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Abstract

Background: Wearable and connected health devices along with the recent advances in mobile and cloud computing provide
a continuous, convenient-to-patient, and scalable way to collect personal health data remotely. The Wavelet Health platform and
the Wavelet wristband have been developed to capture multiple physiological signals and to derive biometrics from these signals,
including resting heart rate (HR), heart rate variability (HRV), and respiration rate (RR).

Objective: This study aimed to evaluate the accuracy of the biometric estimates and signal quality of the wristband.

Methods: Measurements collected from 35 subjects using the Wavelet wristband were compared with simultaneously recorded
electrocardiogram and spirometry measurements.

Results: The HR, HRV SD of normal-to-normal intervals, HRV root mean square of successive differences, and RR estimates
matched within 0.7 beats per minute (SD 0.9), 7 milliseconds (SD 10), 11 milliseconds (SD 12), and 1 breaths per minute (SD
1) mean absolute deviation of the reference measurements, respectively. The quality of the raw plethysmography signal collected
by the wristband, as determined by the harmonic-to-noise ratio, was comparable with that obtained from measurements from a
finger-clip plethysmography device.

Conclusions: The accuracy of the biometric estimates and high signal quality indicate that the wristband photoplethysmography
device is suitable for performing pulse wave analysis and measuring vital signs.

(JMIR Mhealth Uhealth 2018;6(10):e11040) doi: 10.2196/11040
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Introduction

Wearable and Connected Devices in Digital Medicine
Wearable and connected health devices have been increasingly
popular with the general population to track metrics related to
their personal health and wellness such as vital signs, activity,
and sleep [1]; a purchase of over 300 million wearable devices

was reported in 2017 worldwide [2]. Not surprisingly, wearables
have recently been adopted by clinical researchers to paint the
most complete picture of patients’ health and well-being by
offering continuous, long-term, and multiparametric monitoring
[3]. Leveraging mobile, wearable and connected devices, and
cloud computing and machine learning algorithms, the modern
era of health care—known as digital health—promises new and
better ways to screen, diagnose, manage, and treat patients,
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thereby improving health-related outcomes and decreasing the
cost of health care delivery. It is well known that measuring
health is the key to (1) improve screening and preventative
methods; (2) optimize disease management, drug titration, and
adherence to therapy; and (3) prevent hospitalization and reduce
adverse events. Wearable and connected devices offer a
promising solution to streamline health data collection needs
and address the lacking personalized oversight in the current
health system.

Clinical research organizations and pharmaceutical companies
have already started embracing digital health. Recently, several
large-scale research initiatives involving parties across
government agencies, health institutions, and private technology
and pharmaceutical companies [4-6] have announced collecting
biological, psychological, and social signals and biometrics
derived from these signals in longitudinal studies to understand
underlying risk factors leading to disease and hospitalizations.
There is also a growing interest in the pharma community to
use mobile, wearable, and connected health technologies to
improve the operational efficiency during the product
development cycle and to accelerate bench-to-bedside
translational science. Digital operational efficiency here refers
to the use of digital health to increase patient adherence, trial
data collection speed, and efficiency, thereby reducing the time
and cost to market. Electronic patient-reported outcomes and
remote patient monitoring are good examples of how digital
health has been transforming the operational workflow of
biopharma and clinical research organizations [7]. Digital
biomarker development has also been a key application of digital
health in the biopharma and clinical research spaces for
developing new end points that have not previously been
possible to assess or existing end points that can be measured
in new and possibly better ways [8]. Recently, Green et al have
reported a digital biomarker for detecting patients with
obstructive hypertrophic cardiomyopathy using signals collected
from a wrist-worn wearable device and machine learning
algorithms [9]. Other example applications in therapeutic areas
including atrial fibrillation and obstructive sleep apnea [10-12]

can potentially be used for evaluating the safety and efficacy
of the drugs and interventions; for screening and referring
patients who can benefit from lifesaving therapies; and as a
companion tool for dose titration, decision support, and disease
management. In summary, wearable and connected device
technologies are evolving rapidly and may soon become the
new standard in health monitoring to improve and accelerate
the way drugs are developed, new therapies are identified, and
patients are cared for.

The new era of personalized digital medicine requires devices
that are convenient and engaging to the patient and have
validated accuracy to enable a streamlined collection of
biosignals and clinically meaningful health metrics. Many of
the currently available remote monitoring options, including
electrocardiography (ECG)-based Holter devices, event
recorders, or mobile cardiac telemetry devices, require frequent
replacements to extend their utility beyond 7 to 14 days and
often cause discomfort to the patient or complications because
of their intrusive nature. There is consensus on neither the
benefit of continuous monitoring with implantable loop
recorders on patient outcomes nor on whether these invasive
devices are suitable for large-scale population-level disease
surveillance and health screening. Advances in semiconductor
and sensory technologies, in particular, the wide adoption of
near-infrared (IR) light spectroscopy or photoplethysmography
(PPG) in consumer health and clinical applications, along with
mobile and cloud computing technology have generated a new
class of wearable devices for health data collection and
monitoring. Leveraging sophisticated signal processing
algorithms such noninvasive devices allow near-real-time,
continuous, and long-term monitoring of several key
physiological parameters including heart rate (HR), heart rate
variability (HRV), and respiration rate (RR) [13]. This study
focuses on the performance evaluation of such a wrist-worn
PPG device (Wavelet wristband, Wavelet Health, Mountain
View, USA) and its data collection platform, which is shown
in Figure 1.

Figure 1. The data collection platform comprises wearable and connected devices that use low energy Bluetooth technology to communicate with the
mobile and computer tablet software apps to collect and transmit raw sensor data and cloud servers; algorithms; and a Web interface to analyze, store,
and access data.
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Measuring Health: Vital Signs
Measurement of vital signs enables detection and monitoring
of a number of conditions and diseases. Continuous HR
monitoring is critical to the management of cardiovascular
disease as elevated HR is an independent predictor of
cardiovascular events, mortality, and hospitalization for
worsening heart failure [14,15]. HRV is another clinically
important metric often regarded as a measure of neurocardiac
function and homeostasis [16]. Fluctuations in beat-to-beat
timing arise from the interaction of different physiological
systems including the heart, brain, and autonomic nervous
system in healthy and diseased states. Although the study of
HRV has been a topic of active research for over two decades
[17,18], there are still inconsistencies in the literature probably
because of methodological differences between studies [19-21].
Several investigators found that relatively high resting HRV is
indicative of a healthy, resilient, and responsive nervous system
regulating the heart’s activity, whereas reduced HRV is
associated with unbalanced, sympathetic, and parasympathetic
activity negatively affecting cognitive performance [22],
physical training capacity [23], congestive heart failure [24,25],
multiple sclerosis [26], Guillain-Barre syndrome [27], and
diabetic neuropathy [28]. In contrast, other studies suggest a
lack of a clear correlation between HRV and other biological
and lifestyle factors [19,29,30].

RR, an often overlooked vital sign, enables early detection of
life-threatening diseases, such as sleep apnea [31], pneumonia
[32], sudden infant death syndrome [33,34], or chronic
obstructive pulmonary disease [35]. As abnormal RR is
predictive of a future critical illness [36,37], continuous
monitoring would provide clinicians with a real-time indicator
of their patients’ health. Current methods for measuring RR
include manually counting chest movements, estimated RR
from ECG patch devices, a spirometer, and capnography
monitors [38]. These methods do not allow long-term continuous
monitoring because of the need for manual supervision, cost,
or discomfort to the patient. Alternatively, RR can be estimated
from PPG devices by leveraging 3 signal processing methods:
baseline wander, amplitude modulation, and frequency
modulation—each stem from 3 main physiological mechanisms:
changes in tissue blood volume, stroke volume, and respiratory
sinus arrhythmia, respectively, caused by intrathoracic pressure
changes during respiration [39-41]. Several PPG-based RR
algorithms have been reported in the literature with variable
levels of accuracy, that is, mean error of approximately 1 to 6
breaths per minute (brpm), depending on which combination
of signal processing methods is incorporated in the algorithm
formulation [42,43]. Birrenkott et al demonstrated the
importance of establishing proper signal qualification methods
to achieve accurate RR estimations from PPG signal [44]. In
this study, we present the validation of a PPG-based RR
estimation algorithm that combines the frequency modulation

and baseline wander methods along with threshold-based
respiratory signal qualification.

It is worthwhile to mention that unlike ECG devices, PPG
technology does not measure the electrical activity of the heart
but measures the changes in pulse volume. Therefore, the
interbeat intervals of the PPG can deviate from RR intervals of
the ECG, particularly during physical activity and some mental
stressors [45] and in patients with peripheral arterial disease
and structural heart problems [29]. However, as the standard of
care for monitoring of vital signs requires continuous long-term
measurements of HR and HRV rather than pulse rate and pulse
rate variability, this study evaluates the performance of the
Wavelet wristband to estimate HR and HRV in healthy subjects
at the resting state.

Objective
The aim of the study was to evaluate the accuracy of resting
HR, HRV, and RR estimates of the Wavelet wristband and to
benchmark its performance as a wrist-worn PPG device
compared with gold standard reference devices. In addition, the
signal quality of the Wavelet wristband is compared with a
reference device.

Methods

Wristband Technology
The core technology of the Wavelet wristband relies on PPG,
that is, an optical technique for detecting blood volume changes
within the microvascular bed to estimate physiological
parameters [46]. PPG has been used since the early 1960s,
particularly for pulse oximetry, which is the standard-of-care
tool for measuring peripheral arterial oxygen saturation (SpO2)
[47]. By positioning a light sensor and a light-emitting diode
(LED) on the same plane, that is, the reflectance-type sensor
configuration, wrist-worn PPG devices can perform
measurements from the skin surface [48]. Light emitted by the
LEDs into the wrist is mostly absorbed by the underlying tissue.
The reflected light is captured by a photodiode, which is sampled
many times within a second to construct the PPG signal. The
absorption of light varies with the changes in pulsatile arterial
blood flow and generates a time-varying pulse waveform [47].
This signal can be recorded, transmitted, and used as a
noninvasive longitudinal measurement of the underlying blood
volume changes. Due to its good tissue penetration
characteristics [49], PPG devices often rely on IR light for
estimating the relative volumetric changes in the microvascular
bed because of pulsatile blood flow. Using the IR signal, several
biometrics including arterial pulsatility, HR, HRV, RR, and
vascular tone along with others related to the cardiovascular
and autonomic nervous systems can be computed noninvasively
[13]. When paired with the IR signal, the red light signal enables
estimating SpO2, which is known as pulse oximetry.
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Figure 2. The Wavelet wristband is a configurable photoplethysmography and motion sensing device placed on the wrist to collect pulse wave signal,
estimate vital signs, and physical activity. The sensor carriage can be removed from the plastic band.

During the measurement, the wristband is placed snugly on the
arm above the wrist bone. The wristband comes with a
removable sensor carriage and a plastic band as shown in Figure
2. The sensor carriage contains LEDs of 2 wavelengths and an
optical sensor along with a battery and an inductive charging
coil. The LEDs fire at a rate configurable between 20 and 95
Hz driven by a submillisecond resolution low-jitter external
clock signal. A fully integrated analog front end receives and
digitizes PPG signals. In addition, the wristband is capable of
collecting inertial motion data using the 3-axis accelerometer
and 3-axis gyroscope built into the sensor carriage. The sampling
rate and duty cycle of the light and motion sensors are
configurable. For this validation study, light sensor data were
collected at 86 Hz and the motion data were collected at 10 Hz.
Raw PPG and motion signal data collected from the wrist were
transferred by the mobile app to the cloud server, where it is
processed by signal processing and machine learning algorithms.

The general workflow of the algorithms developed for the
extraction of HR, HRV, and RR from the PPG signals collected
from the wrist is summarized below:

1. Segments of the PPG signal containing artifacts related to
wrist movement are removed.

2. The PPG signal is segmented into heartbeats:
• Peaks are detected in the PPG signal using a wavelet

transform–based peak detection algorithm [50].
• Peaks representing systolic onsets of beats are selected

from this list of peaks by time and frequency domain
heuristics. The location of the peaks is refined using
interpolation techniques to improve the signal time
resolution.

• Beats are extracted from the PPG signal by taking
segments from one systolic onset to the next and
performing additional qualification.

3. From each heartbeat, HR and a number of other
morphological features are extracted [51,52].

4. RR is measured by a combination of analyses of baseline
wander and frequency modulation [41]:
• In the time domain, inspiration and expiration are

detected by a wavelet transform–based peak detection
algorithm [52].

• In the frequency domain, HR modulation because of
respiration is measured by tracing the respiration ridge
in the continuous wavelet transform of the HR signal
[53].

5. HRV is estimated using the standard deviation (SD) of the
normal-to-normal (SDNN) interbeat intervals and also the
root mean square of the successive differences (RMSSD)
between adjacent interbeat intervals over the course of the
signal [54].

The beat segmentation approach enables the output of processed
metrics on a beat-to-beat level, which is exemplified in the
results section.

Study Design
Healthy subjects (n=35) with no known cardiovascular
conditions were recruited for the validation study. Participants
were asked to determine their skin type using the Fitzpatrick
questionnaire [55] and provided their height, weight, age, and
gender. Before each test, subjects rested in a seated position for
15 min to ensure the measurement of the resting HR [56].
Demographics of the participants are summarized in Table 1.
The study was approved by the institutional review board of
San Jose State University. Written informed consent was
obtained from all subjects.

The parameters estimated by the wristband were compared with
the simultaneously recorded gold standard measurements from
the ECG and spirometry sensors. For these measurements, a
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BIOPAC MP36 system (BIOPAC, Goleta, CA, USA) was set
up to acquire ECG and spirometry data. ECG (LEAD110A and
ECG100C, BIOPAC, Goleta, CA, USA) was acquired at a rate
of 2000 Hz while the subject was at rest in a seated position.
Spirometry data were acquired simultaneously and at the same
rate using a handheld airflow transducer (SS11LA, BIOPAC,
Goleta, CA, USA) connected to the BIOPAC system. Subjects
were instructed to breathe through a mouthpiece while wearing
a nose clip. Before the measurements, the ECG sensor was
calibrated as per the manufacturer’s instructions [57]. No digital
filtering was applied to the raw ECG and airflow data. Raw data
were exported and analyzed to obtain HR and other metrics. A
Nonin finger-clip pulse oximeter (8000 AA, Nonin, Plymouth,
USA) was placed on the subject’s right index finger to compare
the quality of the PPG signal recordings of the Wavelet
wristband with a typical clinical grade finger-clip PPG device.
For each test, 2 wristbands were placed on each participant, 1
on each wrist. Each test lasted between 2 and 4 min. For several
subjects (n=12), the test was halted before the 3-min mark
because of discomfort while breathing into the spirometer. Each
subject repeated the test twice with 5 min rest in between.
Overall, 70 tests were conducted each with 2 wristbands and
reference ECG, spirometer, and finger-clip pulse oximeter
device recordings. The synchronous recordings from ECG,
Nonin, and Wavelet wristband devices were aligned manually
based on time stamps and agreement of interbeat intervals,
although a small misalignment was inevitable because of the
lacking information on the pulse transit time.

Signal Quality Analysis and Statistical Methods
Once each test session is recorded by the wristband and
transferred to the cloud server, the algorithms described above
calculate the beat-to-beat metrics. For the analysis, we separated
each signal into 60-second nonoverlapping measurements and
calculated HR, HRV, and RR for each of these windows to
compare with HR, HRV, and RR of corresponding windows of
the ECG signal. As PPG signals are inherently sensitive to
motion and light artifacts, the biometrics algorithm evaluates
each beat’s signal quality based on multiple heuristics including
short-time Fourier transform, motion, and correlation with other
beats. If not enough good-quality beats are found in the signal,
the algorithm may not output some of the biometrics for a
particular 60-second window. In this study, each qualified
biometric assessment over a 60-second window was referred
to as a valid measurement. Left and right wrists’ recordings
were analyzed independently. The total number of valid sessions
and the valid measurements qualified by the algorithm for each
biometric are provided in the Results section.

To evaluate the signal quality of the Wavelet wristband, the
harmonic-to-noise ratio (HNR) computed from the IR signal of
the wristband was compared with that of the Nonin finger-clip
pulse oximeter. HNR is calculated using the autocorrelation
method described by Boersma et al [58]. This frequency-based
signal quality assessment method yields an objective measure
of the periodicity of the PPG signal from the maximum
frequency of the signal’s normalized autocorrelation function
[58]. The HNR is computed for 6-second overlapping windows

centered 1 second apart. The average of all HNR windows is
reported as the HNR of the 60-second recording. Recordings
that fail to meet a threshold HNR level do not qualify for vital
sign analysis. It is important to note that the HNR criterion
assumes that all signals other than the signal of interest are
noise. Therefore, to estimate HNR of the PPG signal accurately,
a preprocessing step removes other physiological contributions
to the signal such as respiration. The HNR reported herein
follows the cardiovascular component of PPG signal after using
a bandpass filter with lower and upper limits set to 0.3 Hz and
10 Hz, respectively.

To compare the HNR of the Wavelet wristband with the
finger-clip pulse oximeter, we present the mean and SD of HNR
for both devices for each valid measurement as well as box plots
to compare distributions. The reference HR and HRV were
computed from the reference ECG measurements using the
Python BioSPPy biosignal processing toolbox [59], and Python
is used for all statistical analysis. Ectopic and other non-normal
beats were detected by a median absolute deviation–based
outlier detection method and removed without replacement. An
interbeat interval is considered an outlier if its logarithm is more
than 6.25 median absolute deviations away from the median
logarithm of interbeat intervals in the full recording. The use
of logarithm and the threshold are determined from the visual
inspection of the interbeat interval distribution. To compare the
biometric estimates by the wristband with those measured in
the same time window by the ECG and spirometer, Pearson
correlation coefficients along with Bland-Altman plots and
Bland-Altman limits of agreement are presented [60]. The
Bland-Altman limits of agreement took into account multiple
observations collected over time from the same set of individuals
using 2 reference devices [61]. The effect of the averaging
window size on the accuracy of HR estimates and the variation
in biometric measurements collected from the left versus right
wrists were also evaluated.

Results

Participant Demographics
Study participant demographics are summarized in Table 1.
The average and SD of height, weight, and age were 172 cm
(SD 10), 74 kg (SD 18), and 25 years (SD 4), respectively. The
Fitzpatrick score indicates a good coverage of light, medium,
and dark skin tones, with a slight skew to the darker
pigmentation range.

Photoplethysmography Signal Qualification
The PPG signals obtained from the Wavelet wristband have a
physiological morphology similar to those collected from the
Nonin finger-clip device, as shown in Figure 3. Compared with
the reference finger-clip PPG measurements, the diastolic peak
is located closer to the systolic peak and the diastolic decay is
steeper, in agreement with the earlier studies comparing different
measurement sites of PPG [62] and arterial pressure [63]. Figure
4 shows the continuous HR estimate of the Wavelet wristband,
indicating strong agreement across right and left wrists and with
the reference ECG device.
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Table 1. Participant demographics (N=35).

ValueCharacteristics

172 (10)Height (cm), mean (SD)

74 (18)Weight (kg), mean (SD)

25 (4)Age (years), mean (SD)

16 (46)Gender (female), n (%)

Fitzpatrick scorea, n (%)

2 (6)Type I

6 (17)Type II

12 (34)Type III

14 (40)Type IV

1 (3)Type V

aSelf-reported Fitzpatrick scores classify subjects’ skin tones as follows: type I, pale white; type II, white; type III, cream white; type IV, moderate
brown; and type V, dark brown.

Figure 3. Signal traces recorded simultaneously from electrocardiography (ECG), Nonin finger-clip pulse oximetry device, and 2 Wavelet wristbands
placed on the left and right wrists. Peaks (ECG and Nonin) or valleys (Wavelet) are marked. Signs were aligned based on time stamps and agreement
of interbeat intervals in the absence of accurate pulse transit time information.
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Figure 4. Representative instantaneous heart rate (HR) estimates from the wristbands on the left and right wrists show good agreement with the
electrocardiography (ECG) HR measurements. Note that the beat-level HR data are computed in the background to estimate 60-second window HR
averages reported in this study. Wavelet 1 and 2 labels refer to the wristband placed on the left and right wrists, respectively.

To assess the quality of the signal at each LED wavelength,
average HNR values for each 60-second nonoverlapping window
were computed for signals collected by the Nonin finger-clip
PPG device and the wristband. Table 2 shows the mean (SD)
of HNR as 7.7 (SD 2.0), 6.4 (SD 2.2), and 4.7 (SD 2.7) for
Nonin IR, Wavelet IR, and Wavelet red, respectively. The
distribution of HNR for each group is illustrated in Figure 5
using boxplots. Note that not all Wavelet wristband recordings
had a corresponding Nonin recording available because of
equipment availability on the test day. The difference histogram
in Figure 5 illustrates the pairwise mean difference (with 1 SD)
between the wristband IR HNR and Nonin HNR as −1.34 (SD
2.75) dB. Thus, the wristband IR HNR is slightly lower than
that of the finger-clip sensor.

In this study, a total of 366 min of PPG signal recordings were
collected from 35 subjects. Approximately 12.0 % (44/366) of
the PPG recordings were flagged invalid because of subtle arm
motions during the test. In addition, 74 measurements from 23
test sessions failed to meet the desired HNR level and did not
qualify to vital sign analysis. The signal processing algorithm
generated valid HR, HRV SDNN, HRV RMSSD, and RR
measurements for 78.9% (254/322), 76.7% (247/322), 77.3%
(249/322), and 39.8% (128/322) of the signals, respectively.
Importantly, the signal quality preprocessing step disqualified

all readings from 2 type II and 1 type I subjects. Furthermore,
it was later found that for 1 subject, the ECG probe was
dislocated; therefore, no valid ECG reference data were
collected. The number of valid vital sign measurements for
which the corresponding reference data exist is shown in Table
3.

Heart Rate Validation
Table 3 shows the mean absolute error and mean absolute
percentage error of the HR, HRV, and RR estimates of the
Wavelet wristband compared with the reference devices. Across
254 measurements of 60-second nonoverlapping windows, the
mean pairwise absolute error of HR was 0.7 beats per minutes
or bpm (SD 0.9; 0.9%, SD 1.3) against the reference ECG.
Figure 6 shows the distribution of ECG and Wavelet HR
estimates with scatter and Bland-Altman plots. The Pearson
correlation coefficient (R) of HR between wristband estimates
and reference ECG measurements was .994, and the mean
difference (bias) between Wavelet and ECG HR (with 95% CI)
was −0.32 bpm (SD 0.13). All measurements stay within 5%
absolute percent error, except one outlier for which the Wavelet
wristband underestimated the HR by 7% (6.8 bpm). The
Bland-Altman ratio, that is, the ratio of 1.96 x SD divided by
the mean of the pairwise measurement means, is equal to 0.03,
which indicates good agreement between measurements [60].
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Table 2. The mean and SD of the average harmonic-to-noise ratio for the photoplethysmography recordings collected from the Wavelet wristband and
reference Nonin finger-clip pulse oximeter.

Mean HNRb (SD)Valid sample sizeaPhotoplethysmography signals

Subjects, nMeasurements, n

7.7 (2.0)28216Nonin IRc (dB)

6.4 (2.2)33266Wavelet IR (dB)

4.7 (2.7)33266Wavelet red (dB)

aValid sample size: the number of measurements and subjects that were eligible for signal quality analysis.
bHNR: harmonic-to-noise ratio.
cIR: infrared.

Figure 5. Boxplot comparison (left) of average harmonic-to-noise ratio (HNR) estimated over 60-second nonoverlapping windows for each
photoplethysmography wavelength: Nonin finger-clip pulse oximeter (Nonin IR), the wristband infrared (Wavelet IR), and the wristband red (Wavelet
red). The histogram for pairwise difference of average HNR between Wavelet IR and Nonin IR signals (right). IR: infrared.

Table 3. The accuracy of the biometric estimates (mean, SD) of the Wavelet wristband compared with the reference electrocardiography and respirometer
measurements.

Pearson correlationMean error (SD)Mean absolute

percentage error (SD)

Mean absolute

error (SD)
Valid sample sizeaMeasurement

Subjects, nMeasurements, n

.994−0.3 (1.1)0.9 (1.3)0.7 (0.9)31254HRb (bpmc)

.907−1 (12)11 (13)7 (10)31247HRV SDNNd (ms)

.9243 (16)28 (30)11 (12)31249HRV RMSSDe (ms)

.8631 (2)2.5 (2.5)1 (1)26128RRf (brpmg)

aValid sample size refers to the number of measurements and subjects where both valid wristband and reference data were available.
bHR: heart rate.
cbpm: beats per minute.
dHRV SDNN: heart rate variability standard deviation of normal-to-normal intervals.
eHRV RMSSD: heart rate variability root mean square of successive differences.
fRR: respiratory rate.
gbrpm: breaths per minute.
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Figure 6. The distribution of measured heart rate (HR) by the electrocardiography (ECG) and the wristband (left). The Pearson correlation coefficient
is shown in the lower-right corner of this scatter plot. Bland-Altman plots of the absolute error of HR between the wristband and the simultaneously
recorded ECG measurements versus the mean of the measurements in beats per minute (right). The solid black line indicates the mean difference. The
dotted lines mark the 95% limits of agreement (LoA) at −2.6 and 1.9 bpm.

Figure 7. The distribution of measured heart rate variability standard deviation of normal-to-normal intervals (HRV SDNN) by the electrocardiography
(ECG) and the wristband (left). The Pearson correlation coefficient is shown in the lower-right corner of this scatter plot. Bland-Altman plots of the
absolute error of HRV between the wristband and the simultaneously recorded ECG measurements versus the mean of the measurements in milliseconds
(right). The solid black line indicates the mean difference. The dotted lines mark the 95% limits of agreement (LoA) at −25 and 22 ms.

Heart Rate Variability
The SDNN and RMSSD HRV are computed over 60-second
nonoverlapping windows for ECG and Wavelet wristband
recordings. The mean absolute errors for SDNN and RMSSD
were estimated as 7 ms (SD 10; 11%, SD 13) and 11 ms (SD
12; 28%, SD 30), respectively, as shown in Table 3. The mean
difference (with 1 SD) between Wavelet and ECG-based SDNN
and RMSSD was −1 ms (SD 12) and 3 ms (SD 16), respectively.
The relationship between the Wavelet SDNN HRV estimates
to the ECG is visualized with scatter plots as well as with
Bland-Altman plots (Figures 7 and 8). Pearson correlation
coefficients for HRV SDNN and RMSSD were estimated as
.907 and .924, respectively. The Bland-Altman ratios for HRV
SDNN and RMSSD were 0.35 and 0.42, which indicate strong
correlation between the wristband HRV estimates and the
reference measurements. Relatively lower correlation for

RMSSD estimates is attributed to the outliers at the high
RMSSD range (>150 ms).

Respiration Rate
Figure 9 shows the comparison of the RR estimates of the
wristband with the reference spirometry measurements. The
Pearson correlation coefficient was .863, and the mean
difference (bias with 1 SD) between Wavelet and spirometer
RR was 1 brpm (SD 2). The pairwise mean absolute error is 1
brpm (SD 1; 2.5%, SD 2.5) as shown in Table 3.

To assess the agreement between the HR and HRV computed
by a Wavelet wristband on the left and right wrists, the mean
absolute error is computed for subjects where both valid
simultaneous left and right wrists’ readings are available (n=23).
Table 4 shows that the mean absolute difference between the
right and left wrists’ measurements was 0.6 bpm (SD 0.8), 6
ms (SD 10), 9 ms (SD 10), and 1 brpm (SD 2) for HR, HRV
SDNN, HRV RMSSD, and RR, respectively.
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Figure 8. The distribution of measured heart rate variability root mean square of successive differences (HRV RMSSD) by the electrocardiography
(ECG) and the wristband (left). The Pearson correlation coefficient is shown in the lower-right corner of this scatter plot. Bland-Altman plots of the
absolute error of HRV between the wristband and the simultaneously recorded ECG measurements versus the mean of the measurements in milliseconds
(right). The solid black line indicates the mean difference. The dotted lines mark the 95% limit of agreement (LoA) at −30 and 36 ms.

Figure 9. The distribution of measured respiration rate (RR) by spirometer and the wristband (left). Each data point represents the average RR over a
60-second nonoverlapping measurement window. Bland-Altman plots of the absolute error of RR between the wristband and the simultaneously recorded
control measurements versus the mean of the measurements in breaths per minute (right). The solid black line indicates the mean difference. The dotted
lines mark the 95% limit of agreement (LoA) at −3 and 4 brpm.

Influence of Recording Window Duration on Biometric
Estimation Accuracy
For certain use cases, the estimation of biometrics over durations
shorter than 60 seconds may be desirable. To assess the accuracy
of the biometric estimations over shorter recording durations,
the absolute error and absolute percentage errors from the
reference were computed by reanalyzing the test and reference
signals over 45 and 30 seconds long windows. Results shown

in Table 5 indicate that the mean absolute error in HR remains
stable, that is, within 1 bpm, as the recording duration shortens
from 60 to 30 seconds. Similarly, mean absolute error in HRV
RMSSD estimates remained at 12 ms without displaying
dependence on recording duration. However, the mean absolute
error of SDNN was influenced by the recording duration. For
30-second recording duration, mean absolute error for RR
estimations increased to 2 brpm (SD 2).
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Table 4. The pairwise mean absolute difference between the left and right wristbands.

Mean absolute difference (SD)Valid sample sizea (pairs)Measure

Subjects, nMeasurements, n

0.6 (0.8)23108HRb (bpmc)

6 (10)23102HRV SDNNd (ms)

9 (10)23101HRV RMSSDe (ms)

1 (2)2348RRf (brpmg)

aValid sample size refers to the number of measurements and subjects where two wristband recordings (pairs) from the same subject were available.
bHR: heart rate.
cbpm: beats per minute.
dHRV SDNN: heart rate variability standard deviation of normal-to-normal intervals.
eHRV RMSSD: heart rate variability root mean square of successive differences.
fRR: respiratory rate.
gbrpm: breaths per minute.

Table 5. Mean absolute error and SD of biometrics estimations from reference measurements at different recording window durations.

RRe (brpmf)HRV RMSSDd (ms)HRV SDNNc (ms)HRa (bpmb)Recording window duration

nMean (SD)nMean (SD)nMean (SD)nMean (SD)

1281 (1)24911 (12)2477 (10)2540.7 (0.9)60 (s)

1631 (1)36411 (13)3617 (11)3810.8 (1.0)45 (s)

2182 (2)52011 (14)5168 (12)5591.0 (1.4)30 (s)

aHR: heart rate.
bbpm: beats per minute.
cHRV SDNN: heart rate variability standard deviation of normal-to-normal intervals.
dHRV RMSSD: heart rate variability root mean square of successive differences.
eRR: respiratory rate.
fbrpm: breaths per minute.

Discussion

Principal Findings
To access the clinical utility of wearable health devices, it is
imperative to validate the accuracy of the metrics derived by
these devices against gold standard measures and, importantly,
to characterize their limitations. In this study, we evaluated the
performance of the Wavelet wristband by comparing the
accuracy of the estimated biometrics with the ground truth
references. The mean absolute error of HR, HRV SDNN, HRV
RMSSD, and RR was 0.7 bpm (SD 0.9), 7 ms (SD 10), 11 ms
(SD 12), and 1 brpm (SD 1), respectively. Bland-Altman graphs
demonstrate good agreement between the wristband biometric
estimates with the reference measurements. These results
indicate that the Wavelet wristband can estimate multiple vital
signs in the resting state and provide a continuous noninvasive
health monitoring solution as an alternative to other devices
typically incorporating ECG.

To our knowledge, this study is the first of its kind exploring
the PPG signal quality collected by a wrist-worn reflective PPG
device as compared with more traditional devices placed on
measurement sites such as the finger, where the subcutaneous

tissue is perfused more strongly with dense microvasculature.
Previously, several investigators reported accurate estimation
of vital signs using PPG signal collected from the finger in
comparison with ECG in healthy [64-68] and disease settings
[69-71]. Investigations by Maeda et al [62] showed that
relatively high signal strength can be obtained from the wrist
but lacked signal-to-noise ratio assessments, which are essential
for estimating accurate biometrics. In this study, we suggest
HNR can be used to characterize PPG signal quality collected
from different measurement locations, benchmark PPG devices,
and aid in establishing signal quality standards in PPG research.
Comparable HNR of the Wavelet wristband and Nonin
finger-clip pulse oximeter devices indicates that good quality
PPG signal can be collected from the wrist.

Strengths and Limitations
Although both PPG and ECG signals convey physiological
information, the underlying physiology of PPG stems primarily
from hemodynamics rather than the electrical activity of the
heart depicted in the ECG signal. The well-defined morphology
of the ECG signal allows relatively simple extraction of
beat-to-beat intervals in the absence of artifacts related to drift,
electromagnetic, and biological interferences [66]. In contrast,
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PPG signal hosts inherently more rounded peaks and valleys
and therefore requires more sophisticated algorithms to extract
physiological measures. Similar to blood pressure, PPG signal
morphology depends strongly on the timing of reflected waves
from the downstream vasculature [72], which is negatively
correlated with vascular stiffness and age [13]. It is reasonable
to assume changes in pulse transmit time, which is due to
within-subject vascular stiffness variations, add another layer
of challenge to accurate extraction of salient features from the
PPG signal and contribute, in part, to deviations reported herein
from the reference device measurements.

PPG signal quality is affected by multiple factors including
improper sensor-skin coupling because of device malposition,
ambient light, pressure on skin, and biological factors (blood
perfusion, tissue composition, and skin temperature) and is
highly sensitive to motion [47,73]. To eliminate inaccurate
readings from PPG devices, it is necessary to incorporate proper
signal qualification checks and biometric-specific heuristics to
the signal processing algorithm. Only then will the PPG device
be able to estimate biometrics within the desired accuracy range
while providing a sufficient number of biometric readings for
the designed use case. In this study, 78% of HR measurements
and only 40% RR measurements were qualified by the vital
sign algorithms, as the latter is highly sensitive to artifacts. It
is important to note that cloud computing and storage of raw
signals enable retrospective processing of the physiological
signals collected by digital health devices. Leveraging more
advanced algorithms, this framework will allow further
improvement of the accuracy and the number of the valid
readings generated from the same signals.

In addition to postprocessing strategies, the choice of the PPG
wavelength also impacts the quality of the PPG signal and
accuracy of the computed metrics. This choice is a trade-off
and depends on the targeted application but is usually between
510 and 940 nm, corresponding to green and IR lights,
respectively. Measurements performed on light skins and at
normal ambient temperature (around 20°C) have shown that
reflected green light maintains a good signal-to-noise ratio
during motion compared with IR [74], which is the main reason
why many consumer devices that target ambulatory HR
measurements use a green light source. The advantage of IR
light over green light is that it is less sensitive to skin tone
variations and perfusion level because of its better tissue
penetration characteristics [49]. The darker the skin
pigmentation, that is, higher melanin concentration, the harder
it is to receive good signal with light wavelengths shorter than
650 nm. Furthermore, for individuals with relatively lower
superficial skin perfusion, thicker skin, and larger wrist

circumference or body mass indices, particularly in cold ambient
conditions, blood microcirculation is significantly lower, and
it becomes advantageous to reach deeper tissues. Therefore, to
serve particularly for resting state biometrics monitoring across
the population, the Wavelet wristband uses IR light as its
primary light source.

As a limitation of this study, the biometrics reported herein were
tested at the resting condition and lacked physical activity
settings. It is well known that the accuracy of biometrics derived
from PPG-based devices is affected by motion artifacts [75,76].
Recent studies evaluating HR estimates from several
commercially available wrist-worn PPG devices reveal variable
degrees of accuracy during physical activity [77,78]. Accuracy
of the biometrics estimation during motion requires robust
motion reduction algorithms [79-81], which is not incorporated
in the current version of the product. Future research in this area
is needed to preserve the original signal morphology and extract
more information than just ambulatory HR. Another limitation
is that the subjects recruited for the study have no known health
conditions and come with restricted age range and skin tones
available. The correlation between measurement error and
Fitzpatrick score indicates higher deviations at the extremes.
Further studies are needed to demonstrate the utility of the
devices for larger more diverse populations. Moving forward,
well-designed clinical studies are required to demonstrate the
impact of new wearable and connected devices on clinical
outcomes and to build real-world evidence for indications that
benefit most from these new technologies.

Conclusions
This study demonstrates that the Wavelet wrist-worn PPG device
can estimate physiological measures including HR, HRV SDNN,
HRV RMSSD, and RR within 0.6 bpm (SD 0.9), 7 ms (SD 10),
11 ms (SD 12), and 1 brpm (SD 1), respectively, of the reference
ECG and spirometer devices. The quality of the PPG signal
generated by the Wavelet wristband and the commercially
available finger-clip pulse oximeter was evaluated at the
identical conditions and quantified by HNR estimations as 6.40
dB (SD 2.16) and 7.70 dB (SD 1.99), respectively.
Next-generation wearable and connected devices provide
unprecedented means for continuous long-term remote health
monitoring. Due to their noninvasive, convenient-to-patient,
and engaging nature, these technologies will be gradually
becoming part of our everyday lives and act as companion tools
for clinical decision support, supplementing the established gold
standard methods. This new streamlined health data collection
modality will enable new and better ways to measure personal
health, generate insights that are otherwise not available, and
ultimately improve health care delivery.
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