform.

Finally, although we determined that head-based measurement
was generally consistent with waist-based measurement,
head-based measurement might present additional challenges
when administered outside carefully monitored conditions. For
example, head-based measurement may be more sensitive to
behavioral artifacts such as speech and shifting attention. It is
important to mitigate these challenges by detecting and
removing these artifacts to improve the internal validity of the
assessment when used independently for clinical
decision-making.

Conclusions
The accelerometer built into Glass is sufficient to provide
standing balance measurements comparable with commercial
smartphones. Accelerometry measurements obtained from the
head, including the NPL of AP sway as well as the total NPL
magnitude, resulted in similar condition effects as those obtained
from the waist in a healthy adult population. Head-based
measurement of balance using smartglasses could serve as one
component of a wearable, multifactorial concussion assessment
that has integrated instruction and feedback. This approach
could improve the objective assessment of concussion symptoms
in high-risk activities, including contact sports and warfare,
where current standards often rely on subjective methods,
including symptom self-report by the injured. Smartglasses may
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provide a safer, lighter-weight, more portable, and more hygienic
alternative to fully occlusive head-mounted wearables, while
providing a similar range of assessments for concussion
detection, including cognitive and vestibular-ocular motor

screens. Further research is necessary to demonstrate the ability
of smartglasses to detect balance dysfunction stemming from
concussion.
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