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Abstract

Background: Evidence that physical activity can curb smoking urges is limited in scope to acute effects and largely reliant on
retrospective self-reported measures. Mobile health technologies offer novel mechanisms for capturing real-time data of behaviors
in the natural environment.

Objective: This study aimed to explore this in a real-world longitudinal setting by leveraging mobile health tools to assess the
association between objectively measured physical activity and concurrent smoking urges in a 12-week prospective observational
study.

Methods: We enrolled 60 active smokers (≥3 cigarettes per day) and recorded baseline demographics, physical activity, and
smoking behaviors using a Web-based questionnaire. Step counts were measured continuously using the Fitbit Charge HR.
Participants reported instantaneous smoking urges via text message using a Likert scale ranging from 1 to 9. On study completion,
participants reported follow-up smoking behaviors in an online exit survey.

Results: A total of 53 participants (aged 40 [SD 12] years, 57% [30/53] women, 49% [26/53] nonwhite) recorded at least 6
weeks of data and were thus included in the analysis. We recorded 15,365 urge messages throughout the study, with a mean of
290 (SD 62) messages per participant. Mean urge over the course of the study was positively associated with daily cigarette

consumption at follow-up (Pearson r=.33; P=.02). No association existed between daily steps and mean daily urge (beta=−6.95×10−3

per 1000 steps; P=.30). Regression models of acute effects, however, did reveal modest inverse associations between steps within
30-, 60-, and 120-min time windows of a reported urge (beta=−.0191 per 100 steps, P<.001). Moreover, 6 individuals (approximately
10% of the study population) exhibited a stronger and consistent inverse association between steps and urge at both the day level
(mean individualized beta=−.153 per 1000 steps) and 30-min level (mean individualized beta=−1.66 per 1000 steps).

Conclusions: Although there was no association between objectively measured daily physical activity and concurrently
self-reported smoking urges, there was a modest inverse relationship between recent step counts (30-120 min) and urge.
Approximately 10% of the individuals appeared to have a stronger and consistent inverse association between physical activity
and urge, a provocative finding warranting further study.
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Introduction

Smoking is the leading cause of preventable death in the world
[1]. Although public health campaigns, antismoking laws, and
new pharmacotherapies have successfully reduced smoking
rates [2], further progress has proven difficult due, in part, to
the complex psychosocial nature of tobacco addiction [3].
Although many smokers wish to quit smoking because of
knowledge of its harmful effects [4], self-quitting initiatives
have shown largely unsuccessful outcomes [5], suggesting that
interventions are necessary to assist smokers in cessation. To
that end, counseling and pharmacotherapy (ie, nicotine
replacement, bupropion, and varenicline) are established
smoking cessation interventions, but not effective in most
individuals. Although nicotine replacement therapies have been
shown to boost smoking cessation efforts twofold compared
with placebo [6], 70% to 80% of smokers who use these
therapies relapse [7].

Physical activity (PA) has been proposed as an aid for smoking
cessation [8] and as a means for harm reduction among smokers
who do not wish to quit [9]. A 2014 review that examined 20
trials assessing exercise as an aid for smoking cessation found
the evidence for such a recommendation to be insufficient [10].
However, this review presents evidence that exercise may be
an effective means for reducing tobacco cravings among
smokers who are not presently motivated to quit [10], thereby
suggesting exercise as a mediator of harm reduction. A 2014
pilot randomized trial—Exercise Assisted Reduction then Stop
(EARS)—found that PA coupled with support for smoking
reduction was effective in promoting reduction and cessation
among smokers who did not wish to quit immediately [11]. A
subsequent study examining data from the EARS trial provided
further evidence for the role of PA on smoking reduction but
did not find that this association was related to an increase in
PA [9]. Rather, evidence suggests that the act of self-monitoring
PA [12] and smoking behaviors may improve self-regulation
[13] and thus decrease smoking [14] and likelihood of relapse
[15] by reinforcing the notion of PA as an aid for smoking
reduction [11].

Previous interventional studies have suggested that acute
exercise decreases smoking urges [16-22], with activities of
medium-long duration and moderate-vigorous intensity
displaying the most substantial effects [18]. A systematic review
and meta-analysis of individual-level data from 17 trials reported
that PA acutely reduces cigarette craving [23]. Using a 2-stage
independent participant data meta-analysis, this study assessed
the effects of PA on desire to smoke as measured by a 7-point
Likert scale and found an average standardized mean difference
(SMD) of −2.03 (95% CI −2.60 to −1.46) between PA and
control conditions [23]. However, these studies may be limited
in clinical applicability because of experimental design and
scope of measurement. Regarding the former, most acute studies

have involved moderate to heavy smokers, where smoking urges
were manipulated by periods of imposed smoking abstinence.
These measures were taken to reduce the likelihood of a flooring
effect: if participants had been allowed to smoke before these
experimental trials, cravings and withdrawal symptoms might
have been reduced to none, allowing for no further reduction
as a result of exercise. Despite this important consideration,
these experimental conditions were not reflective of the
everyday circumstances that contribute to the complex
manifestation of smoking urges in the natural environment.

Regarding the scope of measurement, these studies only assessed
acute effects of exercise on smoking urges, leaving uncertainty
around the longitudinal association. Several studies exploring
longer-term associations between PA and smoking behaviors
[24-30] showed that exercise improved follow-up abstinence
rates [24,26,27], increased time until next cigarette [30], led to
reductions in smoking and cravings [25,29], and was associated
with lower smoking intensity and reduced likelihood of smoking
[28]. However, both smoking behaviors and PA measures in
these studies were primarily obtained through self-assessment
and recall, thus rendering these data susceptible to bias [31,32].

Further studies with improved methodological rigor are needed
to address the aforementioned limitations in both acute and
longitudinal analyses of PA and smoking behavior [23]. To that
end, mobile health (mHealth) technologies have the potential
to allow continuous, accurate, and patient-friendly monitoring
of health data, including subjective and objective behavioral
information [33]. These technologies are especially practical
for ecological momentary assessment (EMA) research, designed
to sample subjects’ real-time behaviors and experiences in the
natural environment and minimize recall bias [34]. Importantly,
use of mHealth also brings the potential to address health equity,
given the rapidly increasing use of mHealth technologies in
low-income individuals [35]. Several studies have validated the
utility of activity trackers [36] and text messaging [37] for the
measurement of PA and smoking urges, respectively. These
technologies have also proven successful in behavioral
interventions: leveraging activity tracking and text messaging
to promote increased PA [38] or using personalized text
messages to enhance smoking cessation [39]. Using both these
mHealth tools in the natural environment of individuals who
are active smokers, we aimed to assess the real-time association
between objectively measured PA and concurrently reported
smoking urges by examining the relationship between daily
steps and mean daily urges. Secondarily, we sought to examine
the acute associations of steps and urges in varying short-term
time windows and to assess changes in smoking and PA
behaviors over time in association with self-monitoring.
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Methods

Study Design
For this longitudinal study spanning 12 weeks, the Fitbit Charge
HR—a wrist-worn triaxial digital accelerometer with a built-in
optical heart rate (HR) monitor that allows for continuous
monitoring of activity throughout the day—and
smartphone-based short message service (SMS) text messaging
were used for data collection. SMS text messaging was also
used for participant monitoring; after a face-to-face enrollment
visit with the study coordinator, communication occurred via
text messages to answer questions, troubleshoot, and send
reminders to address nonadherence with the study protocol.
Participants who had gaps in their data (ie, missing days of data
capture) by the end of 12 weeks were asked if they would
voluntarily prolong the duration of their participation to ensure
complete data capture.

Recruitment
We recruited 60 participants from April 7 to September 2, 2016,
using several modalities, including on-site advertisements, social
media, and physician referral. Before enrollment, participants
were screened for eligibility via email and met in-person with
a study coordinator to review the consent form and study
information. To satisfy inclusion criteria, participants were
required to be aged 18 years or older, smoke at least 3 cigarettes
per day on average, and own a smartphone. Participants were
excluded from enrollment if they were prohibited from normal
PA for previously diagnosed health reasons. Face-to-face visits
were not required after enrollment.

Baseline Data Collection
During the in-person meeting with the study coordinator,
participants completed an online enrollment questionnaire to
record baseline demographic characteristics, PA, and smoking
behavior. Baseline PA was assessed using the short form of the
International Physical Activity Questionnaire (IPAQ)—a 9-item
questionnaire assessing time spent walking, in vigorous- and
moderate-intensity activity, and in sedentary activity over a
7-day period [40]. Baseline smoking behavior was obtained
using the Arizona Smoking Assessment Questionnaire
(ASAQ)—a 27-item questionnaire that assesses past and present
tobacco use by recording different types of exposure, quit
attempts, and age of smoking onset [41]. In a sample of 600
participants, the ASAQ showed that the number of daily
cigarettes and portion of cigarette smoked were significantly
predictive of plasma cotinine levels (P<.001) [41].

Measurement and Monitoring of Physical Activity
PA was measured in steps over at least 6 weeks using the Fitbit
Charge HR. During the in-person interview with the study
coordinator, participants were guided through on-screen
instructions for setup. The study coordinator emphasized that
participants were expected to wear the device throughout the
day, including during exercise; device removal was only advised
for swimming or showering, and wearing it to sleep was
optional.

Data flowed from the Fitbit device through the smartphone to
encrypted Fitbit servers, which stored minute-level data up to
7 days and day-level data for up to 30 days. Fitbit data for all
study participants were compiled in Fitabase—a research
platform that collects real-time data from activity-tracking
devices and stores it in high-security data centers. Fitabase has
been used in more than 200 studies as a data analytics platform
for Fitbit devices [42]. Fitabase stores data at various levels of
granularity—from second-level to day-level—and allows for
data export in individualized or batch formats. At the conclusion
of the data collection phase, all participant data were
downloaded from the Fitabase server and exported as comma
separated values (CSV) files, where it was organized and
uploaded into Stata (version 14.2; StataCorp, College Station,
TX, USA) for analysis.

Fitabase’s live device monitoring feature also allowed for
monitoring participants in real-time by reporting syncing
activity, battery life, and activity data on a single project
dashboard. With access to real-time surveillance, investigators
were able to monitor nonadherence, such as delayed syncing
activity or failure to wear the device, which was addressed
through a series of reminder text messages, emails, and phone
calls.

Measurement of Smoking Urges
Time-stamped smoking urges were quantified via SMS text
messages sent by participants. Recurring automatic text message
reminders were scheduled for delivery 3 to 4 times per day using
an automated messaging service (Boomerang, Baydin Inc,
Mountain View, CA, USA). Prompting was used to promote
study engagement—an evidence-based strategy that has been
shown to improve participant engagement with digital
interventions compared with no strategy [43]. Timing of text
messages was customized based on participant preference. Each
text contained an identical message, asking participants to
express their instantaneous urge for smoking on a 9-point Likert
scale—a previously validated measure of self-reported craving
[44,45] consistent with EMA data sampling methods [34]. Low
urge was indicated by a value of 1. Participants were permitted
and encouraged to send as many text messages as possible, with
or without prompting, but were asked to send a minimum of 3
messages per day. Participants also received weekly recurring
messages that included brief instructions and reminders to sync
their Fitbit devices. Additional reminder messages were
scheduled for participants who displayed consistent patterns of
nonadherence.

Follow-Up Data Collection
At the conclusion of the study, participants were asked to
complete an online exit survey to provide their perceptions
about the associations between PA and smoking urges and
behavior. The IPAQ-short form and ASAQ were readministered
in the exit survey, allowing for a comparison of these measures
between baseline and follow-up.

Statistical Analyses
We estimated that a sample size of 50 participants each
contributing at least 20 days of complete data capture and
accounting for intraindividual correlation of the repeated data
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measurement would yield 90% power to detect a correlation of
.12 between steps per day and mean reported smoking urges
per day.

Baseline characteristics were summarized using descriptive
statistics—frequency (percentage) for categorical data, and
mean (SD) and median (interquartile range) for continuous data.
Follow-up data were summarized in an identical manner and
compared with baseline characteristics for variables of interest.
Trends in mean daily urge and daily steps between baseline and
follow-up were also examined categorically. To do so, a
midpoint was calculated for each participant, which represented
the day at which study participation was 50% complete. Mean
daily urge and mean daily steps were calculated before and after
this midpoint for each participant. This categorization allowed
for broad changes in these 2 measures to be assessed between
the first and second halves of the study. Furthermore, this
grouping allowed for mean daily steps and mean daily urge to
be included in comparisons of other baseline and follow-up
measures, such as self-reported PA and smoking behavior.
Outliers were defined as values 1.5 times the interquartile range
above the upper quartile or below the lower quartile.

A series of protocols were developed to distinguish between
wear and nonwear time. Because participants were not required
to wear their devices to sleep, we targeted the time window of
10:00 AM to 10:00 PM in determining wear time. We
determined HR data to be the most reliable predictor of wear
time, as the Fitbit Charge HR is designed to record HR data at
1-s intervals during exercise and at 5-s intervals all other times
[46]. Thus, we interpreted the presence of HR data as evidence
of wear time. Drawing from prior literature on determining wear
time criteria [47], we defined nonwear time as 90 consecutive
minutes of missing HR data. Days that included 2 or more of
these 90-min consecutive nonwear windows were excluded
from day-level analysis. These criteria were implemented to
avoid imposing arbitrary cutoffs on our determination of data
validity. Days in which total wear time was less than 6 hours
within our target time window were also excluded. At least 6
total weeks of recorded data were required for participants to
be included in the analysis.

Change in daily cigarette consumption was defined as the
difference between the number of cigarettes smoked per day at
baseline and follow-up as reported by participants in the
enrollment and exit surveys, respectively. In addition, linear
regression models were run to assess the change in daily steps
and daily urge over time, as measured by the beta coefficients
in the regression models. To assess the acute effects of PA,
prespecified analyses were performed to assess minute-level
associations between steps and urge within 5-, 30-, 60-, and
120-min time windows before urge reporting. These time
windows were informed by results from prior studies, which
found that acute bouts of low-intensity exercise reduced smoking
urges for anywhere from 20 min [48] to 50 min [30]
postexercise. The 120-min time window was included to assess
whether and to what extent this effect might be prolonged after
an acute bout of PA.

Structurally, the data contained both longitudinal and
cross-sectional dimensions and can thus be best classified as

panel data [49]. Feasible generalized least squares (FGLS)
regression models were used to analyze the relationship between
mean urge per day (dependent variable) and daily steps
(independent variable). This procedure is recommended for
panel data that are unbalanced or unequally spaced [50], and
appropriate when the number of time points (T) exceeds the
number of cross-sections (N) [51]—both of which are
characteristic of our data. Furthermore, this model allowed us
to correct for heteroscedasticity—unequal variance of the
dependent variable across a range of values of an independent
variable—which can lead to inefficient parameter estimates and
faulty inferences [52].

Analyses were performed to explore interactions by age, sex,
baseline PA and smoking levels, race/ethnicity, and intention
to quit during the study period. For these analyses, binary
definitions of demographic variables were used based on the
following cutoffs: age ≥40 years, cigarettes per day ≥10 for
baseline smoking level, high activity or not for IPAQ-measured
baseline PA, white/nonwhite for race/ethnicity, and yes/no for
intention to quit during the study period. Given the sample size,
a P value of .10 or less was considered evidence of interaction.
Furthermore, exploratory subgroup analyses were performed
to examine heterogeneity in individuals, allowing for the
identification of certain participants that showed a consistently
strong association between steps and urge. This approach was
used in an effort to account for individual variability in
outcomes, consistent with the focus of the precision medicine
initiative (PMI) [53]. To explore heterogeneity in individuals,
linear regression models were run to calculate the association
between daily steps and mean daily urge for each participant.
Point estimates and CIs were analyzed for each participant,
allowing us to determine which particular individuals exhibited
strong associations between daily steps and mean daily urge.

Results

Participant and Data Flow
The study flow diagram is shown in Figure 1. A total of 53
participants recorded data for at least 6 weeks and were thus
included in the analysis. Of 53 participants, 49 participants
completed the online exit survey at the conclusion of the study,
and 4 participants were lost to follow-up.

Baseline Characteristics
Mean age was 40 (SD 12) years, with 57% (30/53) women and
49% (26/53) nonwhite participants. Moreover, 30% (16/53) had
a Bachelor’s degree or higher and 38% (20/53) were obese,
whereas 53% (28/53) were in the high activity category as
defined by IPAQ assessment. Participants smoked 12 (SD 8)
cigarettes per day and had been smokers for 19 (SD 12) years
(Table 1).

Data Capture
In total, participants recorded 4445 complete days of data, with
a mean of 84 (SD 12) days per participant; 866 days were
eliminated from analysis based on nonwear criteria. A total of
3579 of all days (81%) were eligible for analysis after applying
exclusion criteria. Participants sent a total of 15,365 urge
messages throughout the study, with a mean of 290 (SD 62)
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messages per participant. The majority (approximately 80%)
of urge messages sent by participants were prompted.

Men reported modestly higher mean urges than women: 5.56
(95% CI 5.50-5.62) versus 5.19 (95% CI 5.13-5.24),
respectively. Men also recorded significantly higher mean daily
steps than women by 2994 (95% CI 2693-3294; P<.001).

Figure 1. Participant flow.

Urge Validation
Participants’ mean urge over the course of the study was
positively associated with the number of cigarettes smoked per
day as reported in the exit survey (Pearson r=.33, P=.02).
Furthermore, mean urge over the last week of each participant’s
study duration was significantly correlated with daily cigarette
consumption (r=.37; P=.01).

Association Between Steps and Urge: Day-Level and
Acute
Considering the day-level association, as shown in Figure 2,
there was a wide range of PA levels and a full representation
of urges, without clear relation between them. In formal
quantitative assessment, we found no significant association

between daily steps and mean daily urge (beta=−6.95×10−3 per
1000 steps; P=.30). In an adjusted model controlling for age,
sex, baseline PA and smoking levels, and race/ethnicity, our
primary outcome between daily steps and mean daily urge

remained null (beta=−1.18×10−2 per 1000 steps; P=.11).

Regression models of acute effects, however, did reveal modest
inverse associations between steps within 30-, 60-, and 120-min
time windows of a reported urge, which were all significant at
the P<.01 level (Table 2). The strongest association was
observed for 30 min of accumulated steps before an urge, with
a 0.0191 lower urge per 100 steps accumulated in this time.
This translated to an approximately 0.2 lower urge for 1000
steps accumulated over 30 min. The estimate for the effect was

reduced by approximately 50% for the 1-hour time frame and
another approximately 50% for the 2-hour time frame.

Exploratory Subgroup Analyses
For the interaction of steps per day with demographic factors,
P values for interaction were as follows: .73 for age; .10 for sex

(significant inverse relationship in men only, beta=−2.65×10−2

per 1000 steps, 95% CI −4.36×10−2 to −9.27×10−3); .45 for
race/ethnicity; <.01 for baseline PA (significant inverse

relationship in high-activity participants, beta=−3.14×10−2 per

1000 steps, 95% CI −5.0×10−2 to −1.28×10−2; significant
positive relationship in non-high-activity participants,

beta=3.45×10−2 per 1000 steps, 95% CI 1.58×10−2 to 5.32×10−2);
.71 for baseline smoking level; and <.01 for intention to quit
(significant inverse relationship for yes respondents only,

beta=−3.5×10−2 per 1000 steps, 95% CI −5.6×10−2 to

−1.5×10−2).

One participant exhibited a consistent positive association
between steps and urge, whereas a subset of 6 participants (11%)
exhibited a consistent inverse relationship between steps and
urge. At the day-level, these so-called extreme responders to
PA exhibited a mean individualized point estimate of −0.15
decrease in urge per 1000 steps (95% CI −0.22 to −0.09; Figure
3). In the analysis assessing the relationship between steps and
urge in the 30-min time window preceding an urge, these
individuals showed a mean individualized point estimate of
−1.66 decrease in urge per 1000 steps (95% CI −2.48 to −0.84).
In addition, data from the 30-min window before an urge for
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these 6 individuals were stratified around a step cutoff of 500
(Figure 4); episodes in which 500 or fewer steps were taken had
a mean urge of 6.22 (95% CI 5.90-6.54), whereas episodes in
which more than 500 steps were taken had a mean urge of 4.80

(95% CI 4.55-5.05). Acute inverse associations between steps
and urge were largely driven by these 6 individuals, and results
became null on excluding them from the analysis.

Table 1. Baseline characteristics of mActive-Smoke participants.

mActive-Smoke Participants (N=53)Characteristic

Sex, n (%)

23 (43)Men

30 (57)Women

27 (51)White race, n (%)

40 (12)Age in years, mean (SD)

15 (28)Married, n (%)

Education, n (%)

8 (15)HSa diploma or less, including general education diploma (GED)

29 (55)Associate’s degree/some college credit

16 (30)Bachelor’s degree or higher

43 (81)Employed, n (%)

29 (6)BMIb (kg/m2), mean (SD)

20 (38)≥30, n (%)

IPAQc, n (%)

6 (11)Low

19 (36)Moderate

28 (53)High

6.8 (3.3)Sedentary hours on a weekday, mean (SD)

Cigarettes smoked per day, n (%)

34 (64)≤10

19 (36)>10

18 (5)Age started smoking, mean (SD)

19 (12)Years as a smoker, mean (SD)

14 (12)Pack-yearsd, mean (SD)

Type of recruitment, n (%)

30 (56)On-site advertisement

20 (38)Social media

3 (6)Physician referral

aHS: high school.
bBMI: body mass index.
cCategories defined by International Physical Activity Questionnaire (IPAQ) guidelines.
dDefined as (mean cigarettes per day/20) × number of years as a smoker.
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Figure 2. Mean urge per day plotted against daily steps, after applying exclusion criteria and omitting outliers.

Table 2. Feasible generalized least squares regression results of smoking urge versus steps over various time windows before urge reports.

95% CI (per 100 steps)P valueAssociation of urge with steps
(beta coefficient, per 100 steps)

Steps accumulated within various time windows of urge reporting

−0.0284 to −0.0098<.001−0.019130 min before

−0.0147 to −0.0031.003−0.0089160 min before

−0.00851 to −0.00138.007−0.00495120 min before

Figure 3. Mean urge per day plotted against daily steps for the 6 “extreme responders,” after applying exclusion criteria and omitting outliers.
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Figure 4. Boxplot of urge for the 6 “extreme responders,” stratified by episodes in which ≤500 or >500 steps were taken in the 30-min time window
before an urge report.

Figure 5. Change in cigarettes per day between baseline and follow-up.

Changes in Measures Over the Course of the Study
Longitudinal trends in PA, smoking urges, and self-reported
cigarette consumption between baseline and follow-up were
examined to assess these behavior changes in the context of
self-monitoring. After excluding outliers, participants’ mean
daily urge increased by 0.10 (SD 0.82), whereas mean daily
steps decreased by −82 (SD 1019); neither of these results was
statistically significant. Self-reported number of cigarettes
smoked per day significantly decreased from 12 (SD 8) at
baseline to 9 (SD 8) at follow-up (Figure 5). Four participants
quit smoking by the end of the study.

Exit Survey Perceptions
Participants’ exit survey responses are summarized in Table 3.
The majority of participants (68%) thought that PA influenced
their smoking urges; among these, 76% believed that PA
decreased their smoking urges. Fewer participants (37%) thought
that higher smoking urges influenced their PA; among these,
61% believed that higher smoking urges decreased their PA.
Just over half (59%) of participants thought the study helped
them reduce smoking; among these, 79% reported decreases in
cigarettes per day between enrollment and follow-up.

Finally, participants reported high levels of satisfaction with
the study. Among exit survey respondents, the majority (67%)
were extremely satisfied, and an additional 27% were
moderately satisfied with the study.

JMIR Mhealth Uhealth 2018 | vol. 6 | iss. 5 | e121 | p. 8http://mhealth.jmir.org/2018/5/e121/
(page number not for citation purposes)

Silverman-Lloyd et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Results from follow-up online exit survey.

mActive-Smoke participants (N=49), n (%)Characteristic

IPAQa

6 (12)Low

17 (35)Moderate

26 (53)High

Cigarettes smoked per day

4 (8)0

32 (65)1-10

13 (27)>10

During the past 3 months, have you tried to stop smoking?

24 (49)Yes

25 (51)No

Does physical activity influence your smoking urges?

33 (68)Yes

10 (20)No

6 (12)Maybe

How does physical activity influence your smoking urges?

8 (16)Increases the urge

25 (51)Decreases the urge

16 (33)No response

Did wearing the Fitbit increase your awareness about daily physical activity?

48 (98)Yes

1 (2)No

Do you think this study helped increase your daily physical activity?

40 (82)Yes

3 (6)No

6 (12)Maybe

Did this study increase your awareness about smoking urges?

44 (90)Yes

1 (2)No

4 (8)Maybe

Do you think this study helped you reduce smoking?

29 (59)Yes

12 (25)No

8 (16)Maybe

aIPAQ: International Physical Activity Questionnaire.

Discussion

Principal Findings
In the mActive-Smoke study, we found no day-level association
between PA and smoking urges in the overall population, yet
minute-level analyses of acute effects revealed modest inverse
relationships between steps and urge for 30-, 60-, and 120-min
time windows before urge reporting. There was also a small

group of extreme responders who exhibited a more consistent
and larger inverse relationship between steps and urge in both
day- and minute-level analyses. Nevertheless, it is important to
emphasize that analysis of extreme responders is highly
exploratory and limited by a small sample size and not knowing
times of prior smoking episodes.
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Comparison With Prior Work
This study was the first to leverage mHealth devices to evaluate
the real-time association between PA and smoking urges in a
longitudinal study of smokers in their natural environment. This
study builds on prior literature leveraging digital technologies
and EMA methods to collect real-world and real-time data on
smoking behaviors [54-56]. Methodologically, this study sought
to address limitations from prior studies exploring the
relationship between smoking and PA under controlled
conditions and with unreliable measurement tools. Regarding
the former, a 2013 systematic review and meta-analysis
concluded that short bouts of PA acutely decrease cigarette
cravings by an average SMD of −2.03 between PA and control
conditions [23]. Results from our 30-min level analysis were
most comparable with those reported in this review, where PA
interventions ranged in duration from 5 to 40 min. Despite the
large effect size reported in this review, these results may be
limited in generalizability because of study conditions. By
conducting interventions in a controlled environment, behaviors
observed in these studies were likely unrepresentative of those
that might be observed in a real-world setting. Furthermore,
these studies were limited to acute effects of PA on smoking
urges, providing no evidence for how this interaction might
play out in the long term. In the mActive-Smoke study, the use
of Fitbit—an accurate and reliable wearable PA tracker
[57]—allowed us to collect longitudinal PA data in participants’
natural settings in an effort to better capture real-world
behaviors. Although the direction of our effect size was
concordant with that reported in this review, its magnitude was
far lower (approximately 0.2 reduction in urge on a 9-point
Likert scale per 1000 steps). This discrepancy could be due, in
part, to the lack of control over when the last cigarette was
smoked before a bout of PA—a measure commonly
implemented in prior experimental studies. Thus, it is possible
that the decreased magnitude of association in the
mActive-Smoke study resulted from a “flooring effect,” wherein
a smoking episode in close proximity with urge reporting could
significantly reduce the acute urge to smoke, leaving minimal
room for subsequent changes in urge as a result of PA. On the
other hand, the magnitude of our effect size may suggest that
the effect of PA on urge may be less robust in a real-world,
longitudinal setting.

Another batch of studies examined more longitudinal
relationships between PA and smoking urges but relied on
participant recall for data collection. For instance, Abrantes et
al [27] conducted an exercise intervention study in which
participants self-reported exercise in weekly activity logs.
Prapavessis et al [26] also designed an exercise-intervention
smoking cessation trial in which participants self-reported
cigarette consumption on a weekly basis. As such, both studies
were limited by subjective measurement tools, and their results
were likely compromised by recall bias [31]—a major threat to
the internal validity of studies using self-reported data [58,59].
In the mActive-Smoke study, use of Fitbit devices facilitated
the objective collection of PA data, mitigating participant bias.
Although smoking urges in our study were self-reported, the
real-time nature of these measures likely rendered them less

susceptible to recall bias compared with studies that relied on
weeklong retrospective recall.

The design of the mActive-Smoke study allowed us to assess
the association between PA and smoking behavior using
approaches ranging from global to more granular. First, using
a global approach, we analyzed daily steps and mean daily urge,
allowing for a day-level comparison of these 2 measures. In
addition to evaluating broad associations, secondary analyses
were performed to explore more granular associations within
hour and minute time intervals preceding urge reports, which
allowed us to assess whether increased PA might acutely affect
smoking urges. The presence of an inverse association between
steps and urge in various granular time windows confirms
findings from prior acute studies and extends them by suggesting
that this effect may be particularly present in approximately
10% of individuals. Importantly, each of our analyses was
performed in the participant’s natural environment, rather than
a controlled research setting.

This study also highlights the potential benefits of integrating
mHealth tools in the collection and assessment of behavioral
data in translational research. Previous studies have suggested
that mobile phone–based approaches are efficacious,
user-friendly means for communicating with participants,
providing instructions and modifying behaviors [60]. In addition
to their practical utility, mHealth technology may also be
leveraged to promote health equity. A 2016 survey by the Pew
Research Center found that 92% of low-income adults own a
cell phone and 64% own a smartphone [61]—a 14% increase
since 2014 [35]. Among this demographic, one-fifth (21%) is
smartphone dependent [61]—they rely heavily on their
smartphones for Internet access and lack traditional broadband
service in the home—and 63% report having used their
smartphone to retrieve information about a health condition
[35]. Thus, mHealth technology may provide a promising means
of disseminating information and engaging members of these
communities to make more health-conscious decisions [62].

Furthermore, the prevalence and frequency of mHealth use have
been shown to be high among smokers, particularly those who
are motivated to quit [63]. In the mActive-Smoke study, 98%
of participants reported that wearing the Fitbit increased their
awareness of daily PA, and 90% thought that the study increased
their awareness about smoking urges. These findings strengthen
the evidence behind self-monitoring and awareness on behavior
change. Taylor et al [11] showed that the self-monitoring of
smoking and PA behaviors led to reductions in smoking, which
were determined to be independent of increases in PA [9]. In
the mActive-Smoke study, no meaningful longitudinal changes
were observed in PA or smoking urges, although daily cigarette
consumption decreased by approximately 3 cigarettes per day
between baseline and follow-up (P<.001). Given that this study
was not focused on smoking reduction or cessation, these
findings support the notion that greater self-awareness may lead
to changes in smoking [9,11]. Taken together, this evidence
suggests integration of mHealth devices in future smoking
cessation and harm reduction trials in an effort to improve
participant engagement and achieve desired behavioral
outcomes.
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Finally, this study offers provocative results when considering
individual versus population-averaged effects that may inform
precision medicine. Although population-averaged results were
collectively null, 7 individuals—13% of our study
population—showed a significant relationship between urge
and steps in both day- and minute-level analyses. Among these
extreme responders, 6 (11% of our study population) exhibited
a consistently inverse association. Although these results are
exploratory and hypothesis generating in nature, they suggest
that PA could be targeted as a means to curb smoking urges
among select individuals, an insight consistent with the PMI’s
focus on individual variability in genes, environments, and
lifestyles [64]. Further research is needed to determine whether
equally robust inverse relationships between steps and urge
could be replicated among these select individuals in an
interventional study, which might help illuminate the underlying
genetic, environmental, and lifestyle factors associated with
these behaviors.

Limitations
Although each participant contributed large quantities of
individual data, the small number of participants in this pilot
study may have limited our power to perform stratified analyses
according to age, sex, and race. In addition, we did not collect
data on daily cigarette consumption or on time since last
cigarette because burdening participants with additional text
messages may have reduced overall study adherence. These
data, however, would have provided additional insight into the
relationship between daily steps and mean daily urge by
allowing us to assess an additional daily measure of smoking
behavior. Furthermore, our failure to capture time since last
cigarette may have resulted in a flooring effect, reducing our
ability to measure the impact of PA on smoking urges because
of the potential confounding effect of recent smoking episodes.

Although we were unable to control for time since last cigarette,
we found a significant positive correlation between participants’
daily cigarette consumption in the exit survey and their mean
urge over the course of the study, suggesting that these
self-reported urges were valid indicators of smoking behavior.
However, by allowing participants to report urges spontaneously
and to dictate when they received the prompting messages, it
is possible that some reporting bias was present.

In both primary and secondary analyses assessing the
relationship between steps and urges, we did not control for
intensity of exercise. In their 2014 meta-analysis [18], Haasova
et al found that moderate and vigorous intensity exercise had

the most benefits for reducing smoking cravings, although
modest reductions were also reported for light exercise. Without
controlling for exercise intensity in this study, the effect size
seen in our secondary analyses may have been diluted by
individuals with largely accumulated step counts made up of
periods of low-intensity exercise. Although controlling for
exercise intensity was outside the scope of this paper, we
anticipate assessing its impact on urges in a future study.

For our primary and secondary analyses of steps versus urge,
we chose to use FGLS because of the structure of data wherein
the number of time points (T) exceeded the number of
cross-sections (N). One limitation of this model was an inability
to control for autocorrelation effects because of unbalanced
panels in our dataset. Nonetheless, assessment of additional
models, such as linear random effects, revealed no meaningful
difference in effect size after controlling for autocorrelation.
Another limitation is that FGLS, which originated in
econometrics, has since been replaced by more modern methods
in this field because it has been shown to produce inefficient
estimates for data structures commonly seen in econometrics
where N>T [51,65,66].

Finally, the sample of smokers in this study was very active,
given that smokers tend to be considerably less active, on
average, than the general population. Thus, it is possible that a
ceiling effect was observed, wherein high levels of baseline PA
limited participants’ abilities to further augment their PA during
the study. Furthermore, our sample contained less heavy
smokers compared with most prior studies, which generally
used a minimum of 10 cigarettes per day as the threshold for
study inclusion. Thus, results from this study ought to be
interpreted with caution because of deviations in smoker
demographics observed in our sample.

Conclusions
Given the lack of a population-averaged longitudinal real-time
association between PA and smoking urges, our results do not
support broadly focusing resources on PA as a means to reduce
smoking urges. Our data confirm results from prior studies,
supporting the notion that acute bouts of PA can modestly curb
smoking urges. This study also suggests that PA may
significantly influence smoking urges among select individuals,
an insight that aligns with the precision medicine model to focus
on individual variability in health behaviors and outcomes.
Furthermore, this study highlights the potential value of mHealth
methods for assessing the interrelationships of cardiovascular
health behaviors in the real world.
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FGLS: feasible generalized least squares
HR: heart rate
IPAQ: International Physical Activity Questionnaire
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PA: physical activity

JMIR Mhealth Uhealth 2018 | vol. 6 | iss. 5 | e121 | p. 14http://mhealth.jmir.org/2018/5/e121/
(page number not for citation purposes)

Silverman-Lloyd et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1007/s00213-009-1742-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20033133&dopt=Abstract
https://staticcs.fitbit.com/content/assets/help/manuals/manual_charge_hr_en_US.pdf
https://staticcs.fitbit.com/content/assets/help/manuals/manual_charge_hr_en_US.pdf
http://www.webcitation.org/

                                            6tm2GgEBP
http://dx.doi.org/10.1093/gerona/glw026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26957472&dopt=Abstract
http://dx.doi.org/10.1007/s00213-005-2216-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15844010&dopt=Abstract
http://www.jstor.org/stable/3533276
http://dx.doi.org/10.2307/2082979
http://dx.doi.org/10.2307/1912934
http://dx.doi.org/10.1056/NEJMp1500523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25635347&dopt=Abstract
http://dx.doi.org/10.3109/10826084.2011.521399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21190409&dopt=Abstract
http://www.researchprotocols.org/2015/2/e76/
http://dx.doi.org/10.2196/resprot.4408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26109369&dopt=Abstract
http://www.jmir.org/2016/12/e321/
http://dx.doi.org/10.2196/jmir.6058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27956375&dopt=Abstract
http://dx.doi.org/10.1016/j.ijcard.2015.03.038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25795203&dopt=Abstract
http://dx.doi.org/10.5580/2732
http://dx.doi.org/10.1037/1040-3590.6.2.92
http://dx.doi.org/10.1093/ehjqcco/qcw018
http://www.pewinternet.org/fact-sheet/mobile/
http://www.webcitation.org/

                                            6tqbccjFw
http://www.webcitation.org/

                                            6tqbccjFw
https://ssir.org/articles/entry/illuminating_the_health_equity_challenge
http://www.webcitation.org/

                                            6toe4rss6
http://www.jmir.org/2015/7/e164/
http://dx.doi.org/10.2196/jmir.4420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26149323&dopt=Abstract
http://dx.doi.org/10.1038/gim.2016.183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27929525&dopt=Abstract
http://dx.doi.org/10.1146/annurev.polisci.4.1.271
http://www.w3.org/Style/XSL
http://www.renderx.com/


PMI: precision medicine initiative
SMD: standardized mean difference
SMS: short message service
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