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Abstract

Background: The high prevalence of physician burnout, particularly in emergency medicine, has garnered national attention
in recent years. Objective means of measuring stress while at work can facilitate research into stress reduction interventions, and
wearable photoplethysmography (PPG) technology has been proposed as a potential solution. However, the use of low-burden
wearable biosensors to study training and clinical practice among emergency physicians (EP) remains untested.

Objective: This pilot study aimed to (1) determine the feasibility of recording on-shift photoplethysmographic data from EP,
(2) assess the quality of these data, and (3) calculate standard pulse rate variability (PRV) metrics from the acquired dataset and
examine patterns in these variables over the course of an academic year.

Methods: A total of 21 EP wore PPG biosensors on their wrists during clinical work in the emergency department during a
9-hour shift. Recordings were collected during the first quarter of the academic year, then again during the fourth quarter of the
same year for comparison. The overall rate of usable data collection per time was computed. Standard pulse rate (PR) and PRV
metrics from these two time points were calculated and entered into Student t tests.

Results: More than 400 hours of data were entered into these analyses. Interpretable data were captured during 8.54% of the
total recording time overall. In the fourth quarter of the academic year compared with the first quarter, there was no significant
difference in median PR (75.8 vs 76.8; P=.57), mean R-R interval (0.81 vs 0.80; P=.32), SD of R-R interval (0.11 vs 0.11; P=.93),
root mean square of successive difference of R-R interval (0.81 vs 0.80; P=.96), low-frequency power (3.5×103 vs 3.4×103;
P=.79), high-frequency power (8.5×103 vs 8.3×103; P=.91), or low-frequency to high-frequency ratio (0.42 vs 0.41; P=.43),
respectively. Power estimates for each of these tests exceeded .90. A secondary analysis of the resident-only subgroup similarly
showed no significant differences over time, despite power estimates greater than .80.

Conclusions: Although the use of PPG biosensors to record real-time physiological data from EP while providing clinical care
seems operationally feasible, this study fails to support the notion that such an approach can efficiently provide reliable estimates
of metrics of interest. No significant differences in PR or PRV metrics were found at the end of the year compared with the
beginning. Although these methods may offer useful applications to other domains, it may currently have limited utility in the
contexts of physician training and wellness.

(JMIR Mhealth Uhealth 2019;7(10):e13909) doi: 10.2196/13909
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Introduction

The concept of burnout in the workplace, roughly defined as
mental exhaustion because of chronic work-related stress, was
first introduced nearly 50 years ago [1]. Once applied to
physicians, the field of physician burnout research has steadily
grown at a rapid rate [2], especially as it pertains to medical
training in the United States [3]. A recent study of more than
16,000 US residents showed that the majority of their sample
reported burnout [4]. In particular, emergency medicine (EM)
has been identified by this body of research as a relatively
high-risk specialty, as emergency physicians (EPs) frequently
show the highest rates of burnout [5,6]. As physician burnout
continues to increase in prevalence and attracts greater attention
both within and outside medicine, efforts to alleviate burnout
among medical providers have become a priority [7-10]. A
natural corollary from this movement has been an internationally
concerted search for new, objective ways to measure burnout,
to serve as a complementary approach to the current body of
research predominated by surveys and self-report inventories
such as the Maslach Burnout Inventory [11].

In this search for new technologies to direct efforts to relieve
physician burnout, heart rate (HR) and heart rate variability
(HRV) metrics have recently shown promise in multiple
applications to medical providers [12-17]. Clinical applications
of HRV analysis trace roots back more than a century ago [18],
and the combination of improved technology and increased
interest in physician well-being have spurred this new area of
investigation [19]. Despite concerns regarding the validity of
certain applications of HRV data (eg, the use of low-frequency
[LF] power of HRV—and in turn ratio of LF to high-frequency
[HF] power—to measure sympathovagal balance has been
criticized [20-23]), a large body of evidence supports the notion
that HRV analysis can illuminate the balance between
sympathetic and parasympathetic tone in the body [24], enabling
the use of HRV to study autonomic responses to mental stress
[25]. A particularly noteworthy study of HRV in surgeons
highlights the value of objective measures of stress among
medical providers, reporting that acute care surgeons in their
sample showed levels of physiologic stress that were elevated
out of proportion to self-reported stress [17]. These results offer
compelling evidence that physicians, especially those routinely
exposed to traumatic situations in highly time-sensitive settings,
might provide unreliable assessments of their own stress. Thus,
widespread use of objective, ecologically valid metrics of stress
might represent a key piece of the puzzle in efforts to understand
and alleviate burnout among EPs.

While HRV recorded by electrocardiography (ECG) offers a
seemingly effective means by which to chart physiologic
manifestations of stress responses in small samples of providers
for limited durations, widespread application of this
methodology to routine monitoring of physicians and trainees
at work remains unfeasible. However, measurement of pulse
rate (PR) and pulse rate variability (PRV) via wearable
photoplethysmography (PPG) biosensor technology has been
posed as an extremely low-burden alterative to ECG
measurement with significantly greater potential for scalability.
In a basic sense, while ECG measures changes in electrical

activity in the heart, PPG measures changes in blood volume
pulse (BVP) in the peripheral vasculature. The context of this
physiologic relationship lies in the assumption that chronic
exposures to workplace stressors that contribute to burnout are
psychologically experienced by EPs, corresponding to
neurological registration of the experience that triggers an
autonomic response. This autonomic response, expressed as a
change in sympathovagal balance, directly influences cardiac
function as measurable via HR and HRV and that these changes
in cardiac function will alter systemic blood flow and be
reflected in PR and PRV metrics. Therefore, in an effort to
measure stress responses reflected in autonomic changes that
influence cardiac activity, ECG measures these phenomena
more proximally than PPG, while PPG captures more
downstream physiologic variables that are vulnerable to more
physiologic interference and require reliance on a greater
number of assumptions (eg, effects of the respiratory cycle on
blood flow and multifactorial variance in systemic vascular
resistance, [26] as a well-known, extreme example of uncoupling
between ECG and PPG within this conceptual chain, consider
the pathological state of pulseless electrical activity). The
adequacy of PRV as a surrogate for HRV remains controversial
[26-31], and to the knowledge of this author’s group, no studies
have been published to evaluate the suitability of PRV analysis
to study physician wellness.

This study aimed to evaluate the feasibility of collecting and
analyzing PPG data from EPs while they work and to investigate
whether patterns in their PR and PRV changed over the course
of an academic year. To achieve this aim, PPG data collected
from resident and attending EM physicians during the fourth
quarter of the year were compared with an analogous PPG
dataset from the same providers during the first quarter of the
same year. This approach is founded on the notion that as
trainees gain experience in their role over the course of a year,
perception of stressors and their physiologic manifestations
among the trainees—as well as among the attending physicians
directly responsible for them—should decrease. For example,
it has been shown that the odds that an individual EP will
register a detectable concentration of salivary cortisol after
completing a shift significantly decrease over the course of a
year [32]. An additional analysis will be restricted to the
resident-only subgroup to investigate whether patterns in PR
and PRV may be specific to EM trainees. Given the novelty of
the methods employed in this pilot study, a secondary aim
involved assessing whether currently available PPG technology
is ready for application to the ecologically valid study of
physician wellness (ie, real-time examination of autonomic
manifestations of stress at work), embedded within the context
of a comprehensive literature review. In summary, the essential
purpose of this pilot study is to answer the question: Can
wearable PPG sensors offer a scalable, objective, and
ecologically valid method to study workplace stress among
EPs?
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Methods

Institutional Review
This study was approved by the Institution’s Committee on
Clinical Investigations and the Department of Emergency
Medicine’s Medical Education Executive Committee.

Study Setting and Population
Participants were recruited from an academic ED in late June
2016 and 2017 at the beginning of the academic year to support
2 iterations of the study in consecutive years. Following an
introductory information session during a scheduled department
conference, 3 emails were sent to all EM residents and attending
physicians inviting them to participate in the study. Volunteers
who responded to these recruitment emails underwent an
informed consent procedure, individually conducted by a trained
research assistant. No financial compensation was offered for
participation. All recordings took place at a single site: the ED
at the host academic medical center.

Data Collection
Participants wore an Empatica E4 PPG biosensor watch
(Empatica Inc) during at least 1 shift in the ED at the host
institution during the first quarter (Q1: July-September) and
final quarter (Q4: April-June) of 1 academic year. Continuous
PPG data were recorded over the course of the entire 9-hour

shift (14:00-23:00) while performing routine clinical care. Each
recording automatically generated 2 forms of data used for this
study: a raw PPG signal (BVP data) and an interbeat interval
(IBI) log, each measured with respect to time at a sampling
frequency of 64 Hz. Compilation of these datasets relied upon
standard detection and filtering algorithms developed by
Empatica [33,34].

Data Filtering and Inclusion Criteria
Once compiled, each recording entered a screening process
before being included in the study. Data filtering and analysis
procedures were executed via a self-developed set of MATLAB
scripts designed to accomplish the following operations
(Mathworks). First, the timing of each PPG recording was
compared with the timing of each shift to verify that each
included dataset reflects the participant’s physiology while
providing care in the ED. Second, the total number of heart
beats registered in each IBI dataset was screened for a minimum
total of 300 beats. Given that each IBI dataset is generated via
the application of a standard heart beat detection algorithm that
excludes segments of recording consistent with artifacts or low
signal to noise ratio, this screening measure served to ensure
sufficient clean signal density in each recording. Third, each
recording that met these inclusion criteria was plotted in a PPG
versus time graph, and additional markers were superimposed
on the x-axis to indicate time periods included in the IBI logs
(Figure 1).

Figure 1. Raw blood volume pulse (BVP) amplitude measured in nanowatts from a single PPG recording plotted in blue, with registered pulse beats
from the corresponding interbeat interval (IBI) log marked in red. PPG: photoplethysmography.
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These plots were visually inspected to add a final opportunity
to manually detect segments of included IBI data sourced from
unreliable PPG signal. Finally, to sustain a repeated-measures
analysis, data were only included from participants with 1
satisfactory recording in both Q1 and Q4. Once included, each
PPG and IBI dataset was entered into 2 primary analyses, one
in the time domain and the other in the frequency domain,
providing complementary assessments of PR and PRV over
time on a repeated-measures basis.

Data Analysis
Each IBI dataset was entered into a time-domain analysis
designed according to previously validated standards [35].
Variables of interest included median PR, mean R-R interval,
standard deviation of R-R interval, and root mean square of
successive difference of R-R interval (RMSSD). Calculations
of RMSSD were performed by isolating the single longest
stretch of consecutive heart beats detected within each IBI log.
The PPG dataset yielded calculations of power in the
low-frequency range (LF: 0.05-0.15 Hz) and high-frequency
range (HF: 0.15-0.40 Hz), as well as LF:HF ratio (LHR),
composing the frequency-domain analysis [35].

Recordings dated from Q1 and Q4 were separated into 2 time
points for each participant. The previously described standard
measures of PR and PRV were calculated for each recording,
and Q1 versus. Q4 was compared via paired Student t tests for
each metric. The data used in this study satisfy the requisite
assumptions upon which paired-samples t tests rely. Statistical
power for these tests was calculated using a publicly available
MATLAB algorithm [36].

Toward the aim to assess the quality of the data collected
through these methods, the IBI log from each of the original
recordings included in the analysis was transformed into a time
vector that only included 1-second segments of time during
which pulse beats were detected (including the interval between
consecutive beats), according to the standard Empatica
algorithm. This vector was then transposed upon a second vector
representing the total recording time captured in each
corresponding PPG dataset, sampled at the same frequency
(graphically represented in Figure 1). Finally, a quotient of time
during which pulse beats were detected over the grand total
recording time, in seconds, was computed to determine the
overall percent of data that was ultimately interpretable with
respect to time.

Results

A total of 51 EPs contributed 95 recordings, producing over
800 hours of data. Following application of the previously
described screening procedure, roughly 440 hours of data from
21 EPs were included in the study (Table 1). Interpretable PPG
data constituted 8.54% of the total recording time undertaken
in this study. A total of 10 participants were trainees and 11
were attending physicians. Two participants were included in
both years of the study. Five of the 21 participants were female,
including 2 of the 10 residents. Residents from all years of
training were represented, including 4 postgraduate year
(PGY)-1, 2 PGY-2, and 4 PGY-3 trainees. The mean age of
participants at the time of enrollment was 32.8 years, with 29.9
years and 35.6 years for residents and attending physicians,
respectively.

Table 1. Descriptive characteristics of participants included in the study.

ValueCharacteristic

Sample size (N=21)

10 (48)Resident physicians, n (%)

11 (52)Attending physicians, n (%)

Sex (female), n (%)

5 (24)Overall sample (N=21)

2 (20)Resident physicians (n=10)

3 (27)Attending physicians (n=11)

Age (years), mean (SD)

32.8 (5.9)Overall sanmple (N=21)

29.9 (3.9)Resident physicians (n=10)

35.9 (6.3)Attending physicians (n=11)

Trainees

10 (100)Total

4 (40)PGYa-1, n (%)

2 (20)PGY-2, n (%)

4 (40)PGY-3, n (%)

aPGY: postgraduate year.
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Time-domain analysis revealed no significant changes in PR
or PRV in Q4 compared with Q1. Table 2 details the descriptive
data from the primary analysis. Median PR in Q4 was 75.8 (SD
13.5) compared with 76.8 (SD 10.8) in Q1 (P=.57). Comparisons
of PRV measures between Q4 and Q1 also did not reach
statistical significance, including group mean RMSSD of 0.81
(SD 0.16) versus 0.80 (SD 0.11), respectively (P=.96). Similarly,
frequency-domain analysis did not show any differences in Q4

versus Q1, including a comparison of LHR in which group
means were 0.42 (SD 0.04) and 0.41 (SD 0.03), respectively
(P=.43). These negative findings were observed despite adequate
power, with estimated power (1−ß) values exceeding .90 for
each of the 8 Student t tests included in this study, corresponding
to the 8 PR and PRV measures of interest used, as outlined in
Table 3.

Table 2. Mean (SD) values of measures in primary analysis including all participants (XeY denotes scientific notation).

LHRgHFfLFeRMSSDdSDNNcMRRIbMPRaQuarter

0.41 (0.04)8.3e+3 (4.2e+3)3.4e+3 (1.7e+3)0.80 (0.113)0.11 (0.035)0.80 (0.113)76.8 (10.8)Quarter 1

0.42 (0.03)8.5e+3 (5.3e+3)3.5e+3 (2.1e+3)0.81 (0.161)0.11 (0.023)0.81 (0.137)75.8 (13.5)Quarter 4

aMPR: median pulse rate (pulse beats per minute).
bMRRI: mean R-R interval (seconds per pulse beat).
cSDNN: standard deviation of R-R interval.
dRMSSD: root mean square of successive difference of R-R interval.
eLF: low-frequency power (ms2).
fHF: high-frequency power (ms2).
gLHR: ratio of LF to HF.

Table 3. Results of primary analysis including all participants (Student t tests).

LHRgHFfLFeRMSSDdSDNNcMRRIbMPRaMetric

.43.91.79.96.93.32.57P value

.90.95.94.95.95.92.94Power
(1−ß)

aMPR: median pulse rate (pulse beats per minute).
bMRRI: mean R-R interval (seconds per pulse beat).
cSDNN: standard deviation of R-R interval.
dRMSSD: root mean square of successive difference of R-R interval.
eLF: low-frequency power (ms2).
fHF: high-frequency power (ms2).
gLHR: ratio of LF to HF.

A secondary analysis of the resident-only subgroup similarly
failed to reveal any significant changes in PR or PRV in Q4

compared with Q1, despite estimated power values greater than
.80. Tables 4 and 5 detail results from this secondary analysis.

Table 4. Mean (SD) values of measures in primary analysis including trainees only (XeY denotes scientific notation).

LHRgHFfLFeRMSSDdSDNNcMRRIbMPRaQuarter

0.41 (0.02)8.8e+3 (4.2e+3)3.6e+3 (1.7e+3)0.79 (0.123)0.12 (0.04)0.78 (0.095)78.5 (10.5)Quarter 1

0.42 (0.02)8.7e+3 (6.2e+3)3.6e+3 (2.5e+3)0.82 (0.119)0.11 (0.022)0.82 (0.123)74.7 (12.5)Quarter 4

aMPR: median pulse rate (pulse beats per minute).
bMRRI: mean R-R interval (seconds per pulse beat).
cSDNN: standard deviation of R-R interval.
dRMSSD: root mean square of successive difference of R-R interval.
eLF: low-frequency power (ms2).
fHF: high-frequency power (ms2).
gLHR: ratio of LF to HF.
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Table 5. Results of secondary analysis including trainees only (Student t tests).

LHRgHFfLFeRMSSDdSDNNcMRRIbMPRaMetric

.16.95.99.49.44.15.28P value

.81.95.95.92.93.83.88Power
(1−ß)

aMPR: median pulse rate (pulse beats per minute).
bMRRI: mean R-R interval (seconds per pulse beat).
cSDNN: standard deviation of R-R interval.
dRMSSD: root mean square of successive difference of R-R interval.
eLF: low-frequency power (ms2).
fHF: high-frequency power (ms2).
gLHR: ratio of LF to HF.

A post hoc analysis of the original 95 recordings demonstrated
a yield of 8.54% with respect to time, meaning less than
one-tenth of the PPG data recorded contained useful substrate
for the PR and PRV analyses employed in this study.

Discussion

Principal Findings
This study demonstrates the feasibility of recording real-time
physiological data in EPs while they practice in an operational
sense but fails to support the notion that the current state of
wearable PPG biosensor technology can efficiently and reliably
measure variables of interest in a meaningful way. The evidence
produced by this study consistently supports the null hypothesis
that there is no difference in PR or PRV patterns among EPs at
the end of an academic year compared with the beginning, or
more precisely, fails to support the alternative hypothesis that
such a difference exists. The primary analysis failed to detect
any differences over time in EPs at large, and the secondary
analysis demonstrated a similar inability to find any significant
changes among EM residents. These negative findings were
observed in both arms of the study despite the use of
complementary time-domain and frequency-domain analyses
and despite adequate power calculated for each analysis. Given
the anticipated effect of the passing academic year to decrease
physiologic stress—including attending physicians working
with more experienced and autonomous trainees, and
particularly for residents with the benefit of 6 to 10 months of
training in their assigned role—the question of whether this
methodology can capture such effects requires careful
consideration. Therefore, the aim of this pilot study to assess
the suitability of these methods for these purposes emerges as
paramount.

The closest precedent for this study is a 1998 study that used
ECG recordings in 12 EPs to report increased sympathetic tone
during night shifts [37]. Clearly, additional research is needed
to develop objective, ecologically valid metrics of wellness
among EPs, ideally using tools that can be upscaled to make
widespread participation possible even while providing care in
the ED. As previously mentioned, no literature exists on the use
of PPG to study physician wellness—in any specialty—to the
knowledge of this author’s group. However, a wealth of research
continues to focus on evaluating the adequacy of PPG

technology to approximate the HRV analyses that have
demonstrated promise in this field [13-15]. This body of research
comparing the 2 methodologies has yielded mixed results. The
literature seems to weigh in favor of the accuracy of PPG
measurement for healthy human subjects at rest [27]. On the
other hand, evidence consistently calls into question the ability
of PPG-enabled wearable biosensors to achieve useful
recordings in human subjects undergoing active tasks marked
by interference from factors such as motion artefact, inconsistent
skin contact, and increased degrees of respiratory-cardiovascular
interaction among other sources of physiologic variability
[26,28,38]. Of course, these conditions apply to the study of
EPs providing care in the ED and likely account for the yield
of less than 10% usable data from our total recording time. In
addition, further ambiguity surrounds more specific applications
of HRV concepts to PRV methodology, such as translation of
frequency domain metrics from ECG to PPG data [29,30], and
even more fundamentally, use of the frequency domain to assess
sympathetic activity in either ECG or PPG [20-23].

Taking this body of the literature into consideration, this study
adds several new pieces of information. The primary goal of
this study was to investigate whether any patterns in PR and
PRV among EPs could be detected by comparing PPG data
collected during Q4 versus Q1 of an academic year. These
results indicate that no such patterns were found, regardless of
the domain of analysis or training status of participants included
and despite adequate power to conduct each test. The secondary
question that emerges from this conclusion is whether the novel
methodology of this study possesses the ability to detect changes
in physiology linked to stress if they do in fact exist.

On the basis of a focused review of the pertinent literature, it
seems unclear at best whether wearable PPG sensor technology
has yet been developed to the extent necessary to characterize
stress levels among EPs, especially while providing care in the
ED. In particular, the quality assessment analysis demonstrating
a yield of useful data less than 10% suggests that this
methodology is at least an inefficient, if not inaccurate, means
of probing physiologic changes in EPs at work. Taken together,
the results of this study and existing body of the literature seem
to suggest that PPG technology has not yet matured to the degree
required for the use of PRV analysis in this field of research.
However, it remains crucial to understand that wearable PPG
sensors lie at the center of an intensely active area of
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multidisciplinary research and technological development [39].
For example, a new singular spectrum analysis–based method
to automate detection and correction of artefacts in ECG data
was published in 2019 following the completion of this study;
such advancements might significantly enhance the quality of
data that is readily accessible to researchers without a
background in the technical aspects of this field [40]. Although
this study suggests that current PPG-enabled wearable
biosensors technology might have limited utility in the study
of physician wellness in real time, advancements in the
collection, analysis, and interpretation of PPG data will likely
transform the field in the near future and warrant further
investigation.

Limitations
Consideration of future developments surrounding this
methodology aside, further research in the short term is needed
to study sources of burnout in EPs. For example, several
limitations of this study will need to be addressed in future
investigations. First, as previously discussed, the current state
of wearable PPG sensor technology remains highly vulnerable
to interference from settings such as the ED. Perhaps, studies
of smaller scope using HRV must be used to investigate EP
wellness until PRV analysis has reached requisite maturity for
these purposes. Alternatively, perhaps a chest strap can be used
as an intermediate wearable biosensor in future studies to reduce
interference inherent to PPG measurement at the wrist without
subjecting participants to mobile ECG recording. Second,
although the repeated-measures design of this study was chosen
to enhance sensitivity to detect changes within participants over
time, it unfortunately limited sample size, especially among
trainees. Resident EM physicians at the host academic hospital
frequently rotate at outside ED locations, significantly limiting
opportunities to capture recordings within both time windows.
Perhaps, an alternative design with greater sample size might
uncover significant patterns in PRV among EPs, although the
power calculations performed in this study call such
considerations into question. Third, in an effort to test whether
this methodology can offer a time-sensitive, ecologically valid
way to study EPs at work, the exact duration of recordings
entered into these analyses was not precisely standardized, which
can pose issues regarding the frequency-domain analyses in
particular. Instead, participants were simply instructed to record
PPG throughout their entire 9-hour shift, and each recording
that met inclusion criteria as detailed in the Methods section
was entered into the frequency-domain analysis in its entirety.
Similarly, the devices used in this study are capable of recording
accelerometer data that can be used to inform exclusion of PPG
data associated with significant motion. This measure was not
taken for the purpose of this study because of the concern that
exclusion of times at which EPs are active might lead to the
systematic loss of the stressors this pilot study aimed to capture,
but future studies of this kind must carefully weigh the benefits
and disadvantages of this decision with respect to the primary
goals of the study.

Fourth, this study lacked a direct comparison between HRV
and PRV. The primary goal of this study was to evaluate a novel

tool to measure stress among EPs in real time to guide efforts
aimed at alleviating physician burnout. As a result, the focus
of this study was to assess the utility of PRV analysis, given its
readiness for widespread application to resident and attending
EM physicians, rather than to validate the technology used for
these purposes against another that bears limited ability to serve
this primary goal. However, further research is recommended
to use ECG alongside PPG to compare HRV versus PRV
analyses in EPs providing care in the ED. Such studies can more
directly assess the still unclear question as to whether the
physiologic changes investigated in this study exist but cannot
be detected by PRV analysis versus the possibility that these
changes simply do not exist. Similarly, this study did not use
self-reported data as a comparator, although evidence suggests
that caution must be used when relying upon the assumption
that different modalities of multifactorial concepts such as stress
should necessarily correlate with one another [17]. Future studies
will be required to address these limitations and further advance
the search for new objective tools that can characterize burnout
among EPs.

Conclusions
The results of this study do not indicate any changes in PR or
PRV among EPs over the course of an academic year. Due to
the limitations of this study, it remains unclear whether such
patterns exist and merely went undetected, although calculations
suggest this study was sufficiently powered. The finding that
less than one-tenth of the recording time dedicated to this study
yielded useful substrate for PR and PRV analyses lends support
to the notion that PPG technology might not yet be ready for
application to these purposes, suggesting that the methods used
in this study are poorly suited to test the hypothesis in question.
A review of the literature supports the suggestion from this
study that wearable PPG sensor technology has not yet matured
to the extent required for accurate measurement of physiologic
reflection of mental stress among EPs while at work on a large
scale. However, active research and development surrounding
this technology will likely offer new opportunities for
investigation in the near future. Further research is required to
identify new tools that can inform mounting efforts to alleviate
physician burnout.

In summary, this study adds the first evaluation of wearable
PPG biosensor technology as an ecologically valid, objective
measure of workplace-related stress among EPs to the literature.
Although this methodology proved to be low-burden and
therefore easily scalable, data quality was a prohibitive issue.
At the least, the current state of wearable PPG biosensors is
subject to technological limitations that render it unable to
reliably measure PR and PRV in active EPs. At the most, PPG
methodology is subject to physiologic interference that precludes
study of upstream concepts such as sympathovagal balance as
a reflection of stress among physically active participants, such
as EPs during shifts. In conclusion, this pilot study suggests
that alternative methods must be explored to establish an
objective, scalable, ecologically valid way to measure stress
among EPs at work.
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Abbreviations
BVP: blood volume pulse
ECG: electrocardiography
EM: emergency medicine
EP: emergency physicians
HF: high frequency
HR: heart rate
HRV: heart rate variability
IBI: interbeat interval
LF: low frequency
LHR: ratio of LF to HF
MPR: median pulse rate (pulse beats per minute)
MRRI: mean R-R interval (seconds per pulse beat)
PGY: postgraduate year
PPG: photoplethysmography
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PR: pulse rate
PRV: pulse rate variability
RMSSD: root mean square of successive difference of R-R interval
SDNN: standard deviation of R-R interval

Edited by G Eysenbach; submitted 04.03.19; peer-reviewed by M Lang, IN Gomez, C Molbech; comments to author 28.04.19; revised
version received 20.06.19; accepted 07.07.19; published 02.10.19

Please cite as:
Peters GA, Wong ML, Joseph JW, Sanchez LD
Pulse Rate Variability in Emergency Physicians During Shifts: Pilot Cross-Sectional Study
JMIR Mhealth Uhealth 2019;7(10):e13909
URL: https://mhealth.jmir.org/2019/10/e13909
doi: 10.2196/13909
PMID: 31579017

©Gregory Andrew Peters, Matthew L Wong, Joshua W Joseph, Leon D Sanchez. Originally published in JMIR Mhealth and
Uhealth (http://mhealth.jmir.org), 02.10.2019 This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR mhealth and uhealth, is properly cited. The complete
bibliographic information, a link to the original publication on http://mhealth.jmir.org/, as well as this copyright and license
information must be included.

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 10 | e13909 | p. 10https://mhealth.jmir.org/2019/10/e13909
(page number not for citation purposes)

Peters et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://mhealth.jmir.org/2019/10/e13909
http://dx.doi.org/10.2196/13909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31579017&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

