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Abstract

Background: Many recent commercial devices aim at providing a practical way to measure energy expenditure. However,
those devices are limited in accuracy.

Objective: This study aimed to build a model of energy consumption during walking applicable to a range of sloped surfaces,
used in conjunction with a simple, wearable device.

Methods: We constructed a model of energy consumption during gradient walking by using arguments based in mechanics.
We built a foot monitoring system that used pressure sensors on the foot insoles. We did experiments in which participants walked
on a treadmill wearing the foot monitoring system, and indirect calorimetry was used for validation. We found the parameters of
the model by fitting to the data.

Results: When walking at 1.5 m/s, we found that the model predicted a calorie consumption rate of 5.54 kcal/min for a woman
with average height and weight and 6.89 kcal/min for an average man. With the obtained parameters, the model predicted the
data with a root-mean-square deviation of 0.96 kcal/min and median percent error of 12.4%.

Conclusions: Our model was found to be an accurate predictor of energy consumption when walking on a range of slopes. The
model uses few variables; thus, it can be used in conjunction with a convenient wearable device.

(JMIR Mhealth Uhealth 2019;7(10):e12335) doi: 10.2196/12335
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Introduction

Physical inactivity, despite its well-known health risks [1,2],
continues to be a serious public health issue [3]. Recently,
various wearable devices, including wristbands and mobile
phones, have offered a way to track physical activity throughout
the day. Such devices can be used in ambulatory conditions by
individuals or in clinical settings to monitor patients’ physical
activity.

Many of these devices use an accelerometer-based method to
predict energy expenditure [4-6]. However, these methods are
limited in precision [7]. A basic, common assumption used is
that the calorie consumption rate is proportional to the walking
velocity. A GPS tracker can then be used to measure the walking
distance and then compute the total energy consumption.
However, this method is limited in accuracy and may not be
feasible indoors.
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Literature Review
The energetics of human locomotion has been closely studied
for decades. Early studies focused on energy expenditure during
walking [8-12] and running [13-16], and made comparisons
with the energy expenditures of other animals [17]. Most
relevantly, studies on walking energetics found a proportional
relationship between energy expenditure and the square of the
velocity. These early studies showed that reasonable accuracy
can be attained with simple relations, despite the complexity of
the act of walking. More recently, detailed models of walking
dynamics have been presented that examine more closely the
mechanics of walking [18-24]. These biomechanical models
aim to explain human gait patterns via energy minimization.
Also studied have been movements of the arm [25,26] and the
head and trunk [27], as well as gait patterns in special groups
of interest [28,29]. Such models have also been used in the field
of robotics in developing walking robots [30].

Previous studies were primarily of academic interest, although
inexpensive commercial devices have recently been made
available for personal or clinical use. Such devices offer
noninvasive ways to measure daily caloric consumption, and
they have been assessed by numerous validation studies in the
literature [31-36]. The most common types of commercially
available products include the wrist-worn accelerometer and
devices based on heart rate monitors. Although these devices
are good predictors of the number of steps and heart rate,
accurate prediction of energy expenditure is yet to be achieved
[37]. These validation studies test for various settings; however,
they usually lack a discussion of the model or algorithm used
in their predictions.

This study proposes a model of walking energetics applicable
to a range of slopes. The model is based on a simple equation
and uses data from a wearable device. The method uses a foot
monitoring system that can sense footsteps, which allows for
direct measurement of step frequency. We found that a
high-accuracy model can be developed for a range of upward
and downward slopes. The fact that it is based on a direct
measurement of footsteps allows the device to be versatile and
applicable to diverse walking situations. The ability to track
expenditure while walking on sloped surfaces is helpful for
sloped outdoor ground and also indoor use of stairs or sloped
treadmills.

Methods

Experimental Procedure
For model development and validation, an experiment was
devised in which 73 healthy participants (34 female, 39 male)
walked on a treadmill. The participants had a mean age of 43.6
(SD 15.0) years, mean height of 168.3 (SD 10.5) cm, and mean
weight of 68.1 (SD 12.1) kg. Participants were selected from
healthy volunteers (age 20 to 60 years) who registered in the
department of Sport Science, Pusan National University, Busan,
Korea. We excluded participants who had cardiovascular,
musculoskeletal, or neurological disorders to avoid any
confounding factors or biases. The participants were asked to
walk on a treadmill at various values of the incline angle, Theta,

and speed, v. Specifically, the angle was taken to be 0°
(indicating no incline); 4°, 9°, and 14° (uphill); and −4°, −9°,
and −14° (downhill). It was observed that calorie consumption
took approximately 30 seconds to stabilize to a linear rate while
walking. Each walking measurement lasted approximately 5
minutes to ensure a sufficiently long sample.

Calorie consumption was measured with a COSMED K4b2
portable gas analyzer system. This indirect calorimetry, based
on the gas analyzer system, measures oxygen consumption,
from which energy expenditure is computed. This method has
been validated as an accurate measure through numerous
comparative studies [38-40] and is used as a criterion measure
in many validation studies [31-33,35-37]. The gas analyzer was
worn during the treadmill experiment, and it recorded a time
series of cumulative calorie consumption. To eliminate noise
associated with the beginning and end of the experiment, we
discarded data for the first 50 seconds and the final 10 seconds
before computing the energy consumption rate. Then the basal
metabolic rate [41] was subtracted to obtain the energy
expenditure associated with walking, which is denoted by P.

Each participant also wore a foot monitoring system, consisting
of shoe insoles equipped with eight pressure sensors. The insole
used was a prototype developed by 3L Labs (Seoul, Korea),
and provided to us for research purposes. A depiction of the
foot monitoring system and the experimental setup is given in
Figure 1. A Fitbit Surge, a wrist-worn accelerometer device,
was also worn by each participant to compare the accuracy of
its caloric consumption prediction. This study was approved by
the Institutional Review Board of Pusan National University,
Busan, Korea. All participants provided written informed
consent (PNU IRB/2015_33_HR).

A value of 0, 1, or 2 indicated the pressure on each of the
pressure sensors and was recorded with a frequency of 10 Hz,
which resulted in an array of 16 integers for each time step of
0.1 s. A snippet from example data is shown in Figure 2. From
the pressure sensor data, we were able to extract the step
frequency, f. We performed this by examining the sum of the
pressure sensor values at each time step. An example is shown
in Figure 3. Although it is natural to consider the foot to be off
the ground when this sum is 0, this can result in erroneous results
if one or more of the pressure sensors remain at a value above
0 throughout the entire step cycle, either due to a faulty sensor
or residual pressure. We found that better accuracy was achieved
when high and low thresholds were used. This was done by first
assigning the on-ground status to the first-time step, and then
sequentially assigning either the on-ground or off-ground status
to each following time step. If the previous time step was
on-ground and the pressure sum was below the lower threshold,
we assigned the off-ground status to that time step; if the
threshold was not crossed, the time step was left in on-ground
status. If the previous status was off-ground, the on-ground
status was assigned if the pressure sum was above the upper
threshold, and the off-ground status was assigned otherwise.
Threshold values between 1 and 10 were tested and compared
with manually assigned steps. Lower and upper threshold values
of 2 and 5, shown in Figure 3, were found to produce accurate
results.
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Figure 1. Illustration of the foot monitoring system (left) and a picture of a participant walking on an uphill treadmill wearing the K4b2 portable gas
analyzer (right).

Figure 2. A sample of 4 seconds of raw data from the pressure sensors. The vertical position of each number of the array indicates the time, ordered
from top to bottom at an increment of 0.1 seconds. Each column denotes a sensor, with left foot and right foot separated. The colored portions indicate
when our algorithm decided the foot was off the ground.
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Figure 3. Graph of total pressure from the left foot sole over an interval of 10 seconds obtained from the foot monitoring system from the same data
as presented in Figure 2. The two dashed lines indicate the upper and lower thresholds used to calculate the step frequency.

After assigning a status to each time step, we counted the
number of transitions from the on-ground to off-ground status
and divided it by the time interval to obtain the frequency. As
with the gas analyzer data, we omitted data for the first 50 s and
the final 10 s. Only one shoe insole is required to calculate the
step frequency; however, we used the average of both sides in
this study.

Model
Our model was constructed from considering the energy changes
involved in walking. Suppose a participant with body mass Mu
is walking with average speed Nu on a surface inclined by Theta
from the horizontal. The participant is swinging their legs with
frequency f. The energy consumption rate, Rho, is given by
equation 1 (Figure 4). Here positive and negative values of the
slope, Theta, of the walking surface correspond to walking
uphill and downhill, respectively. RhoK and RhoU are rates of
changes in the kinetic energy and in the potential energy,
respectively, whereas coefficients Gamma,bTau, b1, and Rho0

are parameters to be determined empirically from the data. The
energy change rates for RhoK and RhoU are given in equation
2 (Figure 4). In the following, we give an explanation of each
term in consideration of energy.

Kinetic Energy Component
We first consider walking on a horizontal surface (ie, Theta=0).
When walking on a treadmill, the upper body moves in a
relatively constant velocity, with the moving legs supporting
this movement. The legs swing back and forth relative to the
upper body’s position, undergoing an acceleration-deceleration
cycle. We postulated that the energy expenditure was
proportional to the kinetic energy change of the legs. The work
done on the legs during each walking cycle is given by equation
3 (Figure 4). Here m is the mass of each leg, v0 is the maximum

speed of each leg’s center of mass, and the factor of 4 accounts
for the two legs each undergoing acceleration and then
deceleration. This differs from the assumption that the legs
swing like a pendulum, in which case gravity would do the
work.

Since we usually have no way to easily measure leg mass or
leg velocity, we defined two ratios: (1) the ratio α of the leg
mass, m, to the body mass, M; and (2) the ratio β of the
maximum velocity, v0, of the leg to the average walking speed,
v (equation 4 in Figure 4).

This allowed us to rewrite equation 3 as , giving
an expression for the work done per cycle. Assuming that the
human body converts chemical energy into kinetic energy with
efficiency ηK, the energy consumption rate due to the kinetic
energy is given by equation 5 (Figure 4). In writing the
right-hand side of equation 5, the measurable terms are grouped
into PK as in equation 2, whereas the rest are grouped into
dimensionless coefficient γ, given by equation 6.

Potential Energy Component
When walking on a horizontal surface perpendicular to the
direction of gravity, there is no net change in potential energy.
It changes when the subject is walking up or down a slope. We
first considered upward inclines. When one walks up a slope
of angle Theta at speed v parallel to the surface, their potential
energy, U, changes at a rate dU/dt=PU, given by equation 2
(Figure 4). For simplicity, we further assumed that when walking
up a slope, additional energy proportional to this term is
required. Accordingly, the energy expenditure rate associated
with the changing potential energy is given by b0PU, where b0

is the inverse of the efficiency, ηU, (equation 7 in Figure 4) with
which the body converts stored energy to potential energy.
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Figure 4. List of equations of the model of energy expenditure during walking.

One might consider simply using the same formula for downhill
inclines, in which case the term b0PU=b0Mgv sinTheta becomes
negative. This would imply that when walking downslope, the
change in potential energy can be converted into kinetic energy,
thereby subtracting from the total energy cost. However, this
leads to a nonsensical result for higher slopes, as it can lead to
negative energy consumption. When a downhill slope is steeper
than a certain angle, the subject would need to exert a frictional
force to prevent from falling forward or walking too fast.
Therefore, b0PU does not provide an adequate description of
the energy expenditure in this case.

Figure 5 and 6 present scatterplots of the data in the
three-dimensional space (PK,PU,P) for women and men,
respectively. This visualization shows that P first decreases then
increases as PU is decreased from zero. Such a parabolic shape
indicates the presence of a quadratic term; thus, we added to P

a term proportional to PU
2. The energy expenditure associated

with potential energy in the case of downhill walking is given

by equation 8 (Figure 4). The second term is multiplied by P0
-1

so that the coefficient b1 is kept dimensionless. In other words,
b1 is the coefficient of the quadratic term in the case of downhill
walking in units of P0. This leads to the full model, described
by equation 1 (Figure 4).
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Figure 5. Three-dimensional scatterplot of data (dots) and model prediction (lines) of P versus PU and PK for women.

Figure 6. Three-dimensional scatterplot of data (dots) and model prediction (lines) of P versus PU and PK for men.

Linear Regression
The preceding model described leaves parameters ϒ,b0, b1, and
P0 to be determined. We obtained these parameters by first
taking data for flat and uphill surfaces (Theta≥0) and performing
multiple linear regression through the use of the first equation
in equation 1 (Figure 4) with Υ,b0, and P0 as fitting parameters.

The adjusted R2 value for the fits of both women and men was
.83. Then b1 was obtained via fitting the second equation of
equation 1 (Figure 4) to flat and downslope data (Theta≤0).

During this secondary fit, ϒ,b0, and P0 were set constant at the
values obtained earlier.

Results

The full set of coefficients, obtained through linear regression,
is given in Table 1. The dependency of P on PK and PU is
represented by the surfaces in Figures 5 and 6 . Due to the
piecewise functional form of the model (equation 1 in Figure
4), the prediction plane has no curvature for PU>0 but does in
the region PU<0.

Table 1. Coefficients for the full model reported with the root-mean-square deviation (RMSD) on comparison with data. The values were obtained by
two linear regressions.

MenWomenUnitsCoefficient

0.5170.662—γ

1.6941.591—b 0

1.0860.575—b 1

0.0580.042kcal/sP 0

0.016 (0.96)0.016 (0.96)kcal/s (kcal/min)RMSD
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The fit resulted in a root-mean-square deviation (RMSD) of
0.96 kcal/min for both women and men. A boxplot of the
percentage errors of all trials is given in Figure 7, in which the
errors have been calculated according to equation 9 in Figure
4.

Here P is the prediction by the method whereas P' is the standard
given by the gas analyzer. The median errors were 16.9% for
women, 11.2% for men, and 12.4% for both groups. These
errors are substantially lower than those found in a validation
study for multiple commercial devices, which yielded median
accuracies of 28.6% to 35.0% across devices for walking [37].

The predictions made by Fitbit Surge had an RMSD of
2.58 kcal/min (2.7 times that of the model) and a median percent
error of 37.3% (3 times that of the model). However, this high
error was mostly due to inaccuracies in sloped walking. When
restricted to flat surfaces, the Fitbit Surge’s accuracy increased
dramatically, whereas the model’s accuracy increased
moderately. The Fitbit Surge’s RMSD on flat surfaces was
1.82 kcal/min (2.3 times that of the model, 0.79 kcal/min), and
the median percent error was 18.4% (1.6 times that of the model,

11.2%). Distributions of percent errors are portrayed with
boxplots in Figure 7.

Before discussing the implications of these results, we note that
the variables v and f are not independent. If l is the average
length of a step, then v = f l. Assuming the approximate relation
h ≈ l, where h is the subject’s height, we obtain v ~ fh (equation
10 in Figure 4). This relation was observed in the data, as shown
in Figure 8.

Equation 7 implies that ηU=0.547 for women and 0.596 for
men. In principle, ϒ depends on α,β, and ηK. We assumed the
average value of α=0.185 for women and 0.165 for men,
obtained from an anatomical reference [42], and that ηK=ηU.
Taking these values and the fitting result for ϒ, we obtained
from equation 6 (Figure 4) the ratio β with values 1.47 for
women and 1.36 for men. This difference in the average may
reflect the difference in the average height between women and
men. Specifically, equations 4 and 10 (Figure 4) imply β=v0/v
~ v0/f h. The ratio of the value of β for women to that for men
equaled 1.08, whereas the ratio of the average height of men to
that of women equaled 1.11.

Figure 7. Boxplots of the percent errors of predictions made by the model and Fitbit Surge. Errors have been estimated via equation 9 in Figure 4.

Figure 8. Step frequency, f, multiplied by height, h, plotted against average walking speed, v. Least squares fit line fh = 0.52v+1.02 (m/s) is also shown.
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Discussion

Principal Results
We developed a model based on rates of change in kinetic and
potential energies. In general, it predicts linear dependence of
the energy consumption on these rates; in particular, it predicts
quadratic dependence of the energy consumption on the potential
energy change in the case of downhill walking. The method,
used in conjunction with a foot monitoring system, predicts
energy expenditure with an RMSD of 0.98 kcal/min and a
median percent error of 12.4%, lower than those of wrist-worn
commercial devices in predicting energy expenditure for
walking. With one simple piecewise function, the model
adequately predicts energy expenditure for walking in a wide
range of the gradient.

Notice the differences in parameter values between women and
men. The appreciable difference in the value of b1 between men
and women may result from the difference in walking posture;
this is beyond the scope of this work and left for future study.
In principle, the parameters are fit for each individual and should
vary by subject. Thus, Table 1 presents average values of the
coefficients within each gender. Even so, it is remarkable that
a high degree of accuracy is observed.

Limitations
Although the model accounts for varying body mass and step
frequency (cadence), this does not account for additional
individual variations in parameter values due to walking gait
and body dimensions. There may be ways to account for such
variations without complicating the model. In addition, because
the treadmill incline lies between 14° uphill and 14° downhill,
we are not able to validate the model for more extreme slopes
[43]. In addition, the method has not been tested and calibrated
for outdoor walking or variable temperatures and altitudes.
However, we believe that our pilot study provides a groundwork
for follow-up studies under more ambulatory conditions.

Comparison With Prior Work
Prior studies have noted the strong correlations between P and

v2 for level walking [10]. The authors have also similarly

considered additional energy expenditure when walking uphill,
attributing it to vertical lift work. In contrast, our study proposes
a simple formula that predicts energy consumption reasonably
well for horizontal, uphill, and downhill surfaces within a unified
framework. In addition, Cotes and Meade [9] made use of
individual measurements, including resting metabolic rate and
leg length. Our model shows that high accuracy can be achieved
via reasonable assumptions used in conjunction with a wearable,
mobile device.

Other existing studies have studied energy expenditure during
uphill and downhill walking [43,44]. The authors reported a
minimum energy cost when walking 10° downhill, which is
consistent with our results. These studies did not incorporate
varying walking speed and body weight, and relied on regression
analysis with those variables kept constant. Our study offers a
simple formula that applies to various walking speeds and
subjects, while also accounting for the surface gradient.

Our method fits separately for women and men. Prior validation
studies have found differences in the accuracy of devices
between the two genders. A comparative validation study found
that gender was one of the strongest predictors for accuracy,
with a rate significantly higher for men than for women [37].
Our results suggest that similar error rates for both genders can
be achieved.

Conclusions
We have developed a model that predicts energy expenditure
during walking on a gradient surface between 14° uphill and
14° downhill, with an RMSD of 0.98 kcal/min. The model has
been used in conjunction with a wearable device, the foot
monitoring system, which directly measures footsteps. Thus, it
offers an accessible method of measuring energy expenditure
in realistic walking settings, where gradient walking is common.
Future work may test equation 1 (Figure 4) in a wider range of
values in the PK−PU space. Testing the method on outdoor
walking is also desirable for further validation. Although not
yet explored, the device could also be used in conjunction with
other activity monitoring devices, such as wrist-worn ones, to
produce more accurate measures of energy expenditure.
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