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Abstract

Background: Type 2 diabetes mellitus (T2DM) is a major public health burden. Self-management of diabetes including
maintaining a healthy lifestyle is essential for glycemic control and to prevent diabetes complications. Mobile-based health data
can play an important role in the forecasting of blood glucose levels for lifestyle management and control of T2DM.

Objective: The objective of this work was to dynamically forecast daily glucose levels in patients with T2DM based on their
daily mobile health lifestyle data including diet, physical activity, weight, and glucose level from the day before.

Methods: We used data from 10 T2DM patients who were overweight or obese in a behavioral lifestyle intervention using
mobile tools for daily monitoring of diet, physical activity, weight, and blood glucose over 6 months. We developed a deep
learning model based on long short-term memory–based recurrent neural networks to forecast the next-day glucose levels in
individual patients. The neural network used several layers of computational nodes to model how mobile health data (food intake
including consumed calories, fat, and carbohydrates; exercise; and weight) were progressing from one day to another from noisy
data.

Results: The model was validated based on a data set of 10 patients who had been monitored daily for over 6 months. The
proposed deep learning model demonstrated considerable accuracy in predicting the next day glucose level based on Clark Error
Grid and ±10% range of the actual values.

Conclusions: Using machine learning methodologies may leverage mobile health lifestyle data to develop effective individualized
prediction plans for T2DM management. However, predicting future glucose levels is challenging as glucose level is determined
by multiple factors. Future study with more rigorous study design is warranted to better predict future glucose levels for T2DM
management.

(JMIR Mhealth Uhealth 2019;7(11):e14452) doi: 10.2196/14452
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Introduction

Diabetes mellitus is a serious health condition resulting from
defects of insulin secretion and/or insulin action [1]. Patients
with type 2 diabetes mellitus (T2DM) need to maintain strict
glycemic control to avoid the risk of hypoglycemia,
hyperglycemia, and consequential complications [2]. T2DM,
characterized by the combination of insufficient insulin secretion
and insulin resistance, accounts for approximately 90% to 95%
of all diabetes cases [3]. It has become a major public health
concern as it is burdensome for individuals, health systems, and
society [4]. Self-management of diet, physical activity, weight,
and medication and self-monitoring of blood glucose are
essential for glycemic control [5,6]. However, it is very
challenging to adhere to this self-management regimen [7].

Emerging evidence has demonstrated that mobile technologies
can promote a healthy lifestyle and medication adherence and
improve diabetes outcomes [8,9]. The underlying mechanisms
might include the frequent reminder for blood glucose
monitoring [10], self-awareness and control of diabetes [11,12],
or behavior adjustment based on tracked behaviors [13]. For
instance, Padhye et al [11] reported that in patients with T2DM,
smartphone users are more likely to adhere to self-monitoring
of diet, physical activity, blood glucose, and body weight when
compared with paper diary users. Many studies have evidenced
that compliance with self-monitoring of diet and physical
activity can lead to weight loss [14] and hemoglobin A1c (HbA1c)
improvement through behavior adjustment [8,15]. However,
digital diabetes care has shown only modest HbA1c improvement
in multiple studies [16]. Despite the modest effects of digital
self-monitoring on HbA1c, recorded lifestyle data may shed
light on improving glycemic control through predicting blood
glucose level.

There are several algorithms, such as Biostator (Miles-Ames),
for automated insulin delivery in order to improve blood glucose
control [2,17]. Meanwhile, with an ever-growing amount of
data, several machine learning techniques are being developed
to understand patterns and develop models that predict the health
conditions of patients [18]. For instance, Plis et al [19] described
a generic physiological model of blood glucose dynamics to
extract informative features to train a support vector regression
model on patient-specific data [20-22]. Model predictive control

is also used to avoid long delays and open-loop characteristics
of the control algorithms [23]. As the relation between input
features and glucose levels is nonlinear, dynamic, interactive,
and patient-specific, nonlinear regression models are used to
build the predictive models [24]. Specifically, neural networks
have increasingly been used to model glucose levels using
multilayer perceptrons [25,26], time series convolution neural
networks, recurrent neural networks [27], convolutional
recurrent neural networks [28], and deep convolutional neural
networks [29]. Quchani et al [30] compared multilayer
perceptron neural networks with Elman recurrent neural
networks for predicting the glucose level in patients with type
1 diabetes mellitus (T1DM) to show improvement in the
accuracy of the model using recurrent neural networks.

However, to what extent self-monitoring data on health
behaviors and weight can help predict blood glucose level in
T2DM patients has rarely been studied. Available literature
exploring glucose prediction in T2DM mainly focuses on
glucose responses to nutrition [31]. However, glucose level is
determined by a variety of factors [31-33], and a prediction
model incorporating multiple lifestyle factors in a real-world
setting is needed. In addition, most of the existing machine
learning models predict glucose level for a very short interval
(ie, a few minutes [34]), which makes it difficult to plan for
effective control strategies. By using long short-term memory
(LSTM)-based recurrent neural networks (RNNs), this study
aimed to dynamically forecast the next-day glucose levels in
individuals with T2DM based on their daily mobile health
lifestyle data on diet, physical activity, weight, and previous
glucose levels. The study also developed a transfer learning
strategy to cope with data scarcity and improve prediction
accuracy for individual patients. Additionally, the study used
the advanced design of experiments to optimize the
hyperparameters of the LSTM-based RNN model.

Methods

Forecasting the glucose level of a T2DM patient is critical in
planning for future medication and food habits. This study was
a secondary analysis of data collected by a randomized
controlled trial (RCT) consisting of several steps including data
collection, data preprocessing, model construction and
optimization, and prediction and evaluation (Figure 1).

Figure 1. General scheme of the proposed method of predicting blood glucose level. LSTM-RNN: long short-term memory recurrent neural networks.
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Data Collection
Our study used data collected from a smartphone group based
in a pilot randomized trial [11]. The details of the original pilot
RCT were published elsewhere [9]. In the randomized trial,

overweight/obese adults (BMI >25 kg/m2) who were literate in
English and diagnosed with T2DM for at least 6 months were
eligible to participate. A total of 26 participants aged between
21 and 75 years were enrolled and randomly assigned to a
smartphone group (n=11), paper diary group (n=9), and control
group (n=6). Participants in the smartphone group received a
standard behavioral lifestyle education. The Lose It! (FitNow,
Inc) smartphone app was used in this group to self-monitor
physical activity, diet, and weight. Blood glucose levels were
collected using MyGlucoHealth, a Bluetooth-enabled glucometer
(Entra Health Systems) and the DiabetesConnect app (PHRQL,
Inc). Informed consent was obtained from each participant, and
the study was approved by the Committee for the Protection of
Human Subjects at the University of Texas Health Science
Center at Houston. One participant in the smartphone group
withdrew and did not complete the study.

The data in the smartphone group included an abundance of
dynamically monitored lifestyle and health information that has
not been fully explored and deserves further mining and analysis
to generate study results and provide suggestions and directions
for future studies and practices to improve health outcomes.
The data collected from the clinical trial was a good fit for our

study objective of predicting glucose levels. The 10 participants
who were in the smartphone group and recorded at least 150
days of self-monitored data were included in this study. The
data for each participant include daily diet information, where
collected food intake data (breakfast, lunch, dinner, snacks) is
discretized into calories, macronutrient content (carbohydrates
and fat), physical activity (where exercise time is translated into
calories burned from standard food nutrient charts), weight, and
glucose levels. A descriptive summary of the data is presented
in Table 1. From the table, it can be seen that patients 1, 2, 4,
and 9 have the highest number of missing values in terms of
self-reported blood glucose values.

Patients were not required to take glucose readings at a fixed
time of day but were asked to be consistent in terms of collecting
blood glucose readings every day. Figure 2 shows the
distribution of each patient’s blood glucose recording time. For
patients 3, 5, 6, 7, 8, and 9, the recorded times are generally
between 8:00 am to 11:00 am. However, for patient 10, the
recorded times are divided between 8:00 am and 10:00 am or
8:00 pm to 10:00 pm. For this patient, we considered the
readings taken from 8:00 am to 10:00 am. For patients 1, 2, and
4, the number of recorded instances were fewer and scattered
throughout the day. Figure 3 shows the self-monitored collected
data for patient 1. While the patient has recorded their food
intake for the day, they haven’t adhered to a daily exercise
regimen, as can be seen from the calories burned (cb) subfigure.

Table 1. Descriptive statistics of glucose and weight levels for the patients in the study.

Weight (lbs)Glucose level (mg/dL)Number of missing
observations

Patient #

Mean (SD)MaxMinMean (SD)MaxMin

341.60 (6.39)356323110.99 (13.97)137801181

230.42 (4.94)241225136.15 (18.95)1711081612

145.62 (0.83)148144151.00 (27.64)87275733

178.38 (2.88)183170155.97 (17.27)1921371544

30.06 (3.88)312304132.79 (29.81)28773485

184.39 (4.02)191178196.62 (53.43)30685296

260.40 (6.17)248273119.95 (27.26)20072167

152.97 (1.41)155150138.10 (13.15)168111268

279.65 (3.15)285274118.33 (39.98)1770741029

226.97 (3.17)229222104.82 (10.80)147865310
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Figure 2. Time distribution of self-monitored blood glucose level collection by the patients over the clinical trial. The x-axis represents the date and
the y-axis represents the time of the day that data has been collected. If the same date has two recorded times, that means the patient has collected their
blood glucose twice in the same day.
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Figure 3. Patient 1 self-recorded data including calories consumed (cc), fat consumed (fat), carbohydratess consumed (carb), calories burned (cb),
recorded blood glucose level for the day (glucose), and recorded weight for the day (weight), where blue markers represent original data points and red
markers show the imputed data points.

Data Preprocessing
The study dataset is based on patient data entry with several
complicating factors, including missing values, (possible) wrong
entries, calculated features, and irregular sampling. Therefore,
major preprocessing steps are needed to clean the data and make
it compatible with the proposed deep learning model. The
preprocessing steps considered for this study include handling
of missing values, data scaling, and data splitting.

Handling Missing Values
The measurements in the database are sparse, irregularly
sampled, and presented with missing data points. To handle
missing values, assuming there is less chance of abrupt change
in glucose level on the following day, the missing values of data
were handled by replacing them with the last available data (last
observation). Meanwhile, we noticed that many patients had a

considerable number of missing values that could potentially
affect the performance of the methods. To address this problem,
we developed a transfer learning strategy to leverage the
similarity between the information of patients to improve the
predictions when dealing with data scarcity.

Data Scaling
The range of values for each feature in the dataset varies
extensively. Thus, the performance of the learning algorithm
might be dominated by features with a wider range of values.
The goal of this step was to scale the values of each feature
within a predefined limit without losing the inherent information.
For this purpose, we used data scaling based on min-max
normalization [35] (Figure 4), where X denotes the original
value of the feature of interest, Xmin denotes the minimum value
of the feature, Xmax denotes maximum value of the feature, and
R denotes the desired range of the scaled features, namely [–1,1].

Figure 4. Equation for data scaling based on min-max normalization.
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Data Splitting
When making a dietary, physical activity, or medication plan
for a patient, it is important to consider the time it takes for
those changes to affect the patient. In order to provide enough
time to observe patient behavior and test the model, we consider
approximately 120 days of data for training, 30 days of data for
validation, and 30 days of data for testing, where possible. For
the patient with a smaller number of available records, we
reduced the size of training, validation, and test sets
proportionally. For example, for a patient with 41 days of
entries, we considered 27 days of data for training, 7 days of
data for validation, and 7 days of data for testing.

Model Construction and Optimization: Long
Short-Term Memory–Based Recurrent Neural
Networks
We constructed a specialized RNN known as LSTM for
predictive modeling of daily glucose levels using mobile health

time series data. RNNs use the concept of parameter sharing
across different layers and can effectively model data sequences
of different lengths. However, classical RNNs suffer from the
vanishing (often) or exploding (rarely) gradient information
problem. Here, we consider an LSTM network that is explicitly
designed to avoid the vanishing gradient problem by regulating
the information flow using three distinct gates: forget gate,

external input gate, and output gate. The forget gate (fi
t) is a

linear self-loop weight that decides which information to keep

and which to drop. The external input gate (gi
t) helps with

deciding which new information to update in an LSTM memory
unit/cell. The output gate controls the extent to which the values
in the cell are to be used to compute the output activation. The

state unit (si
t) is calculated based on the forget gate and external

input gate. The output unit (qi
t) then provides the necessary

information to predict the output (y’t), which is the predicted
glucose level for the next day (Figure 5).

Figure 5. Block diagram of the LSTM neural network, where the left portion of the figure shows how an LSTM regulates the information flow using
the three control gates and the right portion provides the mathematical equations for the key gates and units of the LSTM model. LSTM: long short-term
memory.

Knowledge Transfer Across Patients
It has been shown that transfer learning is useful in learning
tasks when the data are scarce, contain many missing/imputed
values, and/or suffer from complex patterns [36,37]. Here we
developed two transfer learning strategies for coping with data
scarcity and improving the predictions for individual patients.
The first strategy used all the patient data (training data) to
create the transfer learning dataset to pretrain a global LSTM
model. The global model was then personalized for each patient
based on their individual records. The second strategy used the
similarity in glucose patterns between patients to create a
transfer learning dataset for each patient. For that, a similarity
matrix was created for each patient comparing their glucose
patterns with all other patients using dynamic time warping

(DTW) [38]. DTW is often used to compare two dynamic
patterns and calculate their similarity by calculating the
minimum distance between the two time series and aligning the
significant patterns [39]. Next, it creates a transfer learning
dataset for each patient by sampling records from other patients
according to their similarity. It then uses the sampled data to
train a deep learning model for the patient of interest, where the
deep learning model weights of the trained model will be used
as the prior. Finally, we personalized the deep learning model
weights to the patient of interest using their own data. Figure 6
shows a visual representation of the proposed transfer learning
strategies. In the results section, we compare the performance
of the two transfer learning strategies to the no-transfer learning
strategy.
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Figure 6. General scheme of the proposed transfer learning strategy. For patients with fewer observations, we pretrain a model with observations
sampled from all the patients in the dataset (based on either no weighting or weighting strategy). The pretrained model is then fine-tuned with the data
of the patient of interest.

Model Selection and Parameter Tuning
The proposed LSTM model for prediction of glucose level has
three hyperparameters to be optimized to achieve the best
predictive performance. These three hyperparameters are
dropout rate, number of neurons in LSTM layers, and number
of neurons in the feed-forward neural network layers [40]. We
considered lower bounds of (0.10, 5, 5) and upper bounds of
(0.45, 60, 40) for the three hyperparameters, respectively.
Optimizing the hyperparameters involved building, training,
and validating many versions of the LSTM network based on
various choices of the hyperparameters.

Considering an allowable unit change of 0.01 for the dropout
rate parameter and 1 for the number of neurons in LSTM and
feed-forward layers, we had to test a total of (35*55*35=67,375)
combinations before finding the optimal hyperparameters, which
was time-consuming. Thus, to identify the optimal value of the
hyperparameters with a minimum number of trials and errors,
we used an advanced design of experiments method based on
Bayesian optimization [41]. The advanced design of experiment
process began by generating a small sample of 15 experimental
settings based on the three hyperparameters of the LSTM using
a Latin hypercube design [42,43]. Next, for each of the initial
set of 15 experimental settings, an LSTM network was built
and tested over the validation dataset based on the root mean
squared error (RMSE) of the actual versus predicted glucose
level. Afterward, using the hyperparameters of the LSTM
models as the input and the respective RMSE as the output, a
surrogate model was fitted based on a Gaussian process. Then,

the expected improvement criterion was used to identify the
optimal point of the Gaussian process which represented the
estimated optimal hyperparameter setting of the LSTM. The
estimate of the optimal hyperparameter was used as the next
hyperparameter setting to experiment [44]. This procedure
continued until no improvement in the RMSE was observed.
For the LSTM, expected improvement methods converged to
the global optimum point after five iterations or 24 total
evaluations (15 initial evaluations + 9 additional evaluations).

Results

Overview
We considered three variants of the proposed deep learning
models for evaluation. The three variants were (1) the base
LSTM-NN (without transfer learning), where the model was
trained using only the respective patient’s data, (2)
LSTM-NN-TF-ALL (first transfer learning strategy), where a
general model was trained using all patients’ data and then
personalized based on the target patient’s records, and (3)
LSTM-NN-TF-DTW (second transfer learning strategy), where
separate transfer learning datasets were created for training
individualized models for each patient using similarity-based
sampling from other patients’ records. We evaluated the
performance of the deep learning models along with several
baseline machine learning methods including an ANN [45],
k-nearest neighbors (KNN) regression, ridge regression, kernel
ridge regression with Gaussian kernel, and a moving average
model. The validation dataset was used for tuning the
hyperparameters of the comparing models, such as the optimal
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number of nearest neighbors in KNN (found at k=3), the sample
size in the moving average (n=3), and the optimal value of the
penalty term in the (kernel) ridge regression.

Evaluation Criteria
Mean squared error and mean absolute error are commonly used
to evaluate the performance of prediction models. However,
these criteria do not consider the clinical impact of the prediction
error and how it might affect medical decision making. Here,
we considered two criteria which were related to the mean
squared error and provided information about the clinical impact.
The first criterion was the Clark Error Grid [46], which
determined the acceptable error for the accuracy of blood
glucose prediction in comparison with the actual observation.
The second criterion, based on the prescription point of care
[47], was the prediction accuracy within the range of ±10% of
the actual value.

Prediction Accuracy Based on the Clark Error Grid
The Clark Error Grid [46] is one of the most widely used tools
to assess the clinical accuracy of blood glucose estimation. The
Clark Error Grid is a plot with five major zone of attention (zone
A, B, C, D, and E) for interpretation of the predicted glucose
levels. Zone A represents those values within 20% of the
reference value that generally lead to the appropriate treatment

of patients. Zone B represents those values that are outside zone
A, yet do not lead to inappropriate treatment of the patients.
Prediction values falling in zone C lead to inappropriate
treatment but without any dangerous consequences for the
patient. Prediction values on zone D lead to failure in detecting
hypoglycemia or hyperglycemia. Finally, prediction values in
zone E lead to the inappropriate treatment of hyperglycemia
instead of hypoglycemia and vice versa depending on the zone
location.

Table 2 summarizes the percentage of prediction points falling
in various zones of the Clark Error Grid for each of the
comparing methods. As shown in the table, the proposed
LSTM-NN-TF-DTW model has the highest percentage of
predicted values in zone A (84.12%), followed by the kernel
ridge regression (83.03%), and the moving average (82.01%).
On the other hand, the moving average and kernel ridge
regression have the lowest percentage of predicted values in
zone C, D, and E, followed by LSTM and artificial neural
network (ANN) models. Overall, ANN provides the lowest
performance among all methods, which may be attributed to
the large amount of data that it requires and the problem with
vanishing gradient in RNN. Multimedia Appendix 1 (Figure
C.1) complements Table 2 with visual illustrations of the Clark
Error Grid for each of the comparing methods.

Table 2. Percentage of prediction points on the Clark Error Grid zones.

Moving aver-
age (last 3
days) (%)

Kernel ridge
regression
(%)

Ridge regres-
sion (%)

KNNe regression
(%)

ANNd (%)LSTM-NNc

(without trans-
fer learning)
(%)

LSTM-NN-

TF-ALLb

(with transfer
learning) (%)

LSTM-NN-TF-DTWa

(with transfer learning)
(%)

Clark Er-
ror Grid
zone

82.0176.983.0371.1269.3175.8178.1784.12A

17.9923.116.2526.7129.9623.4721.1715.16B

00000000C

000.722.170.720.720.650.72D

00000000E

aLSTM-NN-TF-DTW: second transfer learning strategy.
bLSTM-NN-TF-ALL: first transfer learning strategy.
cLSTM-NN: without transfer learning.
dANN: artificial neural network.
eKNN: k-nearest neighbors.

Prediction Accuracy Based on the ±10% Range
Table 3 provides the predictive accuracy of the comparing
methods based on the ±10% range of the actual values. As
demonstrated in the table, LSTM neural networks generally
outperform other methods by a margin of significance. Also,
transfer learning strategies provide meaningful improvements

to the LSTM network, with DTW transfer learning (weighted
strategy) delivering better results. Meanwhile, there are a couple
of exceptions, such as patients 5 and 8, where the moving
average method makes better predictions. Further investigation
of such cases reveals that those patients suffer from many
(adjacent) missing values over a long period of time (see also
Multimedia Appendix 1, Part D).

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 11 | e14452 | p. 8https://mhealth.jmir.org/2019/11/e14452
(page number not for citation purposes)

Faruqui et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Prediction accuracy of the proposed deep learning models along with other comparing methods based on the ±10% range of the actual glucose
level value.

Moving average
(last 3 days) (%)

Kernel ridge re-
gression (%)

Ridge regres-
sion (%)

KNNe regression
(%)

ANNd

(%)
LSTM-NNc

(without transfer
learning) (%)

LSTM-NN-TF-

ALLb (with
transfer learn-
ing) (%)

LSTM-NN-TF-

DTWa (with
transfer learn-
ing) (%)

Patient #

73.3343.3376.6746.6773.3373.3373.3376.671

76.6750.0086.6753.3386.6783.3386.6786.672

53.3343.3353.3350.0053.3360.0060.0060.003

71.4371.4371.4342.8671.4385.7185.7185.714

76.6666.6766.6736.6613.3316.6746.6763.335

43.3326.6736.6710.0026.6733.3336.6746.006

20.0026.6726.6733.3330.0033.3326.6733.337

80.0043.3360.0046.6756.6766.6756.6763.338

40.0020.0040.0026.6720.0060.0016.6760.009

63.3363.3356.6756.6773.3373.3370.0073.3310

aLSTM-NN-TF-DTW: second transfer learning strategy.
bLSTM-NN-TF-ALL: first transfer learning strategy.
cLSTM-NN: without transfer learning.
dANN: artificial neural network
eKNN: k-nearest neighbors.

Discussion

Principal Findings
The objective of this study was to dynamically forecast the
next-day glucose levels in patients with T2DM based on their
daily mobile health data including diet, physical activity, weight,
and glucose levels from the day before. To achieve this
objective, we developed an LSTM-based RNN that leverages
these data and finds the pattern of glucose level change. We
also developed two transfer learning strategies to deal with the
issue of data scarcity and/or when a new patient starts using our
model. The numerical results show the transfer learning model
provided better prediction accuracy, especially in cases where
there weren’t enough data available (and for patients with high
variability). This provided the intuition for building an initial
model that worked as a prior while collecting more data to
personalize the predictions. Additionally, we used advanced
design of experiments to optimize the hyperparameters of the
proposed deep learning models with minimum effort. The
proposed deep learning models performed well in comparison
with the baseline models such as Kernel ridge regression and
KNN. This pilot investigation has significant implications for
future research studies in using real-world patient-generated
lifestyle data to predict blood glucose changes to achieve optimal
diabetes management.

The modeling of our study was closer to daily life in the real
world involving dynamic data of physical activity, food intake,
calories burned, body weight, and blood glucose generated by
patients for 6 months. Previous studies have extensively focused
on predicting glucose level for T1DM by engineering an
artificial pancreas and simulating its insulin delivery to assist
with the glycemic control of T1DM, and most predicting

approaches are building upon physiological modeling [48].
Unlike T1DM, which is characterized as absolute inadequate
insulin secretion of the body, the management of T2DM is
largely determined by lifestyle [49-51]. Meanwhile, unlike the
existing literature on forecasting glucose for T2DM based solely
on food intake or glucose [52,53], our proposed model forecasts
future glucose level more comprehensively by considering
dietary habits, physical activity, weight, and previous glucose
levels for patients and might provide a practical guide to T2DM
management. We admit that blood glucose level can be affected
instantly by an extreme lifestyle event (eg, a large amount of
carbohydrate consumption or high levels of intensive physical
activity without sufficient carbohydrate supplementation)
[54,55]. However, our goal is to guide a patient through lifestyle
changes (or choices) steadily, considering changing lifestyle
choices takes time. Thus, the intention of this model was not to
predict short-term blood glucose level variation throughout the
day. Instead, it was designed to manage routine lifestyle in
T2DM patients, and it is important to help patients understand
how their lifestyle behaviors may change their blood glucose
level in the very next day.

Glucose prediction was personalized in this model. Even though
we have not counted all variations of each individual
(demographic conditions, family history of diseases, etc), the
prediction model does consider previous blood glucose level,
which is the result of the interaction of lifestyle included in the
model and other unexamined factors (eg, genes) [56]. In
particular, the current glucose level may improve our
understanding of glucose dynamics in patients with diabetes
and serve as a crucial predicting factor for a future glucose level.
For example, in T1DM patients, continuous glucose monitoring
(CGM) is evidenced to predict future glucose level with high
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accuracy [49,57]. While CGM is generally not available and is
not currently recommended for all T2DM patients [58], it is
promising that CGM will be available with low-cost and
noninvasive devices in the near future [59]. Using our model,
as more data are recorded by the patient, the model will become
more personalized to them, thus attaining higher accuracy in
terms of predicting glucose levels, especially short-term glucose
levels, throughout the day. Together with future advancements
in characterizing biological traits, a more personalized and
proactive diabetes management program will likely become
practical. Our study has provided a promising piece of precision
health, integrating dynamic lifestyle and daily glucose
monitoring. Moreover, by using the prediction model to
assimilate the massive amount of lifestyle data, health care
providers can provide T2DM management guidance to patients
without personally reviewing the data collected by mobile health
technologies. This further makes precision health more feasible.

However, it should be noted that the prediction accuracy was
low or modest for some participants. There are several possible
explanations. First, glucose levels are multifactorial, and it might
be hard to predict with limited input. Adding other patient
features (eg, age, genetic profiling, demographic conditions,
medication usage) [60,61] may increase the accuracy of
prediction. Second, individual variability, such as genes and
individual differences in glycemic response to lifestyle, further
complicate the prediction. Studies are needed to explore models
to mimic the interactions among predisposed traits (eg, genes),
new input (eg, lifestyle), and the interactions between the two.
Third, it could also be that blood glucose has a stronger
dependency on short-term lifestyle choices than on long-term
choices. For example, if a patient decides to consume a lot of
carbohydrates or consume carbs at irregular times or work out
irregularly, the glucose value would be unpredictable because
there is no such information in the model. This further reinforces
the importance of our study trying to predict future glucose
levels and guide individual lifestyle choices. We would suggest
that a more rigorous study design is needed to help identify the
right model to predict future glucose levels. In particular,
behaviors such as food consumption, physical activity, or
medication use performed right before the predicting glucose
level used to test prediction accuracy will need to be considered
in the model. A model developed from a rigorous study design
and data collection with high prediction accuracy may provide
significant clinical implications to manage T2DM.

Limitations
There are several limitations to this study. First, this study has
a relatively small sample size, which may limit our study
generalizability. Future studies with larger sample sizes are
needed. Second, there are substantial variations in terms of
accuracy when predicting blood glucose. Some underlying
mechanisms, such as individual variations of age, gender, gut
microbiota, and genetic traits [60-62], which are beyond the
scope of this study, may have contributed to the variations.
Future studies incorporating these factors are warranted. Third,
given the nature of using secondary data from a previous trial,
the data collection was not designed to predict future glucose
levels. For example, the time of glucose level testing and
diabetic medication use were not well documented and hard to
include in the model. Last, several study participants had a large
amount of missing data on glucose monitoring, and data were
imputed using standard imputation methods widely used in the
literature. Nevertheless, this is one of the first attempts of using
digital monitored lifestyle data, weight, and previous glucose
levels to predict future glucose levels in T2DM. It provides
important information for future studies regarding data
collection, model selection, and the implications of glucose
prediction for individuals living with T2DM.

Conclusion
In this work, we proposed a personalized dynamic forecasting
model for glucose levels in T2DM patients based on
LSTM-based RNN. We developed a transfer learning strategy
based on weighted sampling from all patients to improve
predictions, especially when dealing with data scarcity. We also
used an advanced design of experiments based on Bayesian
optimization and expectation maximization for efficient
optimization of deep neural network hyperparameters with the
minimum number of experiments. We tested our model using
a longitudinal mobile health lifestyle dataset of 10 patients who
provided self-monitoring data over 6 months on food intake
(carbohydrates, fats, and calories), physical activity (exercise
time and calories burned), weight, and previous glucose levels.
Predicting future glucose levels is challenging as glucose level
is determined by multiple factors. Future research with a more
rigorous study design is warranted to help identify a model or
models to predict future glucose levels.
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