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Abstract

Background: Cardiac auscultation is a cost-effective, noninvasive screening tool that can provide information about cardiovascular
hemodynamics and disease. However, with advances in imaging and laboratory tests, the importance of cardiac auscultation is
less appreciated in clinical practice. The widespread use of smartphones provides opportunities for nonmedical expert users to
perform self-examination before hospital visits.

Objective: The objective of our study was to assess the feasibility of cardiac auscultation using smartphones with no add-on
devices for use at the prehospital stage.

Methods: We performed a pilot study of patients with normal and pathologic heart sounds. Heart sounds were recorded on the
skin of the chest wall using 3 smartphones: the Samsung Galaxy S5 and Galaxy S6, and the LG G3. Recorded heart sounds were
processed and classified by a diagnostic algorithm using convolutional neural networks. We assessed diagnostic accuracy, as
well as sensitivity, specificity, and predictive values.

Results: A total of 46 participants underwent heart sound recording. After audio file processing, 30 of 46 (65%) heart sounds
were proven interpretable. Atrial fibrillation and diastolic murmur were significantly associated with failure to acquire interpretable
heart sounds. The diagnostic algorithm classified the heart sounds into the correct category with high accuracy: Galaxy S5, 90%
(95% CI 73%-98%); Galaxy S6, 87% (95% CI 69%-96%); and LG G3, 90% (95% CI 73%-98%). Sensitivity, specificity, positive
predictive value, and negative predictive value were also acceptable for the 3 devices.

Conclusions: Cardiac auscultation using smartphones was feasible. Discrimination using convolutional neural networks yielded
high diagnostic accuracy. However, using the built-in microphones alone, the acquisition of reproducible and interpretable heart
sounds was still a major challenge.

Trial Registration: ClinicalTrials.gov NCT03273803; https://clinicaltrials.gov/ct2/show/NCT03273803 (Archived by WebCite
at http://www.webcitation.org/6x6g1fHIu)

(JMIR Mhealth Uhealth 2018;6(2):e49) doi: 10.2196/mhealth.8946
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Introduction

Cardiovascular diseases are the most common causes of death,
accounting for 31.5% of all deaths globally [1,2]. In 2015, in
the United States, 92.1 million adults were estimated to have
cardiovascular diseases, and 43.9% of the adult population is
projected to have some form of cardiovascular disease by 2030
[3].

The stethoscope has played a key role in the physical
examination of patients with cardiac disease since its invention
by Rene Laënnec in 1816 [4]. The opening and closing of the
heart valves, as well as blood flow and turbulence through the
valves or intracardiac defects, generate rhythmic vibrations,
which can be heard via the stethoscope [5]. Cardiac auscultation
using the stethoscope enables hemodynamic assessment of the
heart and can help in the diagnosis of cardiovascular diseases
[6].

Recently, the advent of noninvasive imaging modalities has
dwarfed the importance of cardiac auscultation in clinical
practice [7,8]. Devices such as the handheld ultrasound have
enabled detailed on-site visualization of the cardiac anatomy
and are further threatening the role of the stethoscope as a
bedside examination tool [9,10]. In this way, there has been a
decrease in the appreciation of the importance of cardiac
auscultation, and physicians are decreasingly proficient and
confident in their examination skills [11-13]. Studies have also
suggested a low level of interobserver agreement regarding
cardiac murmurs [14].

The smartphone has become a popular device. As of 2015, 64%
of Americans and 88% of South Koreans were reported to own
a smartphone [15]. Smartphones are frequently used for health
purposes, such as counseling or information searches [16]. The
modern smartphone has excellent processing capability and is
equipped with multiple high-quality components, such as
microphones, display screens, and sound speakers. There have
been efforts to use smartphone health apps for self-diagnosis
[17]. However, some of these software apps have shown poor
credibility, and their role in health care is not yet established
[18].

Therefore, we sought to develop a smartphone app for cardiac
auscultation that could be used by non–medical expert users.
Although the importance of cardiac auscultation is declining in
the hospital setting, it could serve as a screening tool at the
prehospital stage if it can be performed easily by smartphone
users themselves. This was a pilot study to test the feasibility
of cardiac auscultation using the built-in microphones of
smartphones without any add-on devices. The study tested (1)
whether heart sound recording using a smartphone is feasible,
and (2) whether an automated diagnostic algorithm can classify
heart sounds with acceptable accuracy. Heart sounds were
recorded using the smartphone microphones and processed
electronically. We developed a diagnostic algorithm by applying
convolutional neural networks, which we used for the diagnosis
of the recorded heart sounds. In this study, we assessed the
diagnostic accuracy of the algorithm.

Methods

Description of the App
We developed a smartphone app named CPstethoscope for this
study (Figure 1). The app runs on the Android operating system
(Google Inc) and is used for research purposes only. Heart
sounds were recorded by placing the phone on the skin of the
chest, using the built-in microphone. In most smartphones,
microphones are located on the lower border of the device. Heart
sounds can be best heard in the intercostal spaces. The
instructions for this app indicated the anatomical landmarks and
auscultation areas. While maintaining the contact of the lower
margin of the smartphone with the chest wall, users are required
to manipulate the device to start and stop recording. Users can
see on the screen whether their heart sounds are properly being
captured.

Study Design
This was a pilot study designed to demonstrate the feasibility
of smartphone-based recording and identification of heart
sounds. We sought to enroll 50 participants who were 18 years
of age or older and had undergone an electrocardiogram (ECG)
and echocardiography within the previous 6 months at Seoul
National University Bundang Hospital, Seoul, Republic of
Korea. Ultimately, we sought to develop an app for
self-diagnosis that could be performed by users. However, for
this pilot study, heart sounds were recorded by researchers who
were familiar with the use of the app and understood the
principles of cardiac auscultation. The investigators who
recorded heart sounds were not aware of the patients’diagnoses.
Eligible patients were invited to participate in the study by the
research doctors at the outpatient clinics or on the wards. After
participants provided informed consent, their heart sounds were
recorded in a quiet room that was free from environmental
noises.

Reference heart sounds were recorded by participating
cardiologists (SHK, YY, GYC, and JWS) using an electronic
stethoscope (3M Littmann Electronic Stethoscope Model 3200;
3M, St Paul, MN, USA). Study devices were the Samsung
Galaxy S5 (model SM-G900) and Galaxy S6 (SM-G920;
Samsung Electronics, Suwon, Republic of Korea), and LG G3
(LG-F400; LG Electronics, Seoul, Republic of Korea).

We chose the best site for recording from among the aortic,
pulmonic, mitral, and tricuspid areas. The built-in microphones
were placed directly on the skin of the chest wall for detection
of the heart sound. We tested all 3 devices with all study
participants. There were no prespecified orders for tested
devices. No add-on devices were used. Recordings were made
for approximately 10 seconds after stable heart sounds were
displayed on the screen. Final diagnoses of the reference heart
sounds were confirmed by a second cardiologist (SHK and
GYC) by listening to the audio files and matching them with
the echocardiography reports.
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Figure 1. Heart sound recording using a smartphone app. Left: illustration of how the heart sounds were recorded in this study. Smartphones were
placed directly on the chest wall; a dedicated app was used with no add-on devices. Middle and right: representative screenshots of the app (called
CPstethoscope) developed for this study. ECG: electrocardiogram.

This study was approved by the Seoul National University
Bundang Hospital institutional review board on August 24,
2016 (B-1609-361-303), and all participants provided written
informed consent. We registered this study protocol
(ClinicalTrials.gov NCT03273803). The corresponding author
had full access to all the data in the study and takes
responsibility for its integrity and the data analysis.

Data Processing and Identification
We transferred the recorded audio files to a desktop computer
for data processing. After subtracting environmental and thermal
noises using fast Fourier transformation, we constructed
time-domain noise-reduced heart sounds. We detected the first
and second heart sounds without an ECG reference, using a
previously reported algorithm [19]. Time-domain signals were
transformed into frequency-domain spectrogram features. We
developed a diagnostic algorithm using convolutional neural
networks, a variant of an artificial neural network that mimics
the connections of neurons in the visual cortex of the brain. The
convolutional neural network was constructed from 40×40 heart
sound spectrogram matrices through 1 input layer. We processed
these matrices with 2 convolution-max pool layers whose kernel
size was 5×5. Moreover, the number of kernels for each of the
2 convolutional layers was either 8 or 16. Next, a dense, fully
connected layer followed the second convolution–max pool
layer, and we appended the last readout layer with 5 nodes that
corresponded to each disease. We calculated the training loss
of function of the network as soft maximum cross-entropy using
the values from the readout layer. Finally, we trained the
network with the Adam optimizer at a learning rate of 0.001
[20]. We used the TensorFlow version 1.2 Python library to
compose this network [21]. Training was conducted using
demonstration heart sounds obtained from open databases (The
Auscultation Assistant, C Wilkes, University of California, Los
Angeles, Los Angeles, CA, USA; Heart Sound & Murmur
Library, University of Michigan Medical School, Ann Arbor,

MI, USA; Easy auscultation, MedEdu LLC, Westborough, MA,
USA; 50 Heart and Lung Sounds Library, 3M, St Paul, MN,
USA; and Teaching Heart Auscultation to Health Professionals,
J Moore, Rady Children’s Hospital, San Diego, CA, USA). We
classified heart sounds into 5 categories: normal, third heart
sound, fourth heart sound (S4), systolic murmur, and diastolic
murmur. The algorithm showed 81% diagnostic accuracy with
the training sets. Testing was performed with the samples
acquired from this study.

Statistical Analysis
We calculated continuous variables as mean (SD), and
categorical variables as counts and percentages. Reference heart
sounds were adjudicated by experienced cardiologists. The
primary end point of the study was the diagnostic accuracy of
the system for heart sound classification. We considered the
diagnosis to be accurate when the algorithm classified a heart
sound into the correct category with 50% or more probability.
We also estimated the performance of the system using
sensitivity, specificity, positive predictive value, and negative
predictive value. We defined the study end points were as
follows: diagnostic accuracy = (TP+TN)/(TP+FP+FN+TN);
sensitivity = TP/(TP+FN); specificity = TN/(TN+FP); positive
predictive value = TP/(TP+FP); and negative predictive value
= TN/(TN+FN), where TP indicates true positive; TN, true
negative; FP, false positive; and FN, false negative. We
calculated the diagnostic values as simple proportions with
corresponding 95% confidence intervals. Statistical analyses
were performed using the R programming language version
3.2.4 (The R Foundation for Statistical Computing). A 2-sided
P<.05 was considered statistically significant.
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Results

Patient Profiles
A total of 46 patients participated in this study. Multimedia
Appendix 1 shows the Standards for Reporting of Diagnostic
Accuracy Studies checklist and flow diagram for the study.
Similar numbers of men and women were enrolled, and their
median age was 65.5 years. Table 1 describes the participants’
characteristics: 20 (44%) had systolic murmurs, 20 (44%) had
normal heart sounds, 5 (11%) had diastolic murmurs, and 1
(2%) had S4.

After audio file processing, including noise reduction, we
confirmed 30 of 46 heart sounds (65%) as interpretable. The
reasons for failure to acquire interpretable heart sounds included
the small amplitude of the acquired heart sounds, background
noise, and the participant’s poor cooperation. Younger age
tended to be associated with better interpretability, while body

mass index had no impact. Significant factors for
uninterpretability included atrial fibrillation and diastolic
murmur.

Diagnostic Performance
Figure 2 shows the performance of the diagnostic algorithm by
device. Heart sounds recorded with the 3 different study devices
yielded consistently high diagnostic accuracy: Samsung Galaxy
S5, 90% (95% CI 73%-98%); Samsung Galaxy S6, 87% (95%
CI 69%-96%); and LG G3, 90% (95% CI 73%-98%). The
Samsung Galaxy S5 and S6 showed a high sensitivity (S5: 94%,
95% CI 70%-100%; S6: 94%, 95% CI 70%-100%), while the
LG G3 showed a high specificity (100%, 95% CI 68%-100%).
The diagnostic performance did not vary significantly according
to the study participants’ age or sex (Table 2). Figure 3 shows
representative waveforms and spectrograms of heart sounds
(audio files are provided in Multimedia Appendix 2,Multimedia
Appendix 3, and Multimedia Appendix 4). No meaningful
adverse events occurred during the study.

Table 1. Characteristics of study participants.

P valueaTotalInterpretable heart soundsCharacteristics

NoYes

4616 (35)30 (65)Number of participants, n (%)

>.9921 (46)7 (44)14 (47)Male sex, n (%)

.0765.5 (22.0-90.0)72.0 (27.0-88.0)62.5 (22.0-90.0)Age (years), median (range)

.6923.7 (3.7)23.4 (3.3)23.8 (3.9)Body mass index (kg/m2), mean (SD)

.7623 (50)9 (56)14 (47)Hypertension, n (%)

.249 (20)5 (31)4 (13)Diabetes, n (%)

<.0015 (11)5 (31)0 (0)Atrial fibrillation, n (%)

.005Primary diagnosis, n (%)

13 (28)2 (13)11 (37)Aortic stenosis

2 (4)2 (13)0 (0)Aortic regurgitation

4 (9)4 (25)0 (0)Mitral stenosis

2 (4)0 (0)2 (7)Mitral regurgitation

2 (4)1 (6)1 (3)Hypertrophic cardiomyopathy

23 (50)7 (44)16 (53)Others

.007Heart sounds, n (%)

20 (44)5 (31)15 (50)Systolic murmur

5 (11)5 (31)0 (0)Diastolic murmur

1 (2)0 (0)1 (2)S3/S4
b

20 (44)6 (38)14 (47)Normal

aComparisons were performed using Student t test or Mann-Whitney U test for continuous variables, and chi-square test or Fisher exact test for categorical
variables.
bS3/S4: third and fourth heart sounds.
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Figure 2. Diagnostic performance of each study device. Bold broken lines indicate diagnostic accuracy. FN: false negative; FP: false positive; TN:
true negative; TP: true positive.
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Table 2. Diagnostic performance (%) of each study device.

Study deviceParticipants grouped by age and sex

G3 estimate

(95% CI)

Galaxy S6 estimate

(95% CI)

Galaxy S5 estimate

(95% CI)

Total (n=30)

90 (73-98)87 (69-96)90 (73-98)Diagnostic accuracy

81 (54-96)94 (70-100)94 (70-100)Sensitivity

100 (68-100)79 (49-95)86 (57-98)Specificity

100 (66-100)83 (59-96)88 (64-99)Positive predictive value

82 (57-96)92 (62-100)92 (64-100)Negative predictive value

Men (n=14)

93 (66-100)79 (49-95)79 (49-95)Diagnostic accuracy

83 (36-100)83 (36-100)83 (36-100)Sensitivity

100 (52-100)75 (35-97)75 (35-97)Specificity

100 (36-100)71 (29-96)71 (29-96)Positive predictive value

89 (52-100)86 (42-100)86 (42-100)Negative predictive value

Women (n=16)

88 (62-98)94 (70-100)100 (71-100)Diagnostic accuracy

80 (44-97)100 (59-100)100 (59-100)Sensitivity

100 (42-100)83 (36-100)100 (42-100)Specificity

100 (52-100)91 (59-100)100 (59-100)Positive predictive value

75 (35-97)100 (36-100)100 (42-100)Negative predictive value

Elderly (≥65 years; n=12)

83 (52-98)92 (62-100)100 (64-100)Diagnostic accuracy

78 (40-97)100 (55-100)100 (55-100)Sensitivity

100 (19-100)67 (9-99)100 (19-100)Specificity

100 (47-100)90 (55-100)100 (55-100)Positive predictive value

60 (15-95)100 (9-100)100 (19-100)Negative predictive value

Young (<65 years; n=18)

94 (73-100)83 (59-96)83 (59-96)Diagnostic accuracy

86 (42-100)86 (42-100)86 (42-100)Sensitivity

100 (62-100)82 (48-98)82 (48-98)Specificity

100 (42-100)75 (35-97)75 (35-97)Positive predictive value

92 (62-100)90 (55-100)90 (55-100)Negative predictive value
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Figure 3. Representative phonocardiograms and spectrograms. (A) Normal heart sounds from the aortic area of a 22-year-old man with a history of
vasovagal syncope. (B) Midsystolic ejection murmur from the aortic area of an 83-year-old woman with aortic stenosis, which was classified as a systolic
murmur. (C) Systolic murmur from the mitral area of a 63-year-old woman with mitral valve prolapse and mitral regurgitation, which was classified as
a systolic murmur.

Discussion

Principal Findings
This was a pilot study to assess the feasibility of heart sound
recording and identification using smartphones. We found that
reliable heart sound recording was the most important difficulty
encountered. However, the results of this study suggest that,
once interpretable heart sounds are acquired, cardiac murmur
diagnosis using convolutional neural networks yields high
diagnostic accuracy.

Implications
With the widespread use of smartphones, an increasing number
of health care apps have been developed. There were
approximately 165,000 health-related apps available in 2016
[22]. These health care-related apps comprise a variety of
aspects of medicine, including prevention, diagnosis,
monitoring, treatment, compensation, and investigation [23].
However, there are concerns that many of these apps are not

evidence based, and it is difficult to find any information on the
research used in their development [18]. This study was a part
of our effort to develop a diagnostic app that can differentiate
normal and abnormal heart sounds. We sought to validate the
diagnostic performance of the recording and identification
system among patients in real-world clinical practice.

There have been attempts to use add-on gadgets in conjunction
with smartphones for health care use, but most of these have
not been accepted widely. Modern smartphones are equipped
with high-quality built-in microphones that can capture
low-pitch, low-amplitude heart sounds. We presumed that an
app working solely with the featured specifications would have
advantages with respect to accessibility and acceptability.
However, this study implied that the acquisition of good-quality
heart sounds is still far from perfect. A variety of factors were
suggested to affect the heart sound recording. First, background
noise is difficult to reduce systematically and, thus, should be
avoided during recordings. It was necessary to record on the
skin of the chest wall, and the choice of the appropriate location
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was essential. Second, respiration was not as important as
expected. The frequency spectrum of lung sounds (100-2500
Hz) is usually distant from that of heart sounds (20-100 Hz)
[24]. Thus, lung sounds were easily attenuated by applying a
simple band-pass filter. Third, patient factors, such as age, body
mass index, and the presence of arrhythmia, were also crucial.
Fourth, our system failed to recognize heart sounds with
diastolic murmur, although the sample size was small.

The use of machine learning in clinical medicine is rapidly
increasing, with a marked increase in the amount of available
data [25]. The interpretation of digitized images and
development of prediction models are the leading applications
of machine learning in the field of medicine [26,27]. This study
suggests that the interpretation of audio signals derived from
humans may be a potential application of artificial intelligence.

Comparison With Prior Work
To our knowledge, this study is the first attempt to discriminate
heart sounds using a deep learning–based diagnostic algorithm.
We showed that the diagnostic algorithm was feasible and
reproducible. We found only 1 app for cardiac auscultation that
enables heart sound recording, which is called the iStethoscope
[28]. It amplifies and filters heart sounds in real time for better
quality, but it is not capable of diagnosing heart murmurs.
AliveCor Kardia, a device approved by the US Food and Drug
Administration, enables ECG monitoring and, according to 1
clinical trial, significantly improves the detection of incident
atrial fibrillation [29]. Azimpour et al performed an elegant
study in which they used an electronic stethoscope to detect
stenosis of coronary arteries [30]. Although the study idea was
interesting, it may be difficult to use in commonly available
smartphones due to the deep location of the coronary arteries
and the low amplitude of the acoustic signals. There are several
apps that enable heart rate monitoring. Some require specialized
devices, and others simply use built-in smartphone cameras and
flashes, also known as photoplethysmography. However, their
accuracy and clinical application still require further
investigation [31,32].

Limitations
This study had several limitations. First, the sample size was
too small to represent a variety of cardiac murmurs. Second,

the enrollment of study participants was selective rather than
consecutive; thus, there is a possibility of a selection bias of
participants with clear and unambiguous heart sounds. Third,
we used the app developed for this study only to record heart
sounds. In this pilot study, the audio files were moved to a
central server and subsequently analyzed. Therefore, the app
needs to be improved such that it can be used in the real world,
such as an all-in-one system from acquisition to diagnosis.
Fourth, we obtained the heart sounds ourselves, although we
ultimately seek to develop an app that can be used by members
of the general population.

Fifth, this study showed variations in performance with different
devices, which seem to be caused by the differing specifications
of each smartphone. This is one of the major hurdles in the
development of an app that can be used in a variety of
smartphones from different manufacturers. Our pilot testing
indicated that the quality of recorded heart sounds depended on
the quality of the built-in microphones. For this reason, we
included 3 high-end smartphones for this study. System
performance may be worse with inexpensive devices. In
addition, we tested only devices running the Android operating
system in this study, but not the Apple iPhone, which is one of
the most widely used smartphones worldwide.

Future Research Steps
The app described in this study requires further development.
An all-in-one system is crucial, comprising recording, audio
processing, and a diagnostic algorithm. Instructions that help
users record their heart sound by themselves are also needed.
We are improving the ability of the app to acquire interpretable
heart sounds and to diagnose atrial fibrillation. Another potential
application is the use of a diagnostic algorithm with
commercialized electronic stethoscopes performed by medical
personnel [33]. This may improve the quality of clinical practice
by assisting early-career doctors or nurses to assess patients.

Conclusions
The concept of cardiac auscultation using smartphones is
feasible. Indeed, diagnosis using convolutional neural networks
yielded a high diagnostic accuracy. However, use of the built-in
microphones alone was limited in terms of reproducible
acquisition of interpretable heart sounds.
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Multimedia Appendix 1
Standards for Reporting of Diagnostic Accuracy Studies study checklist and study diagram.

[PDF File (Adobe PDF File), 963KB-Multimedia Appendix 1]

Multimedia Appendix 2
Audio file 1 (normal heart sound).
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[WAV File, 573KB-Multimedia Appendix 2]

Multimedia Appendix 3
Audio file 2 (aortic stenosis).

[WAV File, 672KB-Multimedia Appendix 3]

Multimedia Appendix 4
Audio file 3 (mitral regurgitation).

[WAV File, 704KB-Multimedia Appendix 4]
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