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Abstract

Background: Clinical assessments for physical function do not objectively quantify routine daily activities. Wearable activity
monitors (WAMs) enable objective measurement of daily activities, but it remains unclear how these map to clinically measured
physical function measures.

Objective: This study aims to derive a representation of physical function from daily measurements of free-living activity
obtained through a WAM. In addition, we evaluate our derived measure against objectively measured function using an ordinal
classification setup.

Methods: We defined function profiles representing average time spent in a set of pattern classes over consecutive days. We
constructed a function profile using minute-level activity data from a WAM available from the Osteoarthritis Initiative. Using
the function profile as input, we trained statistical models that classified subjects into quartiles of objective measurements of
physical function as measured through the 400-m walk test, 20-m walk test, and 5 times sit-stand test. Furthermore, we evaluated
model performance on held-out data.

Results: The function profile derived from minute-level activity data can accurately predict physical performance as measured
through clinical assessments. Using held-out data, the Goodman-Kruskal Gamma statistic obtained in classifying performance
values in the first quartile, interquartile range, and the fourth quartile was 0.62, 0.53, and 0.51 for the 400-m walk, 20-m walk,
and 5 times sit-stand tests, respectively.

Conclusions: Function profiles accurately represent physical function, as demonstrated by the relationship between the profiles
and clinically measured physical performance. The estimation of physical performance through function profiles derived from
free-living activity data may enable remote functional monitoring of patients.

(JMIR Mhealth Uhealth 2018;6(12):e11315) doi: 10.2196/11315
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Introduction

Physical function is an important indicator of physiological
well-being. Recently, physical status has become an outcome

of interest in most medical specialties [1-4] and is increasingly
regarded as the “sixth vital sign” [5]. Attempts at arresting and
managing the functional decline must start with an evaluation
of the baseline functional status. For example, maximizing
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improvement in advanced osteoarthritis requires knowing a
patient’s baseline function to detect any improvement.
Therefore, valid metrics to monitor physical function are
necessary [6-8]. The International Classification of Functioning,
Disability and Health [9] characterizes physical function in 2
distinct categories—capacity and performance. Capacity is the
capability of a person to complete a given task in a controlled
environment (eg, a timed walking test or a sit-stand test), while
performance is what a person does in his or her current
environment (eg, real-life physical activity monitoring).
Traditionally, physical performance is estimated by surveys and
self-reported questionnaires. One example is the assessment of
one’s ability to complete the daily activities necessary to live
independently (including bathing, dressing, toileting,
transferring, maintaining bowel and bladder continence, and
feeding), collectively referred to as the activities of daily living
(ADLs) [10,11] and are typically measured by surveys.
Disability indexes based on ADLs can differentiate healthy
aging patients, patients with mild cognitive impairment, and
patients with dementia [12]. However, ADL scores may have
a response bias from self-reporting and low sensitivity to
changes in high-functioning older adults [13]. In contrast,
physical capacity measures (such as walking and sit-to-stand
speeds and grip strength observed under supervision) capture
variation across a wider range of physical function, including
initial changes in the early stages of decline [14-16]. The main
drawback of such capacity measures is that they require
substantial time and effort from patients and researchers, as well
as access to specialized facilities. The relationship between
physical activity and physical function measures is a topic of
active research [17-21].

Although the need to measure physical function is widely
appreciated, self-reported assessments of physical performance
are inadequate owing to poor discrimination and biases and
difficulties in recalling historical activities; physical capacity
measures require adherence to specific test protocols and are
usually limited to research settings. Seeking a more simple and
accurate measure, we have created a novel method for inferring
physical function based on objective measurements of daily
physical activity obtained from a wearable device. Our work
enables quantitative monitoring of physical function—the first
step toward improved precision in clinical research and practice.

Wearable activity monitors (WAMs), typically equipped with
one or more accelerometers, provide a convenient way to
measure physical activity objectively [22-24]. However,
attempts to use WAMs to link the measured physical activity
and physical function have been limited by their reliance on
traditional methods of analyzing WAM data [25-28]. Two
research groups [20,29] have demonstrated that the measured
physical activity and physical capacity are associated but
independent domains of physical function. For example, a
change in physical capacity (eg, on the 6-minute walk test) need
not imply a corresponding change in real-life activity levels.
Interestingly, both research groups concluded that differentiating

physical activity into classes leads to a stronger association with
physical function, compared with a univariate measure based
on average acceleration. WAMs typically measure the aggregate
velocity change over a period—which by itself was considered
inadequate for distinguishing classes of activities. We
hypothesized that higher-order patterns in daily activity recorded
by a WAM would correlate with physical function. We defined
pattern classes from daily activity data using an unsupervised
approach and used this information to create a function profile,
which represents the mean allocation of time to different pattern
classes. Using machine learning techniques, we classified
activity profiles into discrete quartiles of commonly used
measures of physical function such as the 400-m walk test
(400MWT).

Studies with WAMs have, thus far, focused on the following:

1. Evaluation of measurement reliability and validity and
characterizing activity phenotypes by patterns in free-living
activity data [20,30-33].

2. Developing models of isolated activities and postures using
supervised learning [34-37].

3. Developing activity-based models of physical capacity
wherein subjects undergo instrumented versions of various
capacity tests as summarized in a recent literature review
by Grimm and Bolink [38].

Furthermore, Gresham et al used daily activity metrics (steps,
distance, and stairs) to compute correlations with the clinically
measured performance status in patients with advanced cancer
[39]. In a study on nursing home residents, Merilahti et al
reported an association between features derived from daily
free-living activity and patient-reported physical function [40].
However, none of the studies mentioned above has modeled
physical function using daily free-living activity—a crucial step
in medical applications that require passive monitoring of
function. Our research contribution is to use WAM data to
characterize daily free-living activity into pattern classes and
infer physical function based on the pattern classes. This study
demonstrates the feasibility of distinguishing physical function
categories with high sensitivity and specificity, and discusses
potential uses in medical research and treatment. Figure 1
illustrates our overall workflow. Daily activity, measured as
counts per minute, was recorded for 2001 subjects in year 4 of
the OAI study. For each subject, various objective measurements
were obtained from which we selected results for the 400-m
walk test (400MWT), average pace on the 20-m walk test
(20MPACE), and 5 sit-stand time (5CS), labeled as M1, M2,
and M3 in Figure 1. Thereafter, nonwear time was excluded
from activity traces, daily activity count sequences were
segmented, and a composite feature descriptor with a daily
activity profile was constructed for each subject. Finally,
quantitative response values were converted to ordinal values
based on empirical quantiles obtained from the training partition
and a classifier for the feature descriptor was trained on the
training partition of the feature matrix (80%) and evaluated on
the held-out partition.
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Figure 1. Estimating physical function from daily activity traces (overall workflow). Ht: height; OA: osteoarthritis; PCTL: percentile; AUC: area under
the receiver operating characteristic curve.
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Methods

Data
We used publicly available data from the Osteoarthritis
Initiative, (OAI) which follows a cohort of subjects who either
had a clinical diagnosis (progression subcohort) of oseoarthritis
or were at risk at baseline (incidence subcohort). The OAI has
daily accelerometer measurements for subjects who participated
in a physical activity study; these participants were instructed
to use an ActiGraph GT1M uniaxial accelerometer (ActiGraph;
Pensacola, FL, USA) continuously for up to 7 consecutive days,
except during sleep and water activities. The ActiGraph GT1M
is a compact, hip-worn device that measures dynamic
acceleration in the range of 0.05-2.0 g; its validity and reliability
have been established previously [41-43]. Participants
maintained a daily log of water and cycling activities, as the
accelerometer may not have been able to capture these
accurately. A post facto analysis revealed that participants spent
little time in these activities (median 0 minutes/day; interquartile
range 0.0-3.4 minutes/day), indicating that little activity was
missed by the monitors. Table 1 summarizes the key attributes
of the physical activity study data (Multimedia Appendix 1).

The accelerometer data in OAI consist of activity counts per
minute. An activity count is a weighted sum of
discretely-sampled (30 Hz) values of one-dimensional
acceleration. We used established guidelines to determine the
wear time and valid days of activity monitoring, as reported
previously [44]. Since 0 or low values of activity counts could
also arise from nonwear time, we excluded nonwear periods.
Continuous runs of 0 counts for >90 minutes (allowing for
interruptions of up to 2 consecutive minutes with <100 counts)
were discarded as nonwear periods. A day with a wear time of,
at least, 10 hours was considered valid. Furthermore, objective,
as well as patient-reported measures of physical function, were
recorded during patient follow-up visits.

Objective Measures of Function
The Osteoarthritis Research Society International [45]
recommends testing of activities that are typically affected by
OA. We selected 3 OAI performance measures that had
equivalents in Osteoarthritis Research Society International’s
recommended tests, which were as follows: the 400MWT, for
which longer completion times are associated with a higher risk
of mobility limitation and disability (adjusted hazard ratios,
4.43, P<.001), as well as a higher risk of death (adjusted hazard
ratio, 3.23, P<.001) for subjects in the highest quartile [46]; the
average pace in a 20-m walk test (20MPACE) is the closest
available short walk-length evaluation in the OAI dataset that
is used for gait speed assessment; the number of sit-to-stands
per second measured over 5 repetitions (5CSPACE) as a
measure of the sit-to-stand function, which has good test-retest
reliability [47].

Relationship With Daily Activity
Physical function is defined as the repertoire and relative
proportion of activities that a subject accomplishes in a given
environment. We recovered segments representing homogenous
activities from the daily sequences of counts per minute obtained
from a WAM and defined pattern classes based on similar
segments. A subject’s function profile was computed as average
minutes allocated to each pattern class. Finally, we inferred
mappings from the function profile to the objective
measurements of the function described in the earlier section
using supervised learning.

Pattern Classes and Function Profile
We used the change-point analysis algorithm by James and
Matteson [48] to segment counts-per-minute sequences; this
algorithm searches for segment boundaries such that each
segment represents a change in the distribution of the
time-ordered counts with respect to preceding and subsequent
segments. Figure 2 illustrates a counts-per-minute sequence for
a typical subject on a given day and the segments that are
recovered through change-point analysis (as shown by the
horizontal red lines). Each segment is an instance of a pattern
class whose mean and SD are estimated by the sample mean
and SD of the segment.

Each segment was indexed using the mean and SD of the
counts-per-minute values; this representation improves
discrimination between classes of activity patterns (henceforth
referred to as pattern classes) [49].

A pattern class is a bounded region in the segment feature space.
Our feature space F consists of all (m, s) vectors: m ∈[0, M], s
∈[0, S], where M and S are the maximum mean and SD over
all segments found through the segmentation. A pattern class
is defined by a pair of intervals such as [m1, m2) X [s1, s2). A
segment with mean x and SD y (m1≤x<m2, s1≤y<s2) is an
instance of the pattern class so defined. Figure 3 illustrates such
a segment represented in the mean-SD space spanned by all
segments and its assignment to a pattern class [m1, m2) X [s1,
s2), as shown by the shaded region. Based on the pattern classes
obtained from partitioning F, we defined a function profile for
each subject as the average time allocated to each pattern class
per day. The function profile for a subject i is given by

Ai=(ai1, ai2...aiJ) where

ail=(1/Ki)∑ktilk

J: the number of pattern classes

k=1...Ki, the number of days of observations for
subject i

tijk: the number of minutes spent by subject i in pattern
class j, on day k

As seen in Figure 4, the number of instances of a pattern class
decrease as the mean and SD increase resulting in a sparse daily
activity profile. Di=(BMIi, Agei, Sexi, Heighti, OAi, Ai)

JMIR Mhealth Uhealth 2018 | vol. 6 | iss. 12 | e11315 | p. 5http://mhealth.jmir.org/2018/12/e11315/
(page number not for citation purposes)

Agarwal et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Key attributes of the knee osteoarthritis subjects providing physical activity data.

ValueCharacteristics

Total number of subjects (N=2001), n (%)

1490 (74.46)Incidence subcohort

505 (25.24)Progression subcohort

6 (0.30)Control subcohort

891 (44.53)Gender (male), n (%)

28.52 (4.87)Body mass index, mean (SD)

0.52Mean Comorbidity Index

7Median days of activity

Figure 2. Segmentation of counts-per-minute sequences. Dur: duration.
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Figure 3. The mean and SD space containing all segments is partitioned into bounding regions, each defined by a mean and an SD interval.

Figure 4. Scatter plot of the mean, SD, and duration of the segments.

Supervised Learning
We defined a composite descriptor Di=(BMIi, Agei, Sexi, Heighti,
OAi, Ai) for each subject i in our data, where OAi refers to a
subject’s baseline status (healthy, at-risk, or progressive disease)
and Ai is the function profile. A regression function f (D) that

maps Di to an objective measure of physical capacity can be
obtained by minimizing the expected squared error loss.

Medical studies commonly group continuous variables into
quantiles for ease of interpretation and analysis [46,50,51]. We,
therefore, defined our response variable by grouping the
objective measure of physical capacity into ordered categories
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1<2<3. As shown in Figure 1, categories 1 and 3 represented
values in the lowest and highest quartiles, respectively, and 2
represented values spanning the interquartile range for a specific
response. Classes 1 and 3 correspond to the upper and lower
quartiles on the physical capacity measurements and, therefore,
contain only half as many observations as in class 2. To address
the imbalance, each observation was weighted by its class
prevalence in the fitting procedure.

Generalized Additive Models (GAM) can identify and
characterize nonlinear regression effects through an additive
specification of nonparametric functions of the predictors. We
used GAMs because fits from quantitative regressions suggest
that at higher values, linearity in the predictors may not be a
justifiable modeling assumption (Multimedia Appendix 2). A
GAM may be specified as follows:

g( µ( X)) = α + f1( X1) + f2( X2) +...+ fp( Xp) where

µ( X) denotes the conditional mean of the response,
that is, E[Y|X]

g( µ(.) is the link function

f1... f p are the unspecified smooth functions for each
of the p predictors

Unspecified functions of predictors are smoothers (typically
kernels or cubic splines) that are estimated simultaneously using

a backfitting algorithm [52]. The estimated reveal the nature of
the predictor-response relationship. The function profile depends
on the pattern classes, which are defined as intervals in the
mean-SD space covering all segments. The size of the 2D
interval in feature space that defines our pattern classes is a
tuning parameter. Small intervals allow instances from adjacent
classes to be in close proximity, increasing the correlation
between activity profile elements. We ascertained the optimal
size of the 2D interval—with equal mean and SD
intervals—through repeated 5-fold cross-validation on our
training data, as shown in Figure 5 (dashed lines indicate the
optimal region size). Our intuition for the different optimal size
for the 5CS model is that daily activities that involve sit-stand
transitions are subsumed in the function classes defined on wider
intervals. For example, sit-stand-walk and walk-stand-sit
(measured by per minute activity counts) are transitions to and
from activities characterized by large mean counts, whereas
sit-stand and stand-sit are transitions to and from low mean
count activities. On the other hand, most daily activities require
some level of lower extremity strength, balance and gait
initiation, and control capability—each of which are necessary
for walking. Therefore, it seems reasonable that a profile
constructed from function classes that distinguish between such
activities will have a high correlation with walking test results.

Figure 5. The mean Gamma (Goodman-Kruskal rank correlation between the predicted and true responses) in 5-fold cross-validation for 20MPACE
(20-m walk test), 5CSPACE (number of sit-to-stands per second measured over 5 repetitions), and 400MWT (400-m walk test) models.
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We evaluated cross-validation performance using the mean
Goodman-Kruskal Gamma [53], which measures the rank
correlation between the true and predicted categories
(Multimedia Appendix 2). For optimal bin sizes, GAMs were
refit using the full training data and features based on the optimal
bin size, and ordered categorical for the response family using
the mgcv package [54]. We evaluated the Goodman-Kruskal
Gamma for the predicted and true classes, using the held-out
data.

Results

Principal Results
As described in the Methods section, we found homogeneous
segments from daily activity sequences of counts per minute
and defined pattern classes based on similar segments. A
subject’s function profile was average daily minutes allocated
to each pattern class. Finally, we learned mappings from the
function profile to the objective measurements of physical
capacity. Table 2 summarizes classifier performance for the
GAMs on the held-out data using the function profiles based
on the optimal interval sizes. The values in parentheses indicate
improvement over baseline performance without function profile
predictors.

Including the activity profile improved the held-out Gamma by
4%-10%, compared with classifiers in which the activity profile
was excluded from the predictors, with higher improvement in
classification of walking test results (Multimedia Appendix 3).

Predictors of Physical Function
GAMs fit smooth functions for each predictor in the model that
additively contribute to the value of a latent variable. The model
fitting algorithm [52] also estimates thresholds, whose values
in relation to the latent variable computed from the smooth
functions determine the ordered categorical response.

Relationships between response and predictors in a GAM may
be studied by plots of smoothers fitted by the GAMs. We studied
predictors that were significant at P=.05 in the GAMs (Figure
6). Predictor-response relationships are shown by the smooth
function plots arranged around the grid and linked to the
corresponding predictor. We refer to a specific pattern class
using the mean and SD interval pairs, as defined in the Methods
section. The smooth function plots for pattern classes [0,700)
X [701,1400) and [701,1400) X [701,1400) (numbered 2 and
3, respectively, on the mean-SD grid in Figure 6) show that up
to 25 daily average minutes in these pattern classes were
monotonically associated with improved response in the
400MWT and 20MPACE.

Most pattern classes with a higher mean and SD have low
duration, resulting in fewer degrees of freedom for estimating
the smooth functions at high values; this explains the wider
confidence bands for the function estimates at higher values of
daily average minutes. Inspection of a sample of instances from
the class [701-1400) X [701-1400) revealed that long duration
instances were typically spells of rest punctuated by frequent
interruptions. A plausible explanation may be that such
interruptions involve sit-stand transitions and, therefore, these
instances are associated with the improved 5CSPACE response.
Pattern classes with the mean interval [0-700) are not associated
with the 5CSPACE response.

Pattern classes [2801,3500) X [0,700) and [2801,3500) X
[1401,2100), numbered 4 and 5, respectively, are associated
with the 400MWT response. The smooth function plots for
these classes suggest that higher daily average minutes in both
classes were associated with improved long-walk capacity. The
association with increased completion times with >20 daily
average minutes in the class [2801,3500) X [0,700) was due to
instances comprising of mostly sedentary activity. Furthermore,
infrequent occurrences of such instances resulted in wide
estimate intervals for the smooth function.

Table 2. Gamma for generalized additive models evaluated on held-out data.

GammaPhysical capacity measurementPredictors

0.62 (0.10)d400MWTcBMIa, age, sex, height, OAb subcohort, function profile

0.53 (0.07)d20MPACEeBMI, age, sex, height, OA subcohort, function profile

0.51 (0.04)d5CSPACEfBMI, age, sex, height, OA subcohort, function profile

0.52400MWTBMI, age, sex, height, OA subcohort

0.4620MPACEBMI, age, sex, height, OA subcohort

0.475CSPACEBMI, age, sex, height, OA subcohort

aBMI: body mass index.
bOA: osteoarthritis.
c400MWT: 400-m walk test
dThe values in parentheses indicate improvement over baseline performance without function profile predictors.
e20MPACE: the average pace in a 20-m walk test.
f5CSPACE: number of sit-to-stands per second measured over 5 repetitions.
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Figure 6. The grid boxes represent pattern classes labeled with the mean interval (x-axis) and the SD interval on the y-axis. 400MWT: 400-m walk
test; 20MPACE: 20-m walk test; 5CSPACE: number of sit-to-stands per second measured over 5 repetitions.

Approximations of the distribution of activity counts in any
given pattern class can be obtained by tail probability bounds.
For example, use Chebyshev’s inequality, P(|X – µ| > kσ) <

(1/k2) where µ and σ are the midinterval values of the mean and
SD intervals, respectively, for a given pattern class. For the
class [2801,3500) X [0,700), we obtained:

P(|X – 3150| < k. 350) > (1 – 1/k2) for k=1.8, implying that at
least 70% of activity counts per minute were between 2520 and
3780. Thus, most of the activity in the class [2801,3500) X
[0,700) was likely to be in the lower moderate-intensity range.
Similarly, for the class [2801,3500) X [1401,2100), we noted
that at least 70% of activity counts per minute were below 6300,
indicating a mix of activity moderate and vigorous activity.

Moderate-to-Vigorous Activity With Knee
Malalignment
In the pattern class [3501,4200) X [701,1400), numbered 6 in
the mean-SD grid of Figure 6, an increase in daily average

minutes was monotonically associated with improved responses
in all 3 capacity measures up to 20 minutes/day. However, an
increase of >20 minutes was associated with a decline. Unlike
the classes with low mean and SD, instances >20 minutes did
not represent sedentary activity. A drop in physical function
with increased time in moderate-to-vigorous activity is
counterintuitive. To understand this finding, we reviewed
patient-reported outcomes on the Physical Activity Scale for
the Elderly (PASE). The PASE measures engagement in
different kinds of daily activities related to leisure, household,
and occupational work in the elderly [55]. In addition, we
reviewed joint exam results reporting varus (bow-legged) and
valgus (knock-kneed) alignments for the same subjects; this
information is summarized in Table 3. It suggests that subjects
with >20 daily average minutes in the pattern class [3501,4200)
X [701,1400) had a higher prevalence and severity of knee
deformity, higher time in the pattern class (minutes as well as
frequency), and fewer sitting hours along with more walking
hours per week.
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Table 3. Knee deformity and PASE results of subjects with at least one instance of the pattern class [3501-4200) X [701-1400).

Daily average minutesSubject results

<20≥20

25512Number of subjects with

17910Varus or valgus deformity in both knees

22111Varus or valgus deformity in either knee

1098Joint laxity (mild-severe) in either knee

1.74.3Average number of days per week in activity

43.4161Average number of minutes per week in activity

19, 55, 2425, 50, 25Percentage with sitting hours <2, 2-4, >4 per day in last 7 daysa

40, 40, 1125, 33, 33Percentage walking <1, 1-2, 2-4 h a day in last 7 daysa

aPhysical Activity Scale for the Elderly.

Studies have suggested that in subjects with knee malalignment
or laxity, altered tibiofemoral loading could be responsible for
biomechanical damage and OA progression [56-58]. A much
debated view on the role of the quadriceps in OA is that the
greater muscle strength in malaligned or lax knees increases the
risk of OA progression [59,60]. If the relationship between the
lower extremity strength and the risk of OA progression is
confounded by the knee alignment status, a plausible explanation
for the decreasing trend discussed above may be that regular
investment in the pattern class [3501,4200) X [701,1400)
promotes muscle strength but advances OA in subjects with
malaligned knees. Though the current guidelines for knee OA
management recommend muscle strengthening, our analysis
highlights the need for a mechanistic investigation of greater
power, given that muscle strength is a modifiable risk factor in
OA.

Discussion

Principal Findings
To infer physical function from a daily activity trace, it is
necessary to derive a representation that conveys information
about the daily activity mix. We defined distinct segments from
daily activity traces as instances of a set of pattern classes. Doing
so transforms a sequence of activity counts into a sequence of
pattern classes. Pattern classes provide an informative view of
daily physical activity from the perspective of functional ability.
Our approach of unsupervised segmentation and the subsequent
definition of a set of pattern classes allows a function-based
comparison among subjects without the overhead of obtaining
annotated activity traces from subjects. This comparison is based
on objective measurements and is, perhaps, the first effort to
interpret functional outcomes based on pattern classes from
free-living activity data, within a clinical research use case.
Classifying physical function may be useful in several areas;
for example, alternatives to outpatient physical therapy [61] are
a topic of active research. Remote monitoring of physical

function in daily living could allow rehabilitation programs to
be evaluated in a site-less trial setting. We recognize that many
clinical apps require a higher performance in physical function
classification than obtained with our current models. Our results,
however, suggest that this preliminary work may be advanced,
potentially with higher resolution activity data.

Limitations
There are 2 main limitations of our methods. First, the mean
and SD are likely to be inadequate representations of the
activity-generating processes, as they ignore temporal
relationships between activity counts. Modeling class instances
as subsequences generated by a random process have been
proposed [62], and may improve the detection of pattern classes.
Second, our approach ignores time ordering between pattern
class instances in the daily activity profile. One way to address
these limitations may be to learn within- and interclass
relationships for a set of daily activity sequences, as a single
Bayesian network. In addition, methods to reliably estimate the
function profile from missing activity data are needed as
nonadherence is a well-known issue in most health studies with
wearable devices.

Conclusions
An assessment of physical function based on the ability to
perform routine tasks in daily life is desirable. Widely available
wearable motion sensors can record daily activity objectively
and unobtrusively. We have created an approach for deriving
a function profile that represents time spent on various tasks
encountered in daily living. Classifiers trained on the function
profile were able to predict highest and lowest quartile results
of clinically used physical capacity measures. We recovered
associations between pattern classes and physical capacity
measures, some of which corroborate prior OA research. The
idea of representing physical function as a function profile
derived from daily free-living activity may enable remote
monitoring of patients’ physical function.
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