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Abstract

Background: Wearable and connected in-home medical devices are typically utilized in uncontrolled environments and often
measure physiologic signals at suboptimal locations. Motion artifacts and reduced signal-to-noise ratio, compared with clinical
grade equipment, results in a highly variable signal quality that can change significantly from moment to moment. The use of
signal quality classification algorithms and robust feature delineation algorithms designed to achieve high accuracy on poor
quality physiologic signals can prove beneficial in addressing concerns associated with measurement accuracy, confidence, and
clinical validity.

Objective: The objective of this study was to demonstrate the successful extraction of clinical grade measures using a custom
signal quality classification algorithm for the rejection of poor-quality regions and a robust QRS delineation algorithm from a
nonstandard electrocardiogram (ECG) integrated into a toilet seat; a device plagued by many of the same challenges as wearable
technologies and other Internet of Things–based medical devices.

Methods: The present algorithms were validated using a study of 25 normative subjects and 29 heart failure (HF) subjects.
Measurements captured from a toilet seat-based buttocks electrocardiogram were compared with a simultaneously captured
12-lead clinical grade ECG. The ECG lead with the highest morphological correlation to buttocks electrocardiogram was used
to determine the accuracy of the heart rate (HR), heart rate variability (HRV), which used the standard deviation of the
normal-to-normal (SDNN) intervals between sinus beats, QRS duration, and the corrected QT interval (QTc). These algorithms
were benchmarked using the MIT-BIH Arrhythmia Database (MITDB) and European ST-T Database (EDB), which are standardized
databases commonly used to test QRS detection algorithms.

Results: Clinical grade accuracy was achieved for all buttocks electrocardiogram measures compared with standard Lead II.
For the normative cohort, the mean was −0.0 (SD 0.3) bpm (N=141 recordings) for HR accuracy and −1.0 (SD 3.4) ms for HRV
(N=135). The QRS duration and the QTc interval had an accuracy of −0.5 (SD 6.6) ms (N=85) and 14.5 (SD 11.1) ms (N=85),
respectively. In the HF cohort, the accuracy for HR, HRV, QRS duration, and QTc interval was 0.0 (SD 0.3) bpm (N=109), −6.6
(SD 13.2) ms (N=99), 2.9 (SD 11.5) ms (N=59), and 11.2 (SD 19.1) ms (N=58), respectively. When tested on MITDB and EDB,
the algorithms presented herein had an overall sensitivity and positive predictive value of over 99.82% (N=900,059 total beats),
which is comparable to best in-class algorithms tuned specifically for use with these databases.

Conclusions: The present algorithmic approach to data analysis of noisy physiologic data was successfully demonstrated using
a toilet seat-based ECG remote monitoring system. This approach to the analysis of physiologic data captured from wearable and
connected devices has future potential to enable new types of monitoring devices, providing new insights through daily,
inconspicuous in-home monitoring.

(JMIR Mhealth Uhealth 2018;6(5):e120) doi: 10.2196/mhealth.9604
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Introduction

Background
Wearable and internet-connected medical devices have the
potential to fill a gap in patient monitoring, providing insights
into disease progression and cardiovascular health between
office visits, as well as enabling prevention-focused personalized
care. The sluggish adoption of such technology within health
care can be attributed to a lack of clinical value due to the large
volume of difficult-to-interpret data and poor confidence in
measurement accuracy [1,2]. This is due to use in uncontrolled
environments and limited signal quality, resulting in noisy and
highly variable signals that change from moment to moment.
As a result, many wearable and connected devices do not meet
the requirements for medical use and instead target
self-management of fitness and well-being.

The literature approaches this problem by directly addressing
noise in physiologic signals, through signal enhancement and
noise removal techniques. A common approach to reproducing
a clean signal (eg, photoplethysmogram) is to utilize information
from other simultaneously gathered signals such as
accelerometer data, impedance measurements, and/or multiple
electrocardiogram (ECG) channels [3-5]. Additional statistical
approaches utilize a priori information about the signal to
de-noise signals for more accurate analysis [6-9]. Although
these approaches can be beneficial, the assumptions made about
the physiologic waveforms during this process have the potential
to create false measurements, especially for those with
cardiovascular disease who often have abnormal morphologies
and rhythm [10].

An alternative approach to managing noise-corrupted
physiologic signals is to reject regions that are insufficient for
analysis, rather than forcing them through analysis. By
automatically rejecting poor quality regions of physiologic
signals, only regions where the subsequent algorithms can
accurately determine specific measures are analyzed, increasing
confidence. There are only a few examples in the literature that
take this approach to rejecting poor-quality regions, where the
focus is on hospital-grade medical equipment with the goal of
reducing false alarms and increasing the confidence of
automated results [11,12], or where results are only presented
for healthy subjects [13,14]. Since these algorithms have been
designed for hospital-grade equipment used in a controlled
environment or on normative subjects, they have limited
applicability to wearables or in-home devices that typically
contain greater variability in signal quality.

This study expands upon the literature by implementing a robust
signal quality classification algorithm for the rejection of
poor-quality regions designed specifically to work with a highly
accurate delineation algorithm designed for noisy signals. The
effectiveness of these algorithms is demonstrated using a
nonstandard, dry electrode–based ECG integrated into a toilet
seat for inconspicuous in-home monitoring. The objective of
this work was to demonstrate successful utilization of this

approach to physiologic analysis through a study of both
normative and HF subjects.

Motivation for In-Home Electrocardiogram
Monitoring of Heart Failure
Heart failure (HF) occurs when the heart muscle is weakened
and unable to maintain the blood flow required to meet the
body’s needs. Approximately 6.5 million Americans have HF,
with 960,000 new cases per year [15]. HF costs the United States
an estimated US $30.7 billion each year and is expected to
increase to 127% to reach $69.7 billion by 2030 [15]. With
approximately 80% of the total cost associated with HF due to
hospitalization [16], there is an opportunity to reduce the cost
of HF by lowering hospitalization rates through remote patient
monitoring. The literature shows that hospital readmissions of
HF patients can be reduced by the remote monitoring of a
single-lead ECG [17-19]. Although a single lead has limited
diagnostic capabilities, it can be useful for monitoring of disease
progression, specifically through tracking arrhythmias, heart
rate (HR), heart rate variability (HRV), QRS duration, and
corrected QT interval (QTc).

Changes in both HR and HRV can be used to predict
cardiovascular events. For individuals with or without coronary
artery disease, resting HR is a predictor of mortality,
independent of other risk factors [20,21]. Low HRV is associated
with a 32% to 45% increased risk of a first cardiovascular event
for patients with no previous history of cardiovascular disease
[22]. It is also associated with chronic HF, diabetes, and
alcoholic cardiomyopathy [23].

An increase in QRS duration can be used in the diagnosis of
disease state and as a predictor of sudden death [24]. For
example, a QRS width of greater than 120 ms suggests that
cardiac dyssynchrony may be present [25]. In addition, QRS
duration may have secondary value in predicting the prognosis
of patients with HF [24]. In one study, implantable cardiac
defibrillator patients with HF who had a wide underlying QRS
complex showed more than double the rate of cardiac mortality
than those with a narrow QRS complex [26]. The degree of
QRS prolongation is correlated with an increase in severity of
left ventricular systolic dysfunction, left ventricular dilation,
and mitral regurgitation [27]. Left ventricular function worsens
as the QRS duration increases [26-29], making it an important
parameter to monitor over time.

A prolonged QTc interval is a strong, independent predictor of
adverse outcomes in patients with HF, because it is related to
ventricular polarization and repolarization [30]. Many drugs
prescribed to cardiovascular patients change the PR interval
and the QRS duration. However, they can also prolong the QT
interval, which can be very dangerous. A drug-induced
prolongation of the QT interval is associated with Torsades de
Pointes (a polymorphic ventricular tachycardia), which may
cause sudden cardiac death (unexpected cardiovascular collapse
without warning) [31,32].
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The Opportunities and Challenges of In-Home
Electrocardiogram Monitoring
Currently, ECG monitoring is performed in a hospital or doctor’s
office, or for a short duration (typically from 1 to 7 days) at a
patient’s home using a Holter monitor [33,34]. Daily monitoring
has the potential to avoid issues with the episodic nature of
hospital or doctor visits and to provide insights beyond
short-term Holter monitoring. Visits to the hospital or doctor
occur neither at a consistent time of day nor with the subject at
a consistent physiologic state, making it difficult for physicians
to see trends in the measured parameters across time. In addition,
white coat syndrome can significantly affect measurement
results.

Although the 12-lead ECG cannot be replaced with a single-lead
ECG for diagnostic purposes, there is an opportunity to fill a
gap in patient monitoring with daily single-lead ECG
measurements. If data can be gathered reliably, physicians can
begin using each of these parameters (HR, HRV, QRS duration,
and QT interval) to monitor disease progression over time. This
would allow trends to be picked up that would otherwise be
missed, enabling an alert-based system for facilitating early
intervention. The many challenges of in-home physiological
monitoring that are not present in a hospital environment or
doctor’s office need to be addressed for the data to be gathered
reliably. In the home, a trained expert is not on hand to make
any real-time changes that would ensure correct electrode
placement and signal integrity. In addition, patient compliance
is often low, resulting in inconsistent data collection that
impedes accurate trend analysis. The fully integrated toilet seat
form factor and the algorithms presented herein have the
potential to address many of these challenges.

A Toilet Seat–Based Electrocardiogram Addresses
Challenges in Patient Compliance for In-Home
Monitoring
A toilet seat–based cardiovascular monitoring system can be
integrated into a subject’s natural daily routine with no change
in habit, enabling measurements to be taken at one or more
times each day. Furthermore, issues with subject preparation
and subject error are greatly reduced, since skin contact is
automatic and has sufficient pressure to create a repeatable
electrode interface at a consistent location for each subject.
Although a toilet seat–based buttocks electrocardiogram (bECG)
is intermittent in nature, ensured compliance will enable
long-term daily tend monitoring of parameters that do not
require continuous monitoring, such as the QRS duration and
QTc interval.

Challenges Associated With a Toilet Seat–Based
Electrocardiogram
Standard gel-based ECG electrodes cannot be used in a toilet
seat-based device, necessitating the use of dry electrodes. Both
the measurement location and the use of dry electrodes increase
the noise present in the captured signal and reduce the amplitude
of the ECG signal. Despite these challenges, the literature shows
that it is possible to capture an ECG from a toilet seat [35-40].
Only the work presented in by Baek et al [38] has quantitatively
compared the ECG from a toilet seat to a gold-standard ECG

measure, where capacitive electrodes on the seat and wet
electrodes placed adjacent on the thigh were compared with a
standard limb lead ECG. The results of this study showed that
manual R-peak delineation resulted in less than a 2-ms error in
location and that the estimated HR was within 0.003 bpm for a
single test subject. To date, no study has quantitatively compared
the bECG HRV, QRS duration, QTc interval, and waveform
morphology with a clinical 12-lead ECG.

Unique algorithms have been developed to address the
challenges associated with capturing and analyzing the bECG.
The broad objective of this work was to demonstrate the
feasibility of the present algorithms and bECG-based system
for accurately monitoring key cardiovascular parameters in both
a healthy population and an HF population, as a precursor to
long-term trend-based intervention studies. The human subject
data used herein were obtained at the Rochester Institute of
Technology and the University of Rochester Medical Center.
Studies were performed under informed consent and used
protocols approved by each institution’s Institutional Review
Board for Protection of Human Subjects. These controlled
studies compare the capabilities of the bECG to a clinical grade
12-lead ECG, quantitatively comparing the accuracy of extracted
R-peaks, HR, HRV, waveform morphology, QRS duration, and
QTc interval for algorithm validation.

Methods

A Toilet Seat–Based Buttocks Electrocardiogram
The bECG is integrated into an elongated toilet seat, with dry
electrodes on the surface and electronic instrumentation inside
of the seat (Figure 1). It contains three electrodes, consisting of
a differential electrode pair and grounded right leg reference,
each with a diameter of 28 mm. Stainless-steel electrodes are
chosen for their noncorrosive and nonirritant properties. The
differential electrode pair is placed on the seat such that skin
contact is made in proximity to the subject’s gluteal fold when
seated. A grounded right leg electrode is placed approximately
12 cm below the differential electrode pair on the right side of
the toilet seat from the vantage point of a seated subject (Figure
1). Each electrode is securely integrated into the surface of the
toilet seat with epoxy, to ensure repeatability across recordings.

The active front-end instrumentation is integrated inside of the
seat and connected to each of the differential stainless-steel
electrodes with welded wires. This results in a maximum
distance of 10 mm between the electrode and the front-end
instrumentation. The active electrodes contain electrostatic
discharge protection and a high-pass filter with a −3 dB cutoff
frequency of 0.16 Hz that removes any direct current voltage
bias present on the body. This ensures that the signal is within
the valid input voltage range.

For the normative subject study, the instrumentation is powered
by a 3.3 V boost converter, which in turn is powered by a 3.7
V (nominal voltage) rechargeable lithium polymer battery. The
output from each active electrode is differentially amplified
using the ECG instrumentation (ECG100C) within a BIOPAC
MP150 system (BIOPAC Systems, Inc, Goleta, CA, USA),
which is also used to gather a 12-lead gold standard ECG. All
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signals are then acquired with a sample rate of 1000 Hz using
a National Instruments cRIO-9075 CompactRIO Data
Acquisition System (National Instruments Corp., Austin, TX,
USA), which is controlled by a laptop. The toilet seat with
integrated electrodes and active ECG front-end instrumentation
is secured to an elongated toilet mounted to the floor. A
schematic overview of the system is shown in Figure 1. All
devices that are not battery-powered are plugged into a
medical-grade isolation transformer (ILC-1400MED4) to ensure
electrical safety (TSi Power Corp., Antigo, WI, USA).

For the in-hospital HF subject study, all instrumentation and
data acquisition circuitry are integrated into the toilet seat
(Figure 1). The instrumentation is powered by a 3 V linear
regulator that is powered by a 3.3 V boost converter, which in
turn is powered by a 3 V primary lithium battery. The AD8232
(Analog Devices, Inc, Norwood, MA, USA) is used to
differentially amplify the bECG in the cardiac monitor
configuration application circuit [41]. The integrated ADC in
the MSP430FR5969 (Texas Instruments, Inc, Dallas, TX, USA)
is used to acquire the bECG signal, which is sent through a
universal serial bus to a laptop computer. The 12-lead ECG is
acquired using the BIOPAC. A pulsatile transistor-transistor
logic signal sent from the MSP430FR5969 and captured with
the BIOPAC data channels enable both systems to be
synchronized automatically, with a timing offset error no greater
than ±1 ms. All devices that are not battery-powered are plugged
into a medical-grade isolation transformer (ILC-1400MED4)
to ensure electrical safety (TSi Power Corp., Antigo, WI, USA).

Normative Subject Testing
Normative subject testing was performed on 26 healthy subjects
who had no history of heart disease. One subject was rejected
from inclusion in the normative study due to a prolonged QRS
duration and abnormal ECG morphology in the 12-lead ECG,

as determined by a Board-Certified cardiologist. Of the
remaining 25 subjects, there were a total of 13 male and 12
female subjects in the age group of 20 to 50 years, with a mean
age of 26.7 years. For the at-rest measurements, five 150-s
(2.5-min) recordings were captured with each subject sitting on
the toilet seat at rest. Between recordings, each subject was
instructed to stand up to introduce positioning differences that
would normally be associated with multiple uses of a toilet in
the home, potentially changing signal quality and waveform
characteristics. Next, to induce stress, each subject was
instructed to raise his or her HR to 75% of their maximum
predicted HR (220 – age) on a Schwinn 230 recumbent bicycle
and then quickly transition back to the toilet seat upon reaching
the desired HR. For the poststress measurement, a final 150-s
(2.5-min) recording was then taken for each subject. A
simultaneous, standard, 12-lead ECG with gel electrodes was
acquired using the ECG100C ECG amplifier and MP150 system
from BIOPAC.

Heart Failure Subject Testing
Testing was performed on 29 subjects diagnosed with HF in a
hospital setting; there were a total of 21 male and 8 female
subjects in the age group of 22 to 83 years, with a mean age of

55.4 years and a body mass index of 29.9 (SD 7.7) kg/m2. At
the time of testing, all the subjects were inpatients due to HF.
Seven 150-s (2.5-min) recordings were captured with each
subject sitting on the toilet seat at rest. Between recordings,
each subject was instructed to stand up to introduce positioning
differences that would normally be associated with multiple
uses of a toilet in the home, potentially changing signal quality
and waveform characteristics. Measurements were only gathered
at rest from the HF subjects. A simultaneous, standard, 12-lead
ECG with gel electrodes was acquired using the ECG100C ECG
amplifier and MP150 system from BIOPAC.

Figure 1. Stainless-steel electrodes are integrated into the seat and are connected directly to the integrated ECG analog front-end. The output of each
front-end is low-impedance, allowing for a low-noise connection to the differential ECG amplifier inside of the BIOPAC MP150 system (left). The
resulting full-scale ECG signal is acquired on a NI CompactRIO DAQ. For the HF subject study, all instrumentation and data acquisition circuitry are
integrated into the toilet seat (right). DAQ: data acquisition system; ECG: electrocardiogram; bECG: buttocks ECG; NI: National Instruments; HF:
heart failure.
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Figure 2. Signal quality is calculated from the bandpass filtered (1-45 Hz) and notch filtered (60 Hz) bECG (top) using a moving kurtosis (middle)
and moving SD (bottom). The first signal quality index (moving kurtosis) rejects regions with in-band noise that have a kurtosis below a threshold of
3.6. The second signal quality index (moving SD) rejects noisy spikes that have a moving SD greater than 1.25 times the overall SD. R-peak delineations
are shown as red circles to indicate where each beat is located within regions that have passed the signal quality test. bECG: buttocks electrocardiogram.

Automated Signal Quality Classification
Rejecting regions of poor signal quality is necessary for the
accurate analysis of the dry electrode bECG because it is more
prone to noise and motion artifacts than traditional wet electrode
ECG systems. Custom algorithms were developed to
automatically assess signal quality and reject noisy waveform
segments using two signal quality indices (SQIs): one based on
the kurtosis and the second based on the SD for spike detection.

The kurtosis is a statistical measure that is commonly used to
determine ECG signal quality [42-44]. It is defined as the fourth
moment about the mean (µ4), divided by the SD to the fourth

power (σ4), as shown in equation 1. The kurtosis is a statistical
measure of the tailedness of a distribution, where a normal
distribution has a kurtosis of 3. When the kurtosis is lower than
3, the distribution under test has longer tails than a normal
distribution. Typically, the kurtosis is calculated across a large
window of at least 10 s and is used to locate large motion
artifacts or excessive baseline wander [42]. A clean, sinus

rhythm ECG with no motion artifacts or baseline wander has a
kurtosis of greater than 5 [45].

Here, to identify waveform segments that contain excessive
in-band noise, the moving kurtosis is calculated across a 2-s
window on a bandpass-filtered ECG with a bandwidth of 5 to
15 Hz (second-order Butterworth filter), chosen to isolate the
QRS complex. By using a smaller 2-s window, the kurtosis
measure is no longer dominated by episodic large motion artifact
or baseline wander. A kurtosis threshold of 3.6 was empirically
chosen for this work based on the normative subject data. An
example of the resulting kurtosis value compared with the
threshold of 3.6 for a typical waveform is shown in Figure 2.

Large-amplitude spikes due to motion artifacts are detected
using a second-stage SQI. Spikes are identified as an increase
in the moving SD within a 2-s window. In this new approach,
a threshold of 1.5 times the SD of the entire signal was
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empirically determined to provide robust rejection of noisy
spikes. Figure 2 shows an example of the resulting SQI and
threshold.

R-Peak Delineation Using a Modified Version of the
Pan–Tompkins Algorithm
ECG R-peaks are delineated on a beat-by-beat basis using a
modified version of the well-known Pan–Tompkins (PT)
algorithm [46]. The raw ECG signal is processed to isolate the
QRS complex in both the frequency domain and the temporal
domain. A first-order Butterworth bandpass filter with a
bandwidth of 5 to 15 Hz is used on the input ECG waveform.
This is the same filter that was used in the signal quality
algorithm. A five-point derivative of the filtered ECG is taken
and the resulting waveform is then squared, as described in the
original PT algorithm [46]. The squared signal is low-pass
filtered using a third-order Butterworth filter with a −3 dB cutoff
frequency of 8 Hz, such that the resulting waveform will have
smooth, individual peaks for each QRS complex. The cutoff
frequency of 8 Hz was chosen to match the duration of a
prolonged QRS complex, which is 120 ms [25,27]. Two
thresholds are calculated from the resulting signal using a 5-s
moving average (chosen to include multiple beats regardless of
the HR), where the upper threshold is 1.25 times the moving
average and the lower threshold is 0.3 times the moving average.
Example waveforms from various stages of the modified PT
algorithm are shown in (Figure 3), including both thresholds.

Each peak in the processed signal is located from
largest-to-smallest amplitude with a minimum duration of 200
ms between peaks, corresponding with the cardiac refractory
period [46]. Peaks that have an amplitude greater than the larger
threshold are delineated. The median beat interval is calculated
using all beats within 20 s of the current interval under test, to
allow for natural variations in HR over time. If any of the
resulting beat intervals are greater than 1.5 times the median
beat interval, the lower threshold is used to locate missing peaks.

This algorithm differs from the original PT algorithm in Pan et
al [46], which was designed to use integer arithmetic for
real-time functionality on an 8-bit embedded system.
Specifically, the present algorithm uses alternate filtering
approaches and a different mechanism for calculating the dual
thresholds. A Butterworth filter with a bandwidth that better
isolates the constituent frequencies of the QRS complex is used,
and a third-order low-pass filter is used in place of moving
window integration. The modified PT thresholds are
continuously updated to incorporate magnitude information
from the peak, baseline noise, motion artifacts, and other ECG
features to dynamically adjust to extreme changes in signal
quality typical of dry electrodes.

Locating the exact peak of the R-wave is necessary when
ensemble averaging to avoid feature smearing. Both the PT
algorithm and the modified PT algorithm do not always locate
the exact peak of the R-wave because the exact location is
smoothed out by the processing stages, as shown in Figure 3.
The R-peak location is refined by locating the two largest peaks

in the squared derivative of the filtered ECG signal, within 150
ms of the original delineated point. These two peaks bound the
search window for the R-peak, which is defined as the first
zero-crossing of the first derivative of the filtered ECG signal.

The modified PT algorithm with signal quality-based
classification is verified using the annotated MIT-BIH
Arrhythmia Database (MITDB) and European ST-T Database
(EDB) as a gold-standard [47,48]. The purpose of using both
databases is to enable a direct comparison between the present
algorithm and other published QRS delineation algorithms and
to demonstrate that the algorithm performs well on a standard
ECG. The MITDB contains 48 records that are each 30 min in
duration, and the EDB contains 90 records that are each 120
min in duration, provided by PhysioNet [49]. The signals from
the MITDB and EDB have not been resampled because the
modified PT algorithm does not require the ECG to be a specific
sample rate. The beat-by-beat (bxb) function in the WaveForm
DataBase application [49] was used to determine the sensitivity
(Se) and positive predictive value (PPV) of the algorithm
compared with the gold-standard annotations using a standard
acceptance window (eg, match window) of 150 ms. The
aforementioned signal quality algorithm was used to indicate
periods of shutdown (regions of poor signal quality), where the
classification results are tallied separately. The beats that would
be missed during the shutdown period are excluded when
calculating the number of false negatives (FN). In addition, the
original PT algorithm has been implemented as described in
Pan et al [46] and tested on both standard databases and the
bECG dataset to facilitate a direct comparison with the modified
PT algorithm.

Ensemble Averaging
Ensemble averaging is a technique used in ECG signal
processing to reduce noise and improve feature prominence
within the cardiac cycle. Features such as the T-wave may not
be visible on a beat-by-beat basis, but ensemble averaging
allows these features to become clear and easily located. This
study uses standard ensemble averaging techniques [50,51], in
which each beat is stacked relative to the R-peak and then
averaged sample-by-sample as shown in Figure 4. Only sections
of the ECG that pass the signal quality index algorithm and two
additional ensemble average beat rejection criteria are included
when generating the ensemble average. The first additional
criterion for rejection is based on the beat interval; only beats
within ±10% of the median HR are included. The second
criterion is that the root mean square (RMS) of the beat under
test must be between 75% and 200% of the median RMS of
every delineated beat.

This process is required for accurate delineation of the Q-wave
onset, S-wave end, and T-wave end when analyzing an ECG
captured using dry ECG electrodes. Despite the benefit of using
ensemble averaging, this process removes beat-to-beat variations
such as T-wave alternans. This type of analysis, including
arrhythmia analysis, must be performed separately before
ensemble averaging.
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Figure 3. The modified PT algorithm processes the raw ECG signal (top) to isolate QRS complexes for delineation using a bandpass filter and derivative
(middle). Dual thresholds (dashed and dotted lines) are calculated using a moving window average and are continually updated (bottom), rather than
updating only when a delineated feature is found. The resultant delineations, shown as red circles, are often shifted from the R-peak location, necessitating
a subsequent refinement stage. ECG: electrocardiogram; PT: Pan–Tompkins.

Q-Wave, S-Wave, and T-Wave Delineation
Once the ensemble averaged beat is generated, the Q-wave
onset, S-wave end, and T-wave end become clearly visible,
allowing manual delineation of each feature. A trained expert
manually located each of these three features using a custom
graphical interface. Manual delineations were only used to
calculate the QRS duration and QT interval for each recording.
Delineations were spot-checked by 2 additional independently
trained experts to ensure features were delineated correctly.
Recordings where features are not clearly visible are marked
as insufficient quality and are not included in the QRS or QT
analysis by the trained expert. The bECG channel is delineated
first so that the trained expert is not biased by prior knowledge
of the gold-standard lead. After the bECG is completely
delineated, the gold-standard lead undergoes the same
delineation process.

The QRS duration is calculated as the time between the Q-wave
onset and S-wave end. The Q-wave onset is defined as the return
to baseline before the Q-wave. If no Q-wave is visible, it is
defined as the initial deviation of the QRS complex from
baseline. The S-wave end is defined as the point of inflection
after the S-wave before the T-wave or before the return to
baseline. If no S-wave is visible, the final return of the QRS

complex to baseline is used. For the purposes of this work, the
T-wave end is defined as the return to baseline after the
maximum point of the downslope of the T-wave (or upslope,
in the case of an inverted T-wave). The corresponding
uncorrected QT interval is defined as the interval between the
Q-wave onset and the T-wave end.

Correlation Analysis to Select a Gold-Standard
Electrocardiogram Lead
To determine the accuracy of the bECG QTc interval and QRS
duration, a standard ECG lead is required as a gold-standard.
Each of the 12 standard leads is a projection of the heart dipole
and is unique in shape. As the heart dipole changes magnitude
and orientation during the cardiac cycle, ECG features measured
on each differential pair have different timing, amplitude, and
orientation. Differences in projection affect the extracted
cardiovascular intervals (eg, bias in the QTc interval) and the
clinical interpretation of any given ECG lead [52]. The bECG
is a nonstandard lead, so correlation analysis was used to
determine which of the 12 standard leads most closely matched
the bECG morphology. Analysis was performed on the ensemble
averaged beats of each lead from each normative recording. To
minimize errors that are introduced by timing differences in the
R-peak locations, R-peaks from a single channel were used
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across all 12 leads and the bECG. This ensured a consistent
reference point when ensemble averaging. The R-peaks from
chest lead V1 were selected as a reference for all other leads,
because this lead contained the fewest motion artifacts.

Pearson correlation coefficient, which is a measure of the linear
correlation between two variables, was used to determine how
closely each standard lead was to the bECG. This measure is
calculated by dividing the covariance of the two variables by
the product of their SD. Resulting values are between −1 and
+1 (where −1 represents a perfect negative linear relationship
and +1 represents a perfect positive linear relationship). Tukey
boxplots were generated across the normative subject dataset,
with whiskers 1.5 times the interquartile range to show the range
of correlations between each lead. A paired Student t-test was
used to determine if there was a statistically significant
difference in the correlation results for each of the standard
leads.

Beat Classification Analysis
The efficacy of the bECG was evaluated by comparing clinically
relevant parameters to those extracted from the highest
correlated limb lead, as determined in the Methods section. Beat
classification is used to determine how consistently and
accurately beats can be located on the bECG. The bECG signal
quality must be sufficient for robust determination of beats;
otherwise, it cannot be used for further analysis. Six recordings
from each normative subject were used in these analyses: five
at rest, and one post stress.

The Se and PPV (also known as precision) were then calculated
for the bECG waveform using the corresponding beat
delineations from the gold-standard ECG channel. Feature
locations identified within an acceptance interval on either side
of the gold standard were considered true positives (TPs), while
reported time indices that are not within this acceptance interval
were considered false positives (FPs). If a corresponding feature
was not found within the acceptance interval of the
gold-standard feature, it was considered a missed beat, or an
FN.

The interval used when analyzing standard databases is 150 ms,
based upon the bxb function provided by PhysioNet [49]. For
normative analysis a more stringent acceptance interval of 100
ms was chosen, as it is half the myocardium refractory period
of 200 ms [46]. This ensures that multiple beats will not be
present for a single gold standard beat within the acceptance
window.

The Se, representing the percentage of correctly delineated
beats, is calculated using equation 2:

The PPV, representing the probability of a detected time index
being a true positive, is calculated using equation 3:

Figure 4. Ensemble averaging aligns multiple beats based on the R-wave peak location to calculate an average beat. Individual beats that passed all
the rejection criteria are shown as thin light-colored lines, and the resulting ensemble averaged beat is shown as a thick dark line.
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Cardiac Intervals Analysis
For each recording the HR, HRV, QRS duration, and QTc

interval measured from the bECG were compared with the
gold-standard lead that had the highest correlation with the
bECG. The HR for a specific recording was calculated by taking
the median RR interval (interval between consecutive R-peaks)
after rejecting RR intervals that were more than 60% out of
tolerance with respect to the initial median RR interval. Multiple
methods can be used to calculate HRV. In this study, the SD of
the RR intervals (SDNN) was used. For HR and HRV a
minimum of 15 and 60 beats per recordings were required for
analysis, respectively; if fewer beats were present, the recording
was rejected and not included in the results.

QTc and QRS intervals were extracted from the manually
delineated feature timing on the ensemble averaged waveform
for both the bECG and the gold-standard ECG lead. The
minimum number of beats required for generating the ensemble
averaged waveform for QT and QRS analysis was 60 beats. If
fewer beats were present, the recording was rejected and not
included in the analysis. Results were compared using
Bland–Altman plots. Correcting the QT interval for different
HRs is necessary when looking for trends or comparing across
recordings. The QTc interval is calculated using Bazett’s formula
[53], which is as follows in equation 4:

Results

The Buttocks Electrocardiogram Is Closely Correlated
With Standard Electrocardiogram Limb Lead II
Correlation results between the bECG and each of the standard
12-leads are shown in (Figure 5), where the leads are shown in
the order of highest to lowest median correlation. The bECG
had the highest correlation with Lead II, − aVR, and aVF, with
median correlations of .904, .899, and .893, respectively. The
correlations for aVR, V1, aVL, and V2 have been inverted to
facilitate visual comparison for high negative correlation. While
the R-peaks from V1 were used as reference points for the
ensemble averaging in the correlation analysis, there is no bias
toward V1 since ensemble averaging is a linear process and
every ensemble averaged beat from each of the 12 leads used
the same reference points. Because each of the 12 leads was
time-synchronized, a paired Student t-test was used to test
whether differences in calculated lead correlations were
statistically significant (Figure 5). Although there was no
statistically significant difference between Lead II and −aVR
(P=.41), Lead II was chosen as the gold-standard for the bECG
since −aVR is an augmented lead calculated from Lead II.

Successful Validation on Standard Databases
The algorithms presented herein have been tested on the MITDB
and the EDB to evaluate their accuracy against established
standards. Both the MITDB and EDB are standard databases

that contain hand-annotated gold-standard references. These
databases are commonly used to verify beat delineation
algorithms. The Se, PPV, and accepted signal quality
percentages for the MITDB and EDB are shown in (Table 1).
The algorithms presented herein have a cumulative Se of 99.83%
and PPV of 99.82% across both databases, while the original
PT algorithm has a cumulative Se of 99.72% and PPV of
95.93%. The slight differences in classification results for the
original PT algorithm compared with the published results,
which were only provided for the MITDB (Se=99.75% and
PPV=99.54%) [46], can be attributed to minor difference due
to incomplete implementation details in the original work. The
modified PT results are comparable with best-in-class algorithms
that typically have an Se and PPV over 99.5%, with very few
over 99.8% [54]. The cumulative statistics were generated by
calculating the total number of TP, FN, and FP across both the
MITDB and the EDB.

Buttocks Electrocardiogram Delineations Robustly
Correlate to Gold-Standard Lead II
One fundamental difference between the standard clinical ECG
and the bECG is the signal amplitude. Both the electrode
location relative to the heart dipole and the type of electrode
can reduce signal amplitude. Example bECG waveforms that
have been preprocessed with a bandpass filter (1-45 Hz) and
notch filter (60 Hz) for visualization are shown in Figure 6,
illustrating best, average, and poor signal quality compared with
a time-synchronized Lead II. Each of these waveforms has
passed the SQI test and was considered to have sufficient quality
for analysis. Effective signal quality utilization, as well as the
use of robust algorithms, are absolute requirements in this
application, because the bECG is acquired using dry electrodes
and is much more prone to noise and motion artifacts than a
typical wet electrode ECG. This is of additional importance for
HF subjects, where ECG amplitude is often low compared with
normative subjects due to myocardial necrosis. Despite these
challenges the bECG captures rhythm and critical waveform
features in the HF population, as shown in Figure 7.

Across 54 normative and HF subjects with a total of 882.5 min
of data, 60.1% (530.4 min) of the bECG signal passed the signal
quality algorithm with an overall Se and PPV of 96.4% and
97.6%, respectively, compared with Lead II. Detailed results
for the normative and HF subject groups are shown in Table 2.
The modified PT algorithm presented herein provided significant
improvements in both Se and PPV as compared with the original
PT algorithm for the bECG dataset.

The signal quality across subjects and population groups were
very polarized, with 16 out of the 25 normative subjects having
over 85% of the bECG waveforms pass the signal quality test,
compared with 3 of the subjects having less than 40% of the
bECG waveforms pass the signal quality test. The polarization
of signal quality within the normative subjects is caused by a
combination of low body weight (each of the three subjects
weighed less than 61.4 kg) and a high impedance electrode/skin
interface, which varies on a subject-by-subject basis.
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Figure 5. Box plots across normative recordings (N=140) show the correlation between the bECG and the standard ECG leads. Leads aVR, V1, aVL,
and V2 have been inverted to facilitate visual comparison. Leads are organized from left to right by highest to lowest correlation. The top 3 correlated
leads were Lead II, aVR, and aVF with median correlations of .904, .899, and .893, respectively. Statistical significance was tested using a paired Student
t-test (*P<.05, **P<.01, and ***P<.001). bECG: buttocks electrocardiogram, ECG: electrocardiogram.

Table 1. QRS classification using the original and modified Pan–Tompkins algorithm on standard databases.

Modified PTOriginal PTaTotal beatsDatabase

SQId pass (%)PPV (%)Se (%)PPVc (%)Seb (%)

98.0799.9599.5899.3399.73109,494MITDBe

96.5599.8099.8795.4899.71790,565EDBf

96.7399.8299.8395.9399.72900,059Cumulative

aPT: Pan–Tompkins.
bSe: sensitivity.
cPPV: positive predictive value.
dSQI: signal quality index.
eMITDB: MIT-BIH database.
fEDB: European ST-T database.
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Figure 6. The signal quality of the bECG can vary across subjects and measurements because it is captured using active, dry electrodes. Three examples
of signal quality are shown for the bECG (top) compared with a time synchronized Lead II ECG (bottom). The best signal quality example (a) shows
the best signal quality achieved from the bECG study. The average example quality (b) shows the typical signal quality of the bECG. The poor example
(c) shows a very noisy waveform that passed the signal quality check before analysis. bECG: buttocks electrocardiogram; ECG: electrocardiogram.

Figure 7. An example waveform from a heart failure subject during a period of arrhythmia, demonstrates that the bECG has sufficient quality to perform
single-lead based rhythm analysis for those with disease states. bECG: buttocks electrocardiogram.
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Table 2. Buttocks electrocardiogram beat classification results comparing the original and modified Pan–Tompkins algorithm.

Original PTModified PTaTotal beatsStudy Cohort

PPV (%)Se (%)PPVd (%)Sec (%)SQIb pass (%)

77.786.198.198.279.630,075Normative

59.662.296.694.245.441,820HFe

67.472.296.796.460.171,895Cumulative

aPT: Pan–Tompkins.
bSQI: signal quality index.
cSe: sensitivity.
dPPV: positive predictive value.
eHF: heart failure.

In addition, HF subject bECG signal quality was generally lower
than that of the normative subjects (45.4% compared with
79.6%). The abnormal morphologies of the HF subjects’ bECG
is a contributing factor to the lower percentage of sufficient
quality regions. In addition, beats that result in an abnormal
rhythm are not included when generating the ensemble average,
resulting in a higher percentage of rejected regions for the HF
subjects compared with normative.

Despite the challenges of using dry electrodes on a toilet seat,
the percentage of acceptable waveforms, as well as the
corresponding Se and PPV, are more than sufficient for accurate
estimation of physiologic parameters. Instrumentation
improvements focused on increasing the signal-to-noise ratio
when using dry electrodes are expected to significantly increase
the percent of waveforms that pass the signal quality algorithm.

Cardiac Intervals Are Accurately Extracted From the
Buttocks Electrocardiogram
HR and HRV are calculated per recording for the bECG and
Lead II ECG waveforms for all subjects at rest and post stress.
A total of 250 recordings passed SQI and were analyzed for HR
and 234 for HRV; results are shown as Bland-Altman plots in
Figure 8. The automated delineation algorithms resulted in an
excellent agreement between the bECG and the gold-standard
HR, with virtually no bias and only six outliers having an error
greater than 1 bpm. The SDDN HRV was clustered very close
to the zero-error line, but with positive bias induced by a small
number of significant outliers dominated by the HF population,
shown in Figure 8. Although the results are excellent for a dry
electrode system with no skin preparation, additional

enhancements to the automated SQI algorithm may provide
opportunities to further improve results for those with
cardiovascular disease.

The results comparing the bECG QRS duration and QTc interval
to Lead II are presented as Bland-Altman plots in Figure 9. A
smaller number of recordings are included in the QRS duration
and QTc interval analysis compared with the HR and HRV
analysis. This is due to the more stringent requirements imposed
by the two additional beat rejection criteria when ensemble
averaging and due to the rejection of recordings that did not
have sufficiently clear features for delineation by the trained
expert.

The Bland-Altman plot in Figure 9 shows a near zero bias in
the QRS measures and 1.96 times SD of 17.8 ms. The
Bland-Altman plot in Figure 9 shows a −13.2 ms bias in the
QTc interval, with an error of 29.3 ms (1.96 times the SD). The
accuracy of the seated bECG measures of QRS duration and
QTc interval are within the limits of the expected accuracy of
manual determination with a caliper, which has an error between
20 and 40 ms [52] and four standard automated approaches that
have a 1.96 times SD error of over 35.5 ms [54,55]. Correlation
analysis between the normative and HF subject groups showed
statistically significant differences for bECG QRS duration
(P<.001) and QTc interval (P<.001) using the Student t-test.
Algorithm refinement will provide an opportunity to remove
outliers that have a significant impact on the overall SD,
however, the present results compare well with the existing
standards for measurement.

JMIR Mhealth Uhealth 2018 | vol. 6 | iss. 5 | e120 | p. 12http://mhealth.jmir.org/2018/5/e120/
(page number not for citation purposes)

Conn et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. Heart rate (left) and heart rate variability (right) extracted from the bECG signal for normative rest (red x), normative post-stress (blue o),
and heart failure (green +) are closely aligned with those extracted from the gold standard Lead II ECG. The dashed line shows the mean error. The
dotted lines show 1.96 times the SD, corresponding to a 95% limits of agreement. bECG: buttocks electrocardiogram; ECG: electrocardiogram.

Figure 9. QRS duration (left) and QTc interval (right) extracted from the bECG signal for normative rest (red x), normative poststress (blue o), and
heart failure (green +) are closely aligned with those extracted from the gold-standard Lead II ECG. The dashed line shows the mean error. The dotted
lines show 1.96 times the SD, corresponding to a 95% limits of agreement. bECG: buttocks electrocardiogram; ECG: electrocardiogram; QTc: corrected
QT.

Discussion

Principal Findings
This study demonstrates that a dry electrode, toilet seat–based
ECG provides robust determination of HR, HRV, QRS duration,
and QTc interval as compared with a standard Lead II ECG
captured using traditional wet electrodes (Table 3). Results
showed that the bECG was most closely correlated with standard
Lead II, showing clinical relevance and demonstrating
confidence in the fully integrated toilet seat measures. The
success of the toilet seat–based ECG is attributed to the
advanced signal processing algorithms presented herein, which
have been custom designed for noisy, dry electrode ECG signals.

Standard algorithms designed for clinical grade devices expect
a certain level of signal quality and would either perform poorly
or reject too large of a percentage of recorded data for wearable
and connected devices. To ensure that a high percentage of the
waveform is not rejected, the signal quality rejection algorithm
in this study was designed to reject only regions where the

subsequent delineation algorithm will perform poorly. While
providing robust results for the system it was designed for (ie,
a nonstandard dry electrode ECG), these algorithms also excel
at analyzing hospital-grade ECG signals without any
modification, as demonstrated using the MITDB and EDB
standard databases. The resulting Se and PPV are comparable
with best-in-class algorithms that have been designed
specifically for use with these databases, with exceptional
accuracy on EDB, a much more challenging dataset for
delineation algorithms.

Limitations and Future Work
One limitation of this study is that data were recorded from
subjects in either a lab or a clinical setting. While subjects were
instructed to sit as they would at home during actual use, data
captured in the home may result in additional motion artifacts
and increase variability in signal quality. However, our results
and the success of the signal quality algorithm suggest that
in-home data can be successfully analyzed, even if a large
percent of the signal does not have sufficient signal quality.
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Table 3. Principal cardiac interval results of the buttocks electrocardiogram compared with Lead II for the normative and heart failure cohorts.

QTc
d (SD), in msQRSc, (SD), in msHRVb (SD), in msHRa (SD), in bpmStudy Cohort

14.5 (11.1)−0.5 (6.6)−1.0 (3.4)−0.0 (0.3)Normative

11.2 (19.1)2.9 (11.5)−6.6 (13.2)0.0 (0.3)Heart failure

13.2 (15.0)0.9 (9.1)−3.4 (9.4)0.0 (0.3)Cumulative

aHR: heart rate.
bHRV: heart rate variability.
cQRS: QRS duration.
dQTc: correct QT interval.

Similarly, this study did not investigate strain during use, which
has the potential to modulate physiologic state in a similar
fashion as the Valsalva maneuver. Future studies will investigate
both the robustness of ECG measures during strain as well as
the potential to detect cardiovascular shifts during strain that
may have clinical value. Finally, the algorithms presented herein
were only tested on ECG signals. To demonstrate broader
applicability, future work will investigate the ability of the
proposed approach to improve the performance of measurements
captured with other signals such as the photoplethysmogram,
which is commonly used in commercially available wearable
technologies.

Despite these limitations, the results from this study lay the
foundation for future studies on the clinical impact of the toilet
seat measures, by having successfully demonstrated the accurate
extraction of key cardiac intervals and parameters from the
bECG as compared with a clinical gold-standard on both
normative and HF populations. Since confidence in the form
factor and measurements have been achieved, an in-home
observation study and a subsequent intervention-based study
can be executed. The initial in-home observational study will
utilize daily HR, HRV, QT, and QRS measurements to create
an alert-based system for HF patients. In the subsequent
intervention study, cardiologists will be given the option to
change medications or request a visit to the clinic based on
automated alerts generated from seat data. This study will
quantitatively determine how decision-making is affected
through the enhanced monitoring capabilities of the seat, as

well as how outcome events are impacted, such as
hospitalization and the quantity of unnecessary procedures.

Broad Impact
In addition to directly enabling the fully integrated toilet seat,
the present algorithms have applicability to wearable and
internet-connected in-home medical devices that generate a
large amount of data and are used in an uncontrolled
environment, where optimal sensor placement and consistent
signal integrity cannot be guaranteed. The algorithms from this
study are not computationally complex and have the potential
to be executed by the on-board processors present in many
wearable devices with minor modifications. By combining
signal quality classification, accurate delineation, and robust
ensemble averaging, new applications can be realized, such as
cuffless blood pressure and noninvasive cardiac output
monitoring. Utilizing this approach, additional sensors and
measurements can be integrated into wearable and connected
devices, creating novel comprehensive remote cardiovascular
monitoring systems. Such devices have the potential to fill a
gap in patient monitoring by capturing trend data that has been
previously unattainable, through daily measurements and
ensured compliance requiring no change in habit. This will
enable new approaches and capabilities in the diagnosis and
treatment of cardiovascular disease, including those with HF
and hypertension. Through the successful development,
deployment, and integration with clinical practice, wearable
and connected medical devices that monitor clinically relevant
measures can facilitate the transition from a reactive- to
proactive-based approach to health care.
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bECG: buttocks electrocardiogram
ECG: electrocardiogram
EDB: European ST-T database
FN: false negative
FP: false positive
HF: heart failure
HR: heart rate
HRV: heart rate variability
MIT-BIH: Massachusetts Institute of Technology - Beth Israel Hospital
MITDB: MIT-BIH database
PPV: positive predictive value
PT: Pan–Tompkins
QTc: corrected QT interval
RMS: root mean square
Se: sensitivity
SQI: signal quality index
TP: true positive
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