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Abstract

Background: Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by
equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras)
that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However,
this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of
data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into
phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic
risky driving.

Objective: We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the
iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android
app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute).

Methods: The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The
experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed
at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie,
gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device
recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared.

Results: The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared
to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging
the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS
were rlng=0.71 and rlat=0.83, respectively, while the corresponding acceleration measurements between Android and DAS were
rlng=0.95 and rlat=0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the
corresponding longitudinal accelerations for most maneuvers.

Conclusions: The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce
app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment
of kinematic risky driving events, with potential for research and feedback forms of intervention.
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Introduction

Teenage drivers, compared to other age groups, have the highest
risk of fatal automobile crashes per driven mile [1]. In 2015,
there were 221,313 teenage drivers admitted to hospital
emergency rooms, which resulted in 2333 fatalities (Centers
for Disease Control statistics, average of 6 per day) [2].
Contributing factors to teenage crashes include night-time
driving, speeding, impairment due to alcohol or other drugs,
and secondary task engagement such as mobile phone use,
teenage passenger presence, and eating [3,4].

While there is substantial individual variability in risk [5] and
rapid improvement in driving outcomes with age and experience,
the first year of driving is particularly risky [6,7]. The high risk
among novice teenage drivers has been attributed to young age,
inexperience, and risky driving behaviors [7]. A unique
characteristic of teenage risky driving is a high rate of elevated
acceleration (g-force) events due to hard stops, rapid starts,
sharp turns, and over-correction maneuvers, reflecting poor
speed control or volitionally erratic driving [8]. The rate of
elevated g-force events, termed kinematic risky driving (KRD),
are 4-5 times higher among young drivers than adults [8] and
are prospectively associated with crash likelihood [9]. KRD can
be assessed by accelerometers installed in vehicles in naturalistic
driving studies (NDSs) and are sometimes employed to provide
driving performance feedback to teenage drivers and their
parents [10]. NDSs [11,12], designed to objectively assess
driving behavior and outcomes, are conducted by equipping
vehicles with dedicated instrumentation (eg, accelerometers,
gyroscopes, Global Positioning System [GPS], and cameras)
that provide continuous recording of acceleration, location,
videos, and still images for eventual retrieval and analyses.
However, this research is limited by several factors: the cost of
equipment installation; management and storage of the large
amounts of data collected; and data reduction, coding, and
analyses. Modern smartphone technology includes
accelerometers built into phones, and the vast, global
proliferation of smartphones could provide a possible low-cost
alternative for assessing KRD.

Research to date on driver-monitoring smartphone apps have
mainly focused on monitoring driver behavior as indicated by
vehicle lateral and longitudinal accelerometer data [13-16].
Unfortunately, most of these apps do not provide features (eg,
video capture, event selectivity, real-time feedback) or tools
(eg, downstream data collection, processing, and reporting) for
a comprehensive analysis of events. Currently, smartphone
video capability has only been used for driver fatigue detection,
disregarding other driver distractions such as eating or drinking.
Applying these existing apps to driving research presents
significant challenges, including the following: (1) proprietary
code (eg, not open source, therefore not modifiable); and (2)
data accessibility, scalability, and research suitability (eg,
provide raw data) for innovative data analysis and development

of methods to provide feedback as a means of preventive
intervention.

Advances in mHealth solutions and data-centralization methods,
including smartphone assessments, could result in reduced cost
and complexity associated with collecting comprehensive
driving data, and enabling increased and innovative driving
research. Additionally, driving data could be collected by
smartphones from previously unmeasured populations (eg, lower
socio-economic strata, low-income countries), which could
result in further app diversification, research insights, and a
wider impact on driving safety.

A recent survey confirmed the continued popularity and
dominant market share of the iPhone among teenagers; 81% of
surveyed US teenagers owned an iPhone, and this number is
projected to grow [17]. However, no research has reported the
utility of the iPhone for assessing KRD. The purpose of this
work was to evaluate the utility of a simple, nonproprietary
iPhone app to assess teenage KRD behavior. The research
evaluates the feasibility of using iPhone devices as a research
tool for NDS by comparing linear acceleration acquired with
iPhone devices to acceleration measurements obtained
simultaneously with an Android smartphone (Samsung Galaxy
S5) and the in-vehicle miniDAS data acquisition system (DAS)
developed at the Virginia Tech Transportation Institute (VTTI).

Methods

Overview
The smartphone Application to Measure Risky Driving Behavior
and Predict Crashes (gForce App), was developed in Swift,
which is a general-purpose, multi-platform, programming
language for iOS using an Xcode environment (Apple, Inc).
The gForce App was tested on the iPhone 6 (Apple, Inc) running
iOS 10.3.1. The iPhone incorporates the Sensortec BMA280
3-axis accelerometer and the InvenSense MP67B 6-axis
accelerometer, gyroscope, and magnetometer combined sensor
with an on-chip digital motion processor (DMP) with
sensor-fusion capabilities. Sensor-fusion is a technology (ie,
firmware) that algorithmically combines data from multiple
sensors to mitigate the limitations of the individual sensors to
more accurately calculate the real-time position and orientation
of the iPhone device. In addition, but not part of this research,
the gForce app utilizes the iPhone dual cameras (ie, front and
back cameras). The front camera records a video of the driver,
while the back camera captures still images outside the vehicle.

The gForce App is designed to continuously record (ie, 10 Hz
nominal sampling rate) linear acceleration (acceleration of the
device, excluding the effect of gravity on the device) and
rotation data for the x, y, and z axes. Immediately, the gForce
App calculates a directionless g-force by combining the linear
acceleration data from all three axes. The data is stamped with
Coordinated Universal Time and GPS location. Other app
features include: an audio warning when a g-force event is
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triggered, a capability of uploading JSON formatted files to a
centralized database, and a fully integrated navigation solution.

This navigation feature may reduce the driver’s desire to switch
to another app, which, due to iOS limitations, would effectively
disable gForce camera acquisitions even though the app would
continue to run otherwise (eg, measure and upload g-forces).

The iPhone acceleration measurements were compared with the
acceleration values acquired by a custom-built app on a Galaxy
S5 (Samsung, Inc) running Android 4.5.2 (Google, Inc), and
the DAS. Similar to the iPhone gForce App, the Android app
and DAS system continuously record acceleration and rotation
measurements along three axes, stamped with time and location.
The Galaxy S5 utilizes a InvenSense MP65M 6-axis gyroscope,
accelerometer, and magnetometer-combined sensor with a DMP.
The DAS device is equipped with a STMicroelectronics
LSM303DLM sensor module, which includes a 3-axis

accelerometer and three-axis magnetometer. The DAS device
does not provide onboard sensor-fusion technology. Similar to
the iPhone gForce App, the Android app features wireless
uploading of data to a centralized database in JSON and, in
addition, CSV file format. The DAS system requires data
transfer via a Secure Digital card. The Android app was pilot
tested and refined based in small-scale field tests in Washington
D.C. and was compared to the DAS in a previous experiment
[18]. The DAS has been widely employed in NDSs and is
considered to provide reliable g-force measures [9,12].

Procedures
Device testing consisted of the following two parts: (1) test
track driving on the Virginia Smart Road research facility, which
is managed by VTTI and owned and maintained by the Virginia
Department of Transportation; and (2) street driving in
Christiansburg, VA.

Figure 1. Smartphones used for the Virginia Tech Transportation Institute road test: iPhone devices are #2 and 3; Android devices are #1, 4, and 5;
Virginia Tech Transportation Institute permanently vehicle-installed instrumentation #6.

Figure 2. Virginia Smart Road: a) roundabout used for cornering; b) straight portion of the road used for braking and acceleration; c) turnout lane used
for turning left and right.
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Figure 3. The street-driving phase of the test in Christiansburg, VA. Driving over speedbumps, potholes and U-turns was performed on the loop around
New River Valley Mall (black box).

Experimental Protocol
Figure 1 shows the orientation and location of the devices used
in this study. These devices included an Android phone (#1)
and two iPhones (#2 and #3) mounted on the dashboard, two
Android phones (#4 and #5) mounted on the windshield, and
the permanently installed DAS device (#6). A fourth Android
phone (not shown) provided the driver with a g-force estimation
during each maneuver, which helped to ensure the desired
g-forces were generated. Experimental testing on the Smart
Road consisted of consecutive groups of driving maneuvers,
including: 10 moderate and 5 hard cornering for each left and
right directions on a roundabout (Figure 2 a), braking (15 hard)
and acceleration (5 mild) driving in a straight line (Figure 2 b),
and 12 moderate and 6 hard turning maneuvers in each left and
right directions (Figure 2 c). The street-driving phase of the test
(Christiansburg, VA, Figure 3) was comprised of normal driving
maneuvers and road conditions, such as: 3 stop signs, 2 traffic
lights, 2 left and 6 right turns, 4 left and 2 right U-turns, 7 left
and 5 right cornering, 14 speedbumps, and 8 potholes. The
duration of the test was 10 minutes 14 seconds. There were four
passengers in the car.

Data Processing and Analysis
Postprocessing was performed in MATLAB (MathWorks, Inc).
To reduce noise and the number of false positives (ie, g-force
events associated with speedbumps and potholes), a
second-order low-pass Butterworth digital filter with a cutoff
frequency of 0.4 Hz was applied to iPhone and Android
measurements. DAS sensor data was processed on the device
with a 5 Hz low-pass filter, followed by a MATLAB low-pass
filter with parameters identical to iPhone and Android data
post-processing. The Pearson correlation coefficients, r, for
acceleration along x (lateral, rlat), y, and z (longitudinal, rlng)
axes were estimated for the iPhone (the average of two iPhones)

versus DAS, and Android (the average of two Androids) versus
DAS.

Lateral (ie, x-axis) acceleration corresponds to sideways
movement in relationship to the direction of travel, while
longitudinal (ie, z-axis) acceleration corresponds to acceleration
in the direction of travel. In this work, we report correlation
coefficients for the longitudinal and lateral acceleration
measurements only. The average duration of the g-force events
over 0.45 g were estimated for each device. This threshold was
selected for all events to provide consistent values for analyses.

Results

Gravity Correction on the Android and Data
Acquisition System
Preliminary analyses indicated a poor correlation between the
Android linear acceleration and the DAS acceleration
measurements. In addition, the amplitude of the signal
consistently below the threshold of 0.45 g for all maneuvers
revealed that the gravity correction on the Android device was
ineffective in correctly adjusting for the effect of gravity. This
gravity correction issue was especially pronounced during the
braking maneuvers where the correlation coefficients between
the Android linear longitudinal (Figure 4 a) and lateral (Figure
4 b) acceleration and DAS acceleration measurements were
rlng=0.05 and rlat=0.10, respectively, while the correlation
coefficients for the same maneuvers without gravity correction
on the Android device were rlng=0.93 and rlat=0.89 for the
longitudinal and lateral acceleration measurements, respectively.
Figure 5 shows a similar trend between the Android and iPhone
gravity-corrected acceleration measurements. Therefore, in this
work, the Android acceleration measurements without gravity
correction were used for estimating correlation coefficients
between the Android and DAS devices.
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Figure 4. Comparison of gravity-corrected and uncorrected Android acceleration measurements with data acquisition system (DAS; gravity-uncorrected).

Figure 5. Comparison of gravity-corrected Android acceleration measurements with iPhone (inherently gravity-corrected).
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Effect of Weight Distribution on Kinematic Measures
The weight distribution (ie, vehicle lean) within the vehicle (ie,
number of passengers and their location) had an effect on the
DAS acceleration measurements. As seen in Figure 6, the
baseline offset shifted (black arrows) as passengers entered or
exited the vehicle. Figure 7 shows the Android acceleration
measurements were similarly affected by weight distribution,
while the iPhone baseline offset correctly remained at zero.

Figure 6 and Figure 7 show that in the absence of gravity
correction, the DAS and Android acceleration amplitude
measurements were either overestimated or underestimated,
depending on the baseline offset. The iPhone acceleration
amplitude measurements were not affected by the changing
weight distribution within the vehicle (Figure 7).

Correlations of Acceleration Measures
In the test track assessment, the correlation coefficients between
acceleration measurements acquired with DAS and Android
devices were consistently higher than the correlation between
DAS and iPhone devices for the same measurement, possibly
because neither of these devices correct for gravity (Figures 8,
9, and 10). Averaging all maneuvers, the correlation coefficients
between longitudinal and lateral accelerations between iPhone
and DAS were rlng=0.71 and rlat=0.83, respectively, while the
corresponding acceleration measurements between Android and
DAS were rlng=0.95 and rlat=0.97 (Table 1). This study also
revealed that the correlation coefficients between the iPhone
and DAS lateral accelerations were higher than the
corresponding longitudinal accelerations for most maneuvers
(Table 1). A similar lateral versus longitudinal correlation
difference was observed between the Android and DAS
measurements (Table 1).

Figure 6. The effects of in-vehicle weight distribution on baseline acceleration measurements. The acceleration measurements offset from the baseline
varied (arrows) based on the number of passengers/weight distribution inside the vehicle. Comparison with the Android and iPhone devices within the
black box is show in Figure 7. DAS: data acquisition system.

Figure 7. The effects of in-vehicle weight distribution on baseline acceleration measurements. While vehicle is stationary, the acceleration measurements
should be zero. DAS: data acquisition system.

JMIR Mhealth Uhealth 2018 | vol. 6 | iss. 4 | e69 | p. 6http://mhealth.jmir.org/2018/4/e69/
(page number not for citation purposes)

Freidlin et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


As shown in Table 2, the average duration of the g-force events
above 0.45 g for the hard cornering maneuvers in the lateral
direction were 9.5, 8.4, and 9.5 seconds for the DAS, iPhone,
and Android devices, respectively. Similarly, the average
duration of the hard-braking maneuvers above threshold were
3.5, 3.4, and 3.1 seconds for the DAS, iPhone, and Android
devices, respectively. The average duration of the g-force events
above 0.45 g during the hard turns were 3.9, 2.7, and 3.6 seconds
for the DAS, iPhone, and Android devices, respectively.

In the street driving phase, the correlation coefficients (Figure
11 and Figure 12) were lower than those for the data obtained
during experimental testing on the Smart Road, perhaps due to
false positives (eg, speedbumps and potholes). The correlation
coefficient between the iPhone and DAS longitudinal and lateral
accelerations were rlng=0.62 and rlat=0.71, respectively; the
corresponding correlation coefficients between the Android and
DAS measurements where rlng=0.86 and rlat=0.91.

Figure 8. Acceleration measurements for hard left cornering maneuvers. The horizontal line along lateral acceleration represents the threshold of 0.45
g. Shaded stripes identify the approximate time of the cornering maneuvers. DAS: data acquisition system.

Figure 9. Acceleration measurements for hard braking maneuvers. The horizontal line along longitudinal acceleration represents the threshold of -0.45
g. Shaded stripes identify the approximate time of the braking maneuvers. DAS: data acquisition system.

Figure 10. Acceleration measurements for hard left turning maneuvers. The horizontal line along longitudinal and lateral accelerations represents
thresholds of –0.45 g and 0.45 g, respectively. Shaded stripes identify the approximate time of the turning maneuvers. DAS: data acquisition system.
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Table 1. Correlation coefficients between data acquisition system (DAS)/iPhone and DAS/Android devices.

r lng
ar lat

aDriving maneuver

AndroidiPhoneAndroidiPhone

Cornering

0.880.650.940.86Left hard (>0.45 g)

0.930.580.990.82Left

0.980.630.970.78Right hard (>0.45 g)

0.960.770.990.80Right

0.890.840.930.76Braking hard (>0.45 g)

Turning

0.930.900.990.87Left hard (>0.45 g)

0.950.690.970.90Left

0.960.750.980.85Right hard (>0.45 g)

0.970.630.990.84Right

0.950.710.970.83Average

aPearson correlation coefficients, r, for acceleration along x (lateral, rlat) and z (longitudinal, rlng) axes.

Table 2. Average duration of the g-force events over 0.45 g threshold (seconds).

LongitudinalLateralDriving maneuver

Cornering hard

0009.98.09.8Left

0009.18.89.2Right

3.13.43.5000Braking hard

Turning hard

02.12.03.83.14.2Left

0003.42.23.6Right

JMIR Mhealth Uhealth 2018 | vol. 6 | iss. 4 | e69 | p. 8http://mhealth.jmir.org/2018/4/e69/
(page number not for citation purposes)

Freidlin et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 11. Acceleration measurements acquired during street driving in Christiansburg, VA. Highlighted are maneuvers that exceeded 0.45 g threshold:
hard brake (1), hard right turn (2), hard left U-turn (3), and pothole (4). Details during first 3.4 minutes of driving within the black box are annotated
in Figure 12. DAS: data acquisition system; UTC: Coordinated Universal Time.

Figure 12. Acceleration measurements acquired during first 3.4 minutes of street driving in Christiansburg, VA (black box in Figure 11): brake (1),
acceleration (2), and right turn (3). DAS: data acquisition system; UTC: Coordinated Universal Time.
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Discussion

Principal Findings
The main objective of this study was to evaluate performance
of a custom-built gForce iPhone app as a potential research tool.
This evaluation compared the iPhone gForce acceleration
measurements with data collected with the DAS device, which
is the standard equipment in on-road NDSs. The findings
indicated that correlations between measures of elevated g-forces
from the iPhone gForce App and the DAS were reasonably high,
ranging from r=0.78 to 0.81. This finding suggests that the
iPhone 6 with integral sensor-fusion technology may be a viable
data acquisition platform for detecting elevated g-forces, with
the added benefit of decoupling measurements from gravity (ie,
vehicle orientation relative to gravity). In comparison, Android
and DAS measurements were highly sensitive not only to road
topography (eg, road lateral slope or banking), but also to the
weight distribution within the vehicle (ie, vehicle lean), thus
altering acceleration amplitudes along individual axes. Due to
this sensitivity, the average durations of the elevated g-force
events captured with the iPhone device differed from the
corresponding durations acquired with DAS and Android
devices. This effect was especially pronounced during cornering
and turning, since the vehicle was leaning during these
maneuvers. In contrast, the highest similarity between the

average durations of the elevated g-force events for all three
devices was observed during braking, since this maneuver was
less susceptible to vehicle leaning.

Future research will examine the association between g-forces
collected by the iPhone and a device that includes in-built
gravity adjustment, and is unaffected by weight distribution in
the vehicle. Beyond this, the utility of the app would be assessed
by recruiting participants to use the app while driving their own
vehicles under usual driving. In this context, participant
preferences for downloading an app on their existing iPhone
device or using a dedicated device for data collection would
need to be established. Given the sophistication of the iPhone
and iOS development platform, the capabilities of the app could
be extended to include video capture, real-time driver feedback,
and cloud-based data aggregation and analyses. Finally, machine
learning-based methods will be needed for automated maneuver
identification and improved rejection of false positive g-force
events not associated with a risky driving behavior.

Conclusions
The gForce iPhone app reliably assessed elevated g-force events
compared to the DAS. Collectively, the gForce app and iPhone
platform have the potential to serve as feature-rich, inexpensive,
scalable, and open-source tool for assessment of KRD events,
with potential for research and feedback forms of intervention.
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