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Abstract

Background: In parallel to the introduction of mobile communication devices with high computational power and internet
connectivity, high-quality and low-cost health sensors have also become available. However, although the technology does exist,
no clinical mobile system has been developed to monitor the R peaks from electrocardiogram recordings in real time with low
false positive and low false negative detection. Implementation of a robust electrocardiogram R peak detector for various
arrhythmogenic events has been hampered by the lack of an efficient design that will conserve battery power without reducing
algorithm complexity or ease of implementation.

Objective: Our goals in this paper are (1) to evaluate the suitability of the MATLAB Mobile platform for mHealth apps and
whether it can run on any phone system, and (2) to embed in the MATLAB Mobile platform a real-time electrocardiogram R
peak detector with low false positive and low false negative detection in the presence of the most frequent arrhythmia, atrial
fibrillation.

Methods: We implemented an innovative R peak detection algorithm that deals with motion artifacts, electrical drift, breathing
oscillations, electrical spikes, and environmental noise by low-pass filtering. It also fixes the signal polarity and deals with
premature beats by heuristic filtering. The algorithm was trained on the annotated non–atrial fibrillation MIT-BIH Arrhythmia
Database and tested on the atrial fibrillation MIT-BIH Arrhythmia Database. Finally, the algorithm was implemented on mobile
phones connected to a mobile electrocardiogram device using the MATLAB Mobile platform.

Results: Our algorithm precisely detected the R peaks with a sensitivity of 99.7% and positive prediction of 99.4%. These
results are superior to some state-of-the-art algorithms. The algorithm performs similarly on atrial fibrillation and non–atrial
fibrillation patient data. Using MATLAB Mobile, we ran our algorithm in less than an hour on both the iOS and Android system.
Our app can accurately analyze 1 minute of real-time electrocardiogram signals in less than 1 second on a mobile phone.

Conclusions: Accurate real-time identification of heart rate on a beat-to-beat basis in the presence of noise and atrial fibrillation
events using a mobile phone is feasible.

(JMIR Mhealth Uhealth 2018;6(5):e118) doi: 10.2196/mhealth.8429
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Introduction

Background
An algorithm that runs in real time and precisely calculates the
heart rate from electrocardiogram (ECG) signals on a
beat-to-beat basis can serve as the core of a mobile system to

remotely monitor patient health [1] and issue alerts in the case
of cardiac events [2,3]. Due to their increasing computational
power, wireless and Bluetooth connectivity, and the ability to
store data on the cloud, mobile phones and tablets can run
real-time algorithms to alert the patient and communicate with
the medical staff. The main challenge in designing such a mobile
bundle is to develop robust, automatic algorithms that provide
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real-time results and can work on noisy data recorded using a
portable ECG monitor, while consuming low power.
Importantly, to detect potentially fatal arrhythmogenic events,
very accurate detection of R peaks on the ECG is required (in
addition to other waves). For example, atrial fibrillation (AF)
events characterized by an irregular and often rapid heart rate
[4] are currently identified retrospectively by screening the ECG
signal or using other pulse signals. Because AF can lead to
stroke and ventricular fibrillation, early detection of these
episodes has enormous clinical impact. It has been known for
a while that the R-R pattern can be used to detect AF events
when they occur or even predict them [5]. The first step in
identifying AF events in real time is precise, automatic detection
of R peaks to calculate the heart rate on a beat-to-beat basis.

Heart rate variability (HRV) indexes can be used to detect AF
events [6-8]. To precisely calculate HRV indexes, the beat
interval should be identified at each heartbeat as a first step.
The R peak is the dominant point in the ECG and serves as an
ideal fiducial point to calculate the heart rate.

Prior Work
Although apps to monitor heart rate using mobile device sensors
do exist, they have several drawbacks. First, they work poorly
on patients with heart disease versus individuals with normal
heart rhythm [9]. Although a breakthrough was recently
achieved in dealing with arrythmic recordings and other noise
[10], it still does not provide real-time results [3]. Furthermore,
only an average heart rate over a time window is provided and
not the beat-to-beat interval (which is necessary for HRV
analysis). Certain artifacts specific to the ECG signal can limit
automated detection of the heart rate [10]: (1) sudden movement
of the patient, (2) drift of the signal, (3) breathing noise, (4)
wrong polarity (the ECG leads are set upside down), (5)
electrical spikes from the device, (6) high frequency noise from
the environment, (7) premature ventricular contraction, and (8)
enlarged P or T waves. Several techniques to accurately decode
the ECG have been suggested, including Fourier transform [11],
Hilbert transform [11], and Wavelet transform [12], among
others. These techniques require long ECG signal recordings;
thus, they cannot serve as the core of a system that provides
real-time R peak detection.

The recently developed MATLAB Mobile environment platform
allows any algorithm, even one with high computational
demands, to be converted to run on a mobile app, but its
suitability for mHealth apps was never tested.

Goal
We aim (1) to evaluate the suitability of the MATLAB Mobile
platform for mHealth apps and whether it can run on any phone
system, and (2) to embed in the MATLAB Mobile platform a
robust real-time ECG R peak detector with low false positive
and low false negative detection in the presence of AF, the most
frequent arrhythmia. Because our main goal is to implement an
ECG R peak detector on a mobile device, the mobile app should
be compatible with any phone system.

We first present our algorithm for peak detection. The algorithm
works by filtering the signal with high polynomial fit, decoding
the first and second derivatives of the signals, filtering peaks

that have low probability to be the R peak, and outputting the
R peak location. We show that the algorithm can deal with the
previously mentioned artifacts. Moreover, it can accurately
identify the R peaks, as demonstrated by evaluating the
algorithm’s performance on the MIT-BIH database (gold
standard database from Physionet) and comparing it to other
algorithms [13-15]. Later, we demonstrate how the MATLAB
Mobile platform can be used to implement the algorithm on a
mobile phone. Finally, we show that the algorithm can identify
R peaks in real time from data acquired by a mobile ECG device.

Methods

Database
The proposed algorithm was tested on the MIT-BIH Arrhythmia
Database [16], which includes data from patients who suffer
from AF (n=25) and from healthy subjects (n=23). For each
recording, the data was analyzed in its entirety regardless of
whether artifacts appeared. Each record contains more than half
an hour of continuous data, sampled at a rate of 360 Hz. The
database is approved by an institutional review board, publicly
available, and the patient information was deidentified. A total
of 48 records of ECG strips from two leads (one channel) were
originally obtained from 47 subjects (there are two records from
the same participant) between 1975 and 1979 in Boston’s Beth
Israel Hospital Arrhythmia Laboratory. The actual database
contains 23 recordings of 30 minutes that were randomly chosen
from a set of 4000 24-hour ambulatory ECG recordings collected
from a mixed population of AF inpatients (approximately 60%)
and outpatients (approximately 40%) at Boston’s Beth Israel
Hospital. It also includes 25 recordings selected from the same
set to include less common but clinically significant arrhythmias
that are not usually present in a small random sample. The ECG
recordings were made using Del Mar Avionics model 445
two-channel reel-to-reel Holter recorders. The recordings were
digitized at 360 samples per second per channel with 11-bit
resolution over a ±10 millivolts range and a notch filter was
used to remove 60 Hz power line interference (Del Mar Avionics
model 660 playback unit). Because of problems in the
digitization, the analog signals from the playback unit were
filtered to limit saturation in analog-to-digital conversion and
for antialiasing, using a passband of 0.1 to 100 Hz relative to
real time. The digitized 11-bit samples were converted into 8-bit
first differences on the fly, thus limiting the slew rate to 225
millivolts per second (no major effect on the data). Two or more
cardiologists independently annotated each record;
disagreements were resolved and annotations for each beat
(112,415 annotations overall) were included with the database.

General Approach
Our method for detecting the R peak includes six mathematical
manipulations (Figure 1A) and nine steps (Figure 1B). The
algorithm deals with sudden movement of the patients, electrical
drift, breathing noise, electrical spikes, environmental high
frequency noise, reverse polarity, premature ventricular
contraction, and enlarged P or T waves. See Figure 1B for a
step-by-step description of how the R peaks were detected. We
used both physiological and data-sample criteria. To define the
frequency above or below the R-R interval, we used
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physiological criteria (explained subsequently). However, the
definition of the kernel width is based on data sampling
frequency (explained subsequently).

R Peak Detection in the Presence of Sudden Patient
Movement
Sudden movement of the patient leads to low frequency noise
in the ECG signal (Figure 2A-D). As demonstrated in Figure
2A, this type of noise increases the ECG amplitude (making it
higher than the R peak itself), interfering with R peak
identification. To filter this artifact and others, 34th order
polynomial fit was applied to each 15-second interval

(Moore-Penrose pseudoinverse), which was subtracted from
the accumulated 15-second signal segment (see Equation 1 in
Figure 3).

We used the data from healthy subjects to find the degree of
the polynomial and we tested it on the entire database
(Multimedia Appendix 1). Multimedia Appendix 1 shows the
percentage of true positive (see subsequent definition) results
as a function of the filter order (the entire MIT-BIH Arrhythmia
Database was used). The 34th polynomial order provides the
optimum results (minimal polynomial number that provides the
highest true positive results) for this and other noise sources.

Figure 1. Flowchart of (A) the mathematical manipulations necessary to deal with each artifact/noise type and (B) the algorithm for identifying R
peaks.

Figure 2. A representative example of a sudden movement artifact in the (A) time and (B) frequency of the ECG signal. Representative examples of
ECG signals in (C) time and (D) frequency domains after filtering of the movement artifact. Data from MIT-BIH Arrhythmia Database #101.
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Figure 3. Equations. FN: false negative; FP: false positive; TN: true negative; TP: true positive; PPV:positive predictive value; Se: Sensitivity; Balanced
F score (F1).

R Peak Detection in the Presence of Breathing
Oscillations
Patient breathing (due to chest movement) leads to slow
fluctuation (<1 Hz) of the ECG signal (Figure 4A). To filter
this artifact, a midlow polynomial fit is required. Because the
signal is filtered by the high-order polynomial fit (described
previously), no additional signal filtering is needed (Figure 4B).

R Peak Detection in the Presence of High Frequency
Environmental Noise
High frequency artifacts appear at 50 or 60 Hz (electrical net)
or at 100 Hz (fluorescent lamps). These artifacts are filtered out
by the high degree of the polynomial fit. Because the original
data were notch filtered, no such examples can be illustrated.

R Peak Detection in the Presence of Enlarged P or T
Waves
As demonstrated in Figure 4C, the enlarged T wave may be
detected as an R wave. To filter that noise, a middle-high
polynomial fit degree must be applied (filtered by the same 34th
degree polynomial fit; Figure 4D). The same steps are applied
for enlarged P waves.

R Peak Detection in the Presence of Electrical Drift
Fluctuation in room temperature, heating of the device, or
changes in the battery demand of the device (ie, power
management) may lead to drift in the electrical signal. As
demonstrated in Figure 5A, the drift appears as a slow and
monotonic gain change of the device’s electrical signal. Because
the signal is filtered by the high-order polynomial fit (described
previously), no additional signal filtering is needed (Figure 5B).

Note that derivation of the signal to eliminate other sources of
noise also reduces low frequency drift.

R Peak Detection in the Presence of Electrical Spikes
Random spikes often appear in the ECG signal (Figure 5C-F).
These spikes are distinguished from premature beats because
they are not repetitive and the consecutive R peaks are normal.
Two kinds of spikes appear: (1) relatively low frequency (Figure
5C) and (2) high frequency (Figure 5E). The former artifact is
filtered by the high-order polynomial fit (described previously;
Figure 5D). Assuming heuristic minimal temporal distance
between two adjacent R peaks, the high frequency spikes are
filtered. In short, we searched for consecutive beats with
temporal distance of less than 250 milliseconds (far from the
maximal heart rate). In the case of adjacent peaks with distance
lower than 250 milliseconds, the R peak with lower amplitude
is eliminated. Such a filter is called a heuristic filter (because
it is based on empirical physiological knowledge). Figure 5F
demonstrates that indeed an electrical spike is not recognized
as a peak.

R Peak Detection With Reverse ECG Polarity
Swapping between ECG leads can cause negative polarity of R
peaks relative to the electrical signal (Figure 6A). To overcome
this problem, the signal derivative is used and maximal points
are searched. If the majority of maximal points have negative
values, the signal polarity is swapped (Figure 6B). In addition,
the second derivative of the signal is calculated to verify that,
in the case of regular polarity, the peaks are indeed maxima
points, and in the case of negative polarity, the peaks are minima
points.
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Figure 4. Representative example of (A) slow respiratory oscillation noise (the box represents a breathing cycle) and (B) ECG signal after respiratory
oscillation filtering. Data from MIT-BIH Arrhythmia Physionet database #101. Repetitive examples of (C) enlarged T wave and (D) ECG signal after
enlarged T filtering. Data from MIT-BIH Arrhythmia Database #230.
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Figure 5. Representative example of (A) drift in the device electrical signal and (B) ECG signal after drift filtering. Data from MIT-BIH Arrhythmia
Physionet database #103. Representative examples of relatively low frequency artificial electrical spikes (C) before and (D) after filtering. Data from
MIT-BIH Arrhythmia Physionet database #105. Representative examples of relatively high frequency artificial electrical spikes (E) before and (F) after
R peak detection. The “x” symbol represents the R peak detected by the algorithm. Data from MIT-BIH Arrhythmia Database #210.

R Peak Detection in the Presence of Premature
Contraction
As illustrated in Figure 7A, premature ventricular contractions
(PVCs) lead to early beats with similar appearance as R peaks.
In the first case, the PVC polarity is positive and the algorithm
detects them as R peaks; thus, no additional steps are needed
(ie, the algorithm successfully finds R peaks in the presence of
PVC). In the second case, premature atrial contractions (PACs)
are illustrated. To overcome this problem, the signal derivative
is used, and only a signal with a derivative above a certain
threshold is chosen (ie, a PAC signal has a higher derivative

than a regular signal). To ensure that the PAC will be detected
as a peak, the ECG signal derivative was smoothed by
convolution with kernel of width of 1/50 second to find the R
peak (because the MIT-BIH Arrhythmia Database was sampled
at 256 Hz, for this database a moving average was applied with
a window width of five samples).

The convolution of two finite sequences is defined by extending
the sequences to finitely supported functions on the set of
integers (Equation 2 in Figure 3). When the sequences are the
coefficients of two polynomials, then the coefficients of the
ordinary product of the two polynomials are the convolution of
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the original two sequences. This is known as the Cauchy product
of the coefficients of the sequences. Because we used 15-second

segments, the inner product is defined (Equation 3 in Figure 3).

Figure 6. Representative examples of inverse polarity of the ECG signal (A) before and (B) after correction. Data from MIT-BIH Arrhythmia Database
#108.

Figure 7. (A) Premature ventricular contraction. Data from MIT-BIH Arrhythmia Database #101. (B) Premature atrial contraction (PAC). Data from
MIT-BIH Arrhythmia Database #221. The “x” symbol represents the R peak detected by the algorithm. The arrow represents PAC.

Statistical Measures
Detection of R peak was performed with an assumption of
causality (ie, each annotation was based on current and past R
detections and not on future data). Our automatic R peak
algorithm annotations were compared to the reference
annotations provided by Physionet [17]. The annotations
produced by the algorithm were divided into three groups as
defined in Physionet [17]. If the detected R peak was in a
proximity of 150 milliseconds to the reference annotations, it
was identified as true positive (see Equation 4 in Figure 3). A
false positive was defined if our algorithm detected a peak that
did not exist in the corrected Physionet annotations in a

proximity of 150 milliseconds (Equation 5 in Figure 3). Thus,
false positive detection was the number of false positive events
divided by the number of reference annotations.

A false negative was defined if our algorithm did not detect a
peak that exists in the corrected Physionet annotations in a
proximity of 150 milliseconds (Equation 6 in Figure 3). Thus,
false negative detection was the number of false negative events
divided by the number of reference annotations.

The positive predictive value (PPV) is defined in Equation 7 in
Figure 3, sensitivity is defined in Equation 8 in Figure 3, and
balanced F score is defined in Equation 9 in Figure 3.
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Other Detectors
We compared our results to three gold standard QRS detectors
that show good detection in the MIT-BIH Arrhythmia Database:
(1) Physionet gqrs [17], (2) Pan et al [13], and (3) Behar et al
[15] (jQRS). Pan et al’s [13] QRS detector is energy based. The
main operations performed by the algorithm are bandpass filter,
derivative, squaring, and integration. The bandpass filter is used
to reduce the influence of muscle noise, 60 Hz interference,
baseline wander, and T wave interference. The signal is then
differentiated to provide the QRS complex slope information,
squared to make all data points positive, and a nonlinear
amplification of the derivative filter is performed (which will
thus emphasize the higher frequencies, contained mainly in the
R wave). Next, a moving window is used to integrate the signal.
Finally, an adaptive threshold is used on the integrated signal
to discriminate the locations of the QRS complexes. Behar et
al [15] (jQRS) used similar mathematical steps as Pan et al [13]
with the following parameters: 0.6 detector threshold, 15-second
window size, 150-millisecond refractory period, and 7-sample
integration window.

Mobile System
A Universal 3-12 Lead ECG Sensor (Beecardia Ltd, Haifa,
Israel) was connected through a USB to a Lenovo tablet (A7-30
with CPU MTK8382-QC 1.3GHz, system memory of 1 GB
RAM, and 8 GB storage capacity) with the Android 4.4
operating system. We recorded our own data, sampled at 500
Hz and uploaded to the cloud. The detector program and the
acquired data were uploaded to the MATLAB Cloud. An iPhone
6s (32 GB capacity, 1.85 GHz A9 processor 64-bit architecture,
1715 mAH battery) with the iOS 10 operating system or Galaxy
Note 3 (16 GB capacity, 1.3 GHz Hexa-core processor, 3200
mAh battery) with the Android 5.1.1 operating system and the
MATLAB Mobile (MathWorks, Natick, MA, USA) app were
used to identify the R peaks. The performance of the mobile
system was compared to the performance of Lenovo Thinkpad
W541 (Intel core i7pro-Quad core, clock speed 2.8 GHz
processor, 16 GB RAM) with Microsoft Windows 7 Professional
64-bit edition operating system. The open-source R peak
detector program can be found in Multimedia Appendix 2.

Results

We chose the MIT-BIH Arrhythmia Database because it
includes ECG strips with representative noise types and
arrhythmia (see Methods) and because 40% of the ECG strips
in this database include AF events (the most common
arrhythmogenic events). We ran our algorithm on the entire
MIT-BIH Arrhythmia Database (a total of 112,415 annotations
in the 48 records). On average, our algorithm produced 0.26%
false negatives and 0.58% false positives, for sensitivity of
99.7% and positive prediction of 99.4%. Note that these results
were obtained after exclusion of ventricular flutter (ie, when

there is no sinus rhythm at all). For statistical data, see Table
1.

Next, we compared our algorithm to some state-of-the-art QRS
detectors (Pan et al [13], Physionet gqrs [17], Behar et al [15])
using the MIT-BIH Arrhythmia Database. On average, our
algorithm yielded higher sensitivity, PPV, and F1 than the others.
Note that these results were also obtained after exclusion of
ventricular flutter. For statistical data, see Table 1. For statistical
data of each algorithm on each record, see Multimedia Appendix
3.

To test whether the algorithm can deal with AF episodes (on
which our algorithm was not trained but only its performance
checked), we tested it on the AF patient data. Table 1 shows
that, on average, our algorithm provided good quality results.
No significant difference was found between the statistics of
AF and non-AF patients. Figure 7B shows an example of how,
even in the presence of AF, the algorithm can detect the R peak.
Multimedia Appendix 3 shows that, on average, our algorithm’s
performance in the presence of AF is superior to the others.

We then checked whether our algorithm produced different
results for male and female subjects and compared the results
to those of the other algorithms. We used data from 10 male
and 13 female AF patients and 15 male and 10 female non-AF
patients. For statistical data, see Multimedia Appendixes 4 and
5. On average, the false negative rate was higher for females
than for males. Similar results were obtained for other
algorithms. We also checked whether age affected the results
produced by our algorithm. We used data from 17 AF patients
older than 60 years, 8 AF patients younger than 60 years, 15
healthy subjects older than 60 years, and 7 healthy subjects
younger than 60 years. For statistical data, see Multimedia
Appendixes 6 and 7. On average, total false detections were
higher in patients younger than 60 years. Similar results were
obtained for other algorithms.

After proving the robustness of the algorithm on the “gold
standard” database and proving that its performance was
superior to other existing algorithms, we implemented it on a
mobile phone using mobile ECG data and the MATLAB Mobile
app. Figure 8A shows the MATLAB Mobile graphic user
interface on both iOS and Android systems. The mobile bundle
can successfully detect R peaks even in the presence of noise
and drift. On average, one minute of data recording was
processed by a PC (see specification in Methods) in 0.1 second
and by the mobile bundle in 0.99 seconds. Figure 8B describes
the steps to run the algorithm on the mobile device. Note that
to compute the heart rate, the mobile device was connected to
the cloud only once to download the app and once when the
ECG data were download (see the flowchart in Figure 8B).
Thus, it consumes low energy for communication. Indeed, 30
minutes of continuous data analysis by the app reduced the
battery by only 2%.
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Table 1. Mean statistics for the tested algorithm’s performance detecting R peaks in atrial fibrillation (AF), non-AF, and the total strips in the MIT-BIH
Arrhythmia Database.

Our algorithmBehar et al algorithmPan et al algorithmgqrs algorithmStatistic

Total

(%)

Non-AF

(%)

AF

(%)

Total

(%)

Non-AF

(%)

AF

(%)

Total

(%)

Non-AF

(%)

AF

(%)

Total

(%)

Non-AF

(%)

AF

(%)

0.30.30.41.20.52.10.30.50.70.30.10.4False negative detection

0.60.20.73.91.25.40.60.30.70.60.40.8False positive detection

99.799.799.698.699.597.799.799.599.399.799.899.5Sensitivity

99.499.799.297.298.895.799.499.799.399.499.699.2Positive predictive value

99.699.799.497.499.296.299.599.699.399.599.799.4F1

Figure 8. MATLAB Mobile graphic user interface with recorded data from Beecardia ECG device on (A) iOS and (B) Android systems. The “x”
symbol represents R detection.

Discussion

Principal Findings
A mobile health app with a robust R peak detector is necessary
to calculate heart rate to diagnose diseases, evaluate the patient’s
condition, and trigger alerts if potentially fatal events are about
to occur or have just occurred. To identify real-time R peak
intervals, the algorithm must deal with many kinds of common
artifacts before it can be implemented on a mobile bundle. The
first contribution of this paper is a new R peak detector
implemented on a mobile app in approximately 2 hours of
computing work. We showed that it can deal with many kinds
of common artifacts, such as motion artifacts, electrical drift,
breathing oscillations, electrical spikes, environmental noise,
signal polarity, and premature beats. We tested its performance
on a “gold standard” database that includes AF and arrhythmia
events. We also showed that its performance is superior to other

well-cited detection algorithms [13,15,17]. Moreover, we proved
that the algorithm is robust enough to detect R peaks in real
time from ECG signals recorded by a mobile device. Thus, the
algorithm can be run either on either gold standard data recorded
by a stationary ECG device or on other data recorded by a
mobile ECG device. Most importantly, we showed that the
algorithm can be run on the MATLAB Mobile platform without
reducing its complexity or the ability to quickly detect R peaks.

Real-time R peak detection of healthy subjects is challenging.
Performing such analysis on ECG data from patients with AF
who also exhibit other arrhythmias adds a new dimension of
complexity to the real-time R peak detection. Our algorithm
was trained only on non-AF patients. As demonstrated in Table
1, the performance of our algorithm does not decrease in the
case of AF events. Moreover, although our algorithm is only
slightly better than the gqrs [17] for healthy subjects, it is
superior to it for recordings with AF events.
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Other state-of-the-art R peak detectors, such as that of Elgendi
[18], do exist. However, such algorithms are not open source
and thus it is not possible to reproduce their results. In addition,
our work focuses on designing an R peak detector that can be
easily used on any mobile device running MATLAB Mobile.

The second and most important contribution of this paper is an
open-source code that runs on the MATLAB Mobile app, which
can be used by any mobile phone. The MATLAB Mobile
platform makes it possible to run the R peak detection algorithm
without having to reduce its complexity. To the best of our
knowledge, this is the first time that MATLAB Mobile has been
used as a tool to test a mobile health app. Importantly, the
MATLAB source code of our R peak detector was contributed
to MATLAB Cloud, which means that any mobile device
running the MATLAB Mobile app can easily download and
run the code.

Clinical Insights
Precise beat-to-beat detection of R peaks is essential for accurate
HRV analysis. Even under resting conditions, ECG recordings
in mammals exhibit complex beat-to-beat variations in the
heartbeat intervals [19]. Although a decrease in this complexity
in humans with cardiovascular diseases correlates with increased
morbidity and mortality [19], an increase in HRV above a certain
threshold leads to the abnormal electrical impulse propagation
defined as arrhythmia (for a review see [20]). On average, AF
is associated with increased HRV [20], but reduced HRV
quantifying indexes are observed just before arrhythmogenic
events [21]. Although the correlation between changes in
heartbeat complexity and the prevalence of AF has been
acknowledged for over three decades [22-24], currently there
is no clinical tool that exploits this correlation to predict AF.
The lack of clinical tools was largely due to the lack of a
high-quality real-time automatic R peak detection algorithm.
Our algorithm, and the ability to embed it on mobile device,
may help to realize such a tool.

Limitations
We cannot quantitatively test the performance of the R peak
detector on the mobile device because no public annotated
database exists for such devices. Nonetheless, the applicability
of the algorithm is ensured by its ability to detect R peaks with

low false negative and false positive detections on the gold
standard database, even in the presence of all possible artifacts
and types of noise. A large clinical test of the device on patients
will prove its quality.

Unfortunately, because most published R peak detector
algorithms are not open source and not in MATLAB language,
we could not run them on MATLAB Mobile. However, because
our algorithm exhibits superior performance and its running
time on the MATLAB Mobile app is short, we believe that
testing other algorithms on the mobile platform will not bring
further insight.

Future Work
We showed here that MATLAB Mobile is suitable to run our
algorithm and find R peaks in real time. In the future we would
like to use MATLAB Mobile for “hybrid” calculations: the
simpler parts of the calculation will be done on a mobile phone
and the more complex parts will be done in the cloud. MATLAB
Mobile will switch between the two parts of the calculation.

We used AF data to demonstrate the suitability of the MATLAB
Mobile platform for mHealth apps and showed that it can run
on any phone system (aim 1). Thus, similar mHealth apps might
also prove useful for other cardiac diseases or for diseases that
require tracking of bioelectric signals from a wireless device.

Conclusions
Our first goal in this paper was to evaluate the suitability of the
MATLAB Mobile platform for mHealth apps and determine
whether it can run on any phone system. We showed here that
an open-source code can run on the MATLAB Mobile app and
can be used to identify the R peaks. Our second goal was to
embed in the MATLAB Mobile platform a robust real-time
ECG R peak detector with low false positive and low false
negative detection in the presence of the most frequent
arrhythmia, AF. We showed here that our algorithm can deal
with many kinds of common artifacts, such as motion artifacts,
electrical drift, breathing oscillations, electrical spikes,
environmental noise, signal polarity, and premature beats. We
also showed that its performance is superior to that of other
well-cited detection algorithms [13,15,17]. Moreover, we proved
that the algorithm is robust enough to decode R peaks in real
time from ECG signals recorded by a mobile device.
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[PNG File, 3MB-Multimedia Appendix 1]

Multimedia Appendix 2
Open source code.

[ZIP File (Zip Archive), 134MB-Multimedia Appendix 2]

Multimedia Appendix 3
Comparison of failed detection per recording of each algorithm run on the MIT-BIH Arrhythmia database.
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