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Abstract

Background: Digital technologies and advanced analytics have drastically improved our ability to capture and interpret
health-relevant data from patients. However, only limited data and results have been published that demonstrate accuracy in target
indications, real-world feasibility, or the validity and value of these novel approaches.

Objective: This study aimed to establish accuracy, feasibility, and validity of continuous digital monitoring of walking speed
in frail, elderly patients with sarcopenia and to create an open source repository of raw, derived, and reference data as a resource
for the community.

Methods: Data described here were collected as a part of 2 clinical studies: an independent, noninterventional validation study
and a phase 2b interventional clinical trial in older adults with sarcopenia. In both studies, participants were monitored by using
a waist-worn inertial sensor. The cross-sectional, independent validation study collected data at a single site from 26 naturally
slow-walking elderly subjects during a parcours course through the clinic, designed to simulate a real-world environment. In the
phase 2b interventional clinical trial, 217 patients with sarcopenia were recruited across 32 sites globally, where patients were
monitored over 25 weeks, both during and between visits.

Results: We have demonstrated that our approach can capture in-clinic gait speed in frail slow-walking adults with a residual
standard error of 0.08 m per second in the independent validation study and 0.08, 0.09, and 0.07 m per second for the 4 m walk
test (4mWT), 6-min walk test (6MWT), and 400 m walk test (400mWT) standard gait speed assessments, respectively, in the
interventional clinical trial. We demonstrated the feasibility of our approach by capturing 9668 patient-days of real-world data
from 192 patients and 32 sites, as part of the interventional clinical trial. We derived inferred contextual information describing
the length of a given walking bout and uncovered positive associations between the short 4mWT gait speed assessment and gait
speed in bouts between 5 and 20 steps (correlation of 0.23) and longer 6MWT and 400mWT assessments with bouts of 80 to 640
steps (correlations of 0.48 and 0.59, respectively).

Conclusions: This study showed, for the first time, accurate capture of real-world gait speed in slow-walking older adults with
sarcopenia. We demonstrated the feasibility of long-term digital monitoring of mobility in geriatric populations, establishing that
sufficient data can be collected to allow robust monitoring of gait behaviors outside the clinic, even in the absence of feedback
or incentives. Using inferred context, we demonstrated the ecological validity of in-clinic gait assessments, describing positive
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associations between in-clinic performance and real-world walking behavior. We make all data available as an open source
resource for the community, providing a basis for further study of the relationship between standardized physical performance
assessment and real-world behavior and independence.

(JMIR Mhealth Uhealth 2019;7(11):e15191) doi: 10.2196/15191
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Introduction

Background
Gait speed is considered a key prognostic marker of survival
[1] and adverse events [2] in older adults and has been shown
to decline over time with healthy aging [3]. These observations
have primarily been driven by data collected as part of
controlled-environment performance tests, and we still
understand very little in terms of how performance in the clinic
relates to behavior in the real world, although it is clear that
these represent distinct, but related, aspects of function as related
to mobility [4].

Digital sensor technologies have drastically improved our ability
to capture health-relevant data from patients, in particular, data
describing real-world behaviors [5]. However, progress on
interpretation via advanced analytics is undermined by a lack
of algorithms with validated accuracy and performance in
disease populations [6], and most clinical trials still focus
exclusively on established performance tests.

Objectives
Age-related muscle loss and weakness (ie, sarcopenia [7]) can
result in an accelerated loss of patient mobility, progressive
limitations in independence, and reduction in health-related
quality of life (HRQoL). Developing therapies with the potential
to maintain and improve real-world patient mobility is therefore
a critical need. Previous early phase studies have demonstrated
the therapeutic potential of increasing muscle mass in patients
with sarcopenia [8]. To explore real-world functional
consequences associated with changes in ability captured by
clinical assessments, we incorporated continuous patient
monitoring using a wearable inertial sensor, during and between
their planned clinical site visits in the next clinical phase.

The work presented here describes progress on (1) ensuring that
we are accurately capturing gait speed in our target population,
(2) the feasibility of deployment in a global clinical trial, and
(3) comparison with established gait speed performance
measures to explore the validity of this novel, digital, continuous
monitoring approach.

We hypothesized that this approach would allow us to examine
real-world mobility on an individual patient basis and explore
the relationship between currently accepted measures of mobility
and real-world mobility behaviors, laying a foundation for
measuring personalized response to therapy in a way that was
not previously possible using in-clinic tests.

Methods

Data described here were collected from 2 clinical studies: an
independent, noninterventional validation study and a phase 2b
interventional clinical trial in older adults with sarcopenia.

Study Design: Independent Validation Study
The independent validation study was performed between May
and August 2018 as a cross-sectional design at a single site,
with no pharmaceutical treatment, where 26 naturally
slow-walking elderly subjects were recruited in 4 cohorts based
on their baseline self-selected gait speed over 4 m (4 m walk
test, 4mWT): below 0.5 m per second, 0.5 to 0.6 m per second,
0.6 to 0.7 m per second, and 0.7 to 0.8 m per second. Subjects
whose walking speed and natural movement were restricted by
orthopedic or neurological complications or other relevant
medical conditions were not eligible for the study. Data were
recorded with a wearable inertial sensor (see section
Accelerometry) while the subjects completed a parcours course,
at least twice, through the clinic that was designed to simulate
a real-world environment [9]. The parcours course included
straight corridors, stairs, a ramp, and a flat outdoor section.
Reference walking speeds were simultaneously measured using
a novel combination of a standard distance measuring wheel
and an inertial sensor, operated by an assistant, allowing
correlation analyses between the patient’s actual speed and the
algorithm-derived gait speed estimation [10]. A standard
smartphone video device on the measuring wheel recorded the
subject’s footfall in slow motion, allowing a more detailed
analysis of different sections of the parcours course. A summary
of the demographic data of the subjects in the validation study
is given in Table 1. Raw and derived data as well as annotations
and metadata captured during the study are made available as
delimited text files (see section How to Access).

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 11 | e15191 | p. 2http://mhealth.jmir.org/2019/11/e15191/
(page number not for citation purposes)

Mueller et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.2196/15191
http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Summaries of demographic data for subjects included in the independent validation study.

ValuesDemographic data

26Total subjects enrolled, n

Gender, n

11Male

15Female

Age (years), n (%)

2 (8)60-65

4 (15)66-75

18 (69)76-89

2 (8)>89

0.62 (0.12)4 m walk test gait speed at enrolment in meter per second, mean (SD)

Study Design: Interventional Clinical Trial
The phase 2b, interventional clinical trial (ClinicalTrials.gov
identifier: NCT02333331 [11]) recruited 217 patients across 32
sites globally, based on criteria for their lean muscle mass, age,
grip strength, and gait speed [12]. Between January 2015 and
December 2018, patients were enrolled for a period of 25 weeks
each, with clinical assessments occurring across 8 visits.
Accelerometry data were collected from patients during clinical
gait assessments at baseline, at weeks 9, 17, and 25, and during
intervening periods at home. A summary of the demographic
data of the patients and of accelerometry and clinical assessment

data collected in the interventional clinical trial is provided in
Table 2.

At each clinical site visit, patients completed several clinical
assessments including a 4mWT [13], 6-min walk test (6MWT
[14]), and 400 m walk test (400mWT [15]) from which we
derived average walking speed. For each of these assessments,
accelerometry data were recorded, along with accurate
timestamps delimiting when the patient started and finished
each assessment.

Data captured during the trial and metadata describing the
assessments are made available as delimited text files (see
section How to Access).

Table 2. A summary of demographic data for patients included in the interventional clinical trial.

ValuesDemographic data

217Total patients enrolled, n

192Total patients with accelerometry data, n

Gender, n

91Male

126Female

79.0 (5.45)Age (years), mean (SD)

0.648 (0.1048)4 m walk test gait speed at enrolment, mean (SD)

Accelerometry
For both studies, participants were monitored using a waist-worn
inertial sensor (actibelt RCT2, Trium Analysis Online, Munich
[3,6,16,17]), which recorded acceleration in 3 dimensions at a
sampling frequency of 100 Hz (12-bit resolution) and a range
of 6g. The devices did not require charging or other interaction
from the patients and were otherwise self-managed by the
patients.

For the independent validation study, subjects wore a single
device for the duration of their single-visit assessment.

In the interventional clinical trial, each patient was instructed
to wear the device continuously for a minimum period of 5 days
before each planned clinical site visit, and in cases of
self-reported noncompliance, for a further 5 days following the

visit. Multiple devices, each of the same model, design, and
placement, were used over the observation period. Recorded
data were stored locally on the device and downloaded
periodically following exchange of devices at planned clinical
site visits. Resulting recordings were then merged to form a
single observation period. In total, 9668 patient-days of data
were collected from 192 patients across 32 sites.

All files are made available in the HDF5 format (see section
How to Access).

Derived Gait Parameters and Annotations
Furthermore, algorithmically derived, aggregated gait parameters
were calculated for periods when the patients or subjects were
actively performing clinical assessments and for periods when
patients were passively monitored in their real-world home
environment. Individual raw acceleration data files for a given
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patient were processed using an algorithm similar to that used
in a study by Sabatini et al [18], where steps are first detected
and parameterized before a Hilbert transform is used to calculate
an analytical signal from which gait speed is projected per step
using a linear model. In the first step, a short-time Fourier
transform is used to extract dominant frequencies from the raw
signal: a broad band (0.7-3 Hz) filter pass removes some noise
from the signal before it is divided into overlapping windows
of approximately 2.5 seconds; and a fast Fourier transform then
calculates the frequency domain for each axis. For each window,
these results are then combined to determine the dominant
frequencies, removing windows where the angle toward gravity
or overall activity is not plausible for upright walking or where
there is no dominant frequency. This ensures that false-positive
(ie, nonwalking) motions are removed. For windows that pass
these checks, a Butterworth filter is applied, and a Hilbert
transform is used to determine the frequency (F), phase (), and
amplitude (A) for each axis (vertical, x; lateral, y; and
longitudinal, z). Ax, Ay, and Az give good indication of the force
involved in a step, independent of the exact time point, whereas
F indicates step frequency and () yields the relative position
within a step. Finally, to predict gait speed, a linear model is fit
to the parameters Ax, Ay, and Az and their interaction terms. By
combining information from all 3 axes, this approach allows
for much improved step detection in slow, frail walkers,
compared with previous methods [9].

To allow fair comparisons over time, periods of continuous
walking (bouts) were grouped according to length, similar to
our previous work [16]. To achieve this, contiguous windows
were combined into a single bout, provided that the mean
vertical frequency (Fx) did not vary by more than an empirical
factor of 1.6-fold between windows.

Derived data describing real-world and in-clinic gait parameters
are made available as delimited text (daily summaries and
in-clinic assessments) or HDF5 (step- and bout-level summaries)
files.

How to Access
Written informed consent was obtained from the patients for
collection and use of the data, and a local ethics committee
waiver was granted for collection and publication of the datasets.
Anonymized, open source derived data and metadata for the
independent validation study [19] and interventional clinical
trial [20] are made available. Full datasets, including raw

accelerometry data, for both studies are also available for
download [21].

Statement of Ethics
The ethics committee of the Medical Faculty of the Ludwig
Maximilian University of Munich (Ref. 17-798) approved the
independent validation study. Individual local ethics approval
was obtained for all sites in the interventional clinical trial
(ClinicalTrials.gov identifier: NCT02333331).

Results

Accurate Monitoring of Real-World Gait Speed in
Slow-Walking, Older Adults in Controlled Settings
Previous work has shown effective gait speed monitoring in
healthy populations by algorithms combining individual
detection and parameterization of steps with estimation of gait
speed for a given step. Step detection has been achieved with
a range of methods including continuous wavelet transform
[16,22], whereas gait speed estimation is typically done by using
supervised methods such as support vector regression [3].
However, when applied to slow-walking populations, for
example, multiple sclerosis (MS), these algorithms produce an
observable overestimation of gait speed, particularly in the
slowest walkers [6], presumably because of varying relevance
of the feature set in patients with pathological gait relative to
training sets. The step detector described in our study (see
section Methods) is specifically tailored to achieve excellent
step detection performance in slow and frail walkers [9]. To
validate the accuracy of this new algorithm, in our target
population, we performed an independent validation study
comparing gait speed continuously captured via an
assistant-operated device [10] with gait speed estimated from
accelerometry data. The study collected data from 26 frail,
elderly adults across a parcours course, which simulated a range
of real-world situations including indoor corridors, stairs, and
a ramp as well as a short outdoor section on uneven ground [9].
A summary of study enrolment is provided in Table 1.

As shown in Figure 1, we observed a strong association (r=0.84;
residual standard error=0.08 m per second) between the
reference and sensor-estimated gait speed across all subjects
and walking environments (see also Supplementary Figure 1 in
Multimedia Appendix 1). This demonstrates, for the first time,
accuracy of gait speed capture by a single system across a wide
range of nonsimulated gait speeds (<0.5 to >1 m per second) in
a frail population.
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Figure 1. Accuracy of the algorithm in frail, slow walking adults. (A) Results from the independent validation study “parcours”. Reference gait speed
continuously captured using an assistant-operated device is shown on the x axis, and accelerometer-derived patient gait speed is shown on the y-axis.
Each datapoint represents the median speed for a given subject and parcours section. Derived gait speed is shown to strongly associate with reference
gait speed in this parcours setting, the intercept for the linear fit (red line) is 0.15 and the slope is 0.78 the residual standard error is 0.08 m/sec. For
comparison, a cubic fit is included (blue line). (B) Results from sarcopenic adults as captured during scheduled clinical walking test assessments in the
interventional clinical trial. Reference gait speed (calculated as the distance traveled by the patient during the assessment divided by the time taken to
complete the assessment) is shown on the x-axis, and accelerometer-derived gait speed is shown on the y-axis. Each datapoint represents the average
speed for a given patient and assessment. The intercept for the linear fit is 0.15, 0.09, 0.09 from left to right and the slope is 0.79, 0.95 and 0.96, the
residual standard error is 0.08, 0.09 and 0.07 m/sec for the 4mWT, 6MWT and 400mWT (panels, left to right), respectively. Note, the 400 meter walk
test was collected for relatively few patients. A strong linear association is observed between derived and reference gait speed in all assessments indicating
accuracy in our target population of frail, slow walkers.

The same system (hardware and algorithm) was deployed to
monitor patients in a global, multisite phase 2b interventional
clinical trial involving patients with age-related muscle loss and
slow walking speed (see section Methods). To further evaluate
the accuracy of the system, we conducted internal validation
within the interventional clinical trial dataset by performing a
head-to-head comparison of gait speed calculated from
accelerometry data and gait speed captured using canonical,
clinical standard assessments. The assessments included a

4mWT [13], a 6MWT [14], and a 400mWT [15] from which
we derived walking speed. Using timestamps demarcating the
specific periods (±2 seconds) in which the assessments were
performed, we extracted those intervals from the aligned raw
accelerometry data stream and calculated the average gait speed
using the algorithm described in the Methods section.
Comparing these values with the corresponding clinical
reference values (Figure 1), we could confirm that the new
algorithm performs with less than or equal to 0.1 m per second
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residual standard error in our target population, with a
correlation of 0.85, 0.94, and 0.97 for 4mWT, 6MWT, and
400mWT, respectively. The relatively high error seen in the
4mWT is because of the very short nature of the assessment,
typically only taking a few seconds to complete, which, in turn,
gives a greater weight to any intrinsic human error in recording
the start and end of the assessment. The accuracy of our
approach can overcome these errors and enable clinicians, which
previously relied on the 4mWT, to draw more accurate
conclusions.

Feasibility and Patient Compliance in Long-Term,
Real-World Settings
The above results demonstrated the accuracy of both the
hardware and algorithm for active, controlled-environment data
collection. The monitoring of real-world behavior presents a
more complex challenge because of dependence on patient
compliance outside of the controlled clinic environment. We
therefore set out to evaluate compliance and its effect on our
ability to capture real-world walking behavior.

In the interventional clinical trial, patients were requested to
wear the device at home for 5 days during the week before every
scheduled visit to the clinical site. No feedback was directly
given to patients, but if a patient reported that they had not worn
the device during the week preceding a visit, they were requested
to wear it for the following week. Compliance was monitored
through regular data reviews, and feedback provided to clinical
sites. We avoided providing any feedback on an individual
patient basis so as not to influence their patterns of mobility
and confound the overall trial. Ultimately, 9668 patient-days
of accelerometry data were collected from 192 patients and 32
sites (see Supplementary Figure 2 in Multimedia Appendix 1
for patterns of observed compliance). A summary of enrolment
and data collected is presented in Table 2. This demonstrates
the feasibility of continuous monitoring in global clinical trial
settings and elderly populations and enabled us to collect an
unprecedented volume of data describing real-world mobility.
We make the full raw and derived datasets for both the
independent validation study and interventional clinical trial,
publicly available as part of this publication (see section
Methods for instructions on how to access).

We observed that patient compliance patterns were highly
variable, with some patients greatly exceeding the requested

wear time and others contributing far less. As previously
reported [16], we sought to define a set of minimum thresholds
for compliant wear time from which gait behaviors could be
stably estimated. This 2-component threshold (hours per day
and days around visits) is an attempt to maximize the number
of patients included in the analysis and minimize variation
because of the sampling of an unrepresentative, too short period
of a patient’s daily life.

We extracted, for each patient, a 20-day period straddling each
clinical site visit excluding the visit day itself. Figure 2 shows
the total amount of daily wear time and daily total step count
normalized to the total daily wear time. We expect the wear
time–normalized daily step count to distribute around the grand
mean (410 steps per hour, horizontal line); however, at less than
3 hours of wear time per day, the normalized step count
decreases strongly, suggesting that, in our patient population,
at least 3 hours of wear time on a given day is required for stable
and representative sampling of walking behavior. Additional
hours of wear time do not affect the normalized step count but
reduce between-day step count variability as indicated by data
comparing 3 versus 9 hours of daily wear time (Figure 2).

The patients in our study were asked to wear their belt with the
accelerometer for at least five days around each scheduled
clinical site visit, and this is reflected in the distribution of wear
time in days around visits (Supplementary Figure 3 in
Multimedia Appendix 1). However, some patients wore the belt
for longer periods, and others for shorter periods. Figure 2 shows
the mean daily step count when sampling for different number
of days around visits. The normalized step count estimate starts
to stabilize at 3 days in our population. Where a patient is only
compliant for 1 or 2 days in the week of their visit, the variation
is relatively high compared with longer sampling periods.

Combining these 2 observations, we chose a minimum criterion
of at least three hours of wear time per day for at least three
days per visit epoch for our real-world gait analysis. This
enabled us to avoid biased estimates but also to minimize
exclusion of patient visits and placed a very low burden on the
patients. After applying these criteria, 398 visits from 160
patients remained from a complete dataset of 594 visits from
192 patients. This subset was used for all subsequent analyses
and figures.
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Figure 2. Effect of daily weartime and compliance around a visit on step count estimation. (A) The mean hourly steps per day is calculated for each
day of patient observation as the total step count normalized to the detected weartime for that day. On the y-axis we show the distribution of mean
hourly steps per day and patient, grouped by the total daily weartime in hours on the x-axis. The blue line is a smoothed Loess-fit. Mean daily steps are
seen to drop sharply where less than 3 hours of weartime are detected. (B) After removing days of observation with less than 3 hours of weartime, we
then calculated the distribution of average normalized daily step counts (“mean daily step count per visit”; total step count in a 20 day window straddling
each planned visit divided by the number of compliant “days around patient visit” with a minimum 3 hours weartime). The “mean daily step count per
visit” is plotted on the y-axis and the “days around patient visit” on the x-axis. The blue line is a smoothed Loess-fit. Mean daily steps per visit is
observed to drop sharply where less than 3 compliant days are detected around a given visit. Combining the results of (A) and (B) we arrived at a
two-component threshold of at least 3 days with at least 3 hours of compliance for robust capture of walking behavior in our population.

Context Dependence of Real-World Gait Speed
Variability observed in real-world behaviors is heavily
influenced by external factors [23]; for example, gait speeds
observed in this study may be influenced by changing footwear
or weather. Research is now beginning to show how overlaying
external contextual information, for example, location [24],
onto objectively captured sensor data and patient-reported
outcome data can help explain some of the observed variations
and enable even more meaningful comparisons. Although the
wearable sensor that we deployed does not allow for the direct

capture of contextual information, it has been shown that by
grouping concerted periods of walking (bouts) by length, some
context can be inferred and enable comparisons of distinct
behaviors over time and between individuals [16,25,26].

We observed, on both the population and individual patient
level, highly variable and skewed distributions in both bout
length (Supplementary Figure 4 in Multimedia Appendix 1)
and real-world gait speed (Supplementary Figure 5 in
Multimedia Appendix 1).
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The majority of observed real-world walking behavior
comprised relatively short and slow bouts, although it is
debatable whether some of these very short bouts of low
acceleration intensity constitute true walking behavior. We

examined the relationship between bout length and real-world
gait speed and found that real-world gait speed strongly
increases with bout length on both the population and individual
patient level (Figure 3).

Figure 3. Comparison of gait speed with bout length on a population-level (bottom right panel) and for three representative individual patients (other
panels). For all panels, the x-axis shows bout length, divided into groups of increasing numbers of steps, from very short bouts (fewer than 10 steps) to
very long bouts (&lt;320 steps), and the y-axis shows the distribution of mean gait speed for each bout. Each boxplot is colored by the fraction of total
bouts within that bout length range on a scale between dark blue (boxplots representing a large fraction of bouts) to light yellow (boxplots representing
a small fraction of bouts). We observe that gait speed increases with bout length, and the majority of bouts are short in length (i.e. contain few steps).

Comparison of Gait Speed in Real-World Behavior
and In-Clinic Performance
Understanding how real-world walking behavior is influenced
by changing performance ability in clinical assessments is a
key step in understanding how performance and subjective
perceptions of independence are linked. Making comparisons
between tests performed in the clinic and real-world behavior
has proven more difficult, for example, in MS populations, and
it was challenging to find sufficient real-world 6MWT events
to make a meaningful comparison [4].

We compared real-world gait speed from short (1-20 steps) and
long (160-320 steps) bouts with the corresponding short
(4mWT) and long (6MWT and 400mWT) clinical gait
assessments. Applying our threshold for compliance, each
comparison was made between a given clinical assessment and
real-world gait from the 20 days surrounding that assessment,
excluding the days of the assessment. We found strong linear
relationships between real-world and in-clinic gait, in particular,
for the longer gait assessments when comparing similar length

bouts (Figure 4). Comparing the short 4mWT gait speed with
gait speed in bouts between 5 and 20 steps, we saw a correlation
of 0.23, and comparing the longer 6MWT and 400mWT results
to bouts of 80 to 640 steps, we saw correlations of 0.48 and
0.59, respectively. Weaker associations were observed for
comparison of nonsimilar bout lengths between the in-clinic
assessments and real-world gait (Supplementary Figure 6 in
Multimedia Appendix 1). Our results indicate that longer gait
tests are the most reflective of real-world walking behavior.

We observed that real-world gait speed is consistently lower
than what is observed in the corresponding clinic-based
assessment. For example, a patient who records a 1 m per second
6MWT will, in their daily life, walk, on average, at 0.75 m per
second for bouts of at least 80 steps. We found that this trend
is reversed for the slowest walkers (below 0.5 m per second in
clinical gait assessments), where the captured real-world gait
speed is slightly higher. Overall, the positive associations
between those measurements indicate that a higher mobility
capacity is reflective of higher habitual gait speed in the real
world.
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Figure 4. Comparison of in-clinic gait speed performance measures and adjacent real-world gait speed behavior. Only patient visits with at least 3 days
and 3 hours per day of wearing in a 20 day window around the visit are included. Gait speed in the 4mWT is compared to real-world gait speed in bouts
of length between 5 and &lt;20 steps, and 6MWT and 400mWT gait speeds are compared to real-world gait speed in bouts containing between 80 and
&lt;640 steps. Gait speed in the clinical assessment is plotted on the x-axis and real-world gait speed is plotted on the y-axis.

Discussion

Principal Findings
We show, for the first time, accurate capture of real-world gait
speed in slow-walking older adults with sarcopenia. In an
independent validation study, recruiting 26 subjects with a mean
gait speed of 0.62 m per second, we demonstrate a mean residual
error of 0.08 m per second when estimating gait speed through
a parcours course. Furthermore, using data captured from
patients with sarcopenia with a mean gait speed of 0.648 m per
second, as part of clinical gait assessments during an
interventional clinical trial, we demonstrate residual standard
errors of 0.08, 0.09, and 0.07 m per second for estimating gait
speed during the 4mWT, 6MWT, and 400mWT clinical gait
speed assessments, respectively.

We demonstrate the feasibility of long-term, real-world
monitoring of gait and mobility in geriatric populations with
slow-walking speed, capturing 9668 patient-days of
accelerometry data from 192 patients and 32 sites. Our results
establish that even in the absence of feedback or other
incentives, sufficient data can be collected to allow robust
monitoring of gait behaviors outside the clinic.

We indirectly infer context, in this case, bout length, to partly
explain some of the large variation we see in real-world
behaviors. Using this contextual information, we demonstrate
the ecological validity of in-clinic gait assessments and explore
the relationship between in-clinic performance and real-world
behaviors relating to gait. We show that a linear relationship
exists between real-world gait speed and clinical assessments,
but only between comparable bout lengths.

Strengths and Limitations
Improving our understanding of how a patient’s capacity, that
is, what a patient can do, relates to their functional behavior,
that is, what they actually do, is foundational to building a bridge

between physiological changes induced by a given therapy and
changes in a patient’s independence [27]. A more complete
chain of evidence, incorporating physiological, functional, and
subjective data, will enable development of interventions that
genuinely improve patient HRQoL.

Our 2-component threshold for robust capture of real-world
walking behavior, a minimum daily wear time of 3 hours and
minimum period of 3 days, is well below our initial expectations
and achievable in the vast majority of this population without
any reminder system or other motivational tools. Moreover, this
low threshold can still provide valuable insights into long-term
mobility behaviors. Importantly, although relevant to this study
population and protocol, this threshold may not be directly
transferable to other settings without further evaluation. Other
populations may differ in their wear time behavior and
periodicity of activity; for example, in a working population,
nonworking waking hours might be vastly different from
working hours. We believe similar approaches could be modeled
on what we present here to define these thresholds in the future
populations and settings.

A recent study also compared distributions of real-world gait
speed with 4mWT gait speed and found no association [28].
We find these results to be consistent with our own, as we see
no relationship to overall distributions, but only find positive
associations when comparing similar bouts between clinical
assessments and real-world gait. In addition, we demonstrate
that real-world gait was consistently slower than what was seen
in the clinic, an observation also noted by Van Ancum et al
[28], and reflecting other data showing that a patient’s gait speed
can be increased simply by the knowledge that they are being
observed [29].

Outlook and Conclusions
Future work will focus on the clinical relevance and value of
this novel continuous monitoring approach by examining
changes over time and response to therapeutic intervention. We
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will also continue exploration of how context can enable
interpretation of real-world behavioral data, for example,
overlaying weather data from a patient’s locality to model
seasonal changes in mobility [30]. These efforts may further
explain variation in the real-world data and enable more
sensitive longitudinal comparisons. Further stratification of
bouts may be possible by combining information on location
from anonymized global positioning system data [24] or
gyroscope data to distinguish linear and nonlinear bouts.

Direct, accurate measurement of performance capacity and
behavior specifically relating to physical activity is still an
emerging field but holds the promise of a better understanding
of how mobility, independence, and HRQoL are interrelated on
an individual patient level. The work presented here is based

on a relatively simple accelerometry-based system and still
provides many advantages alongside traditional approaches for
assessing mobility, yet capturing broader, multimodal data
covering domains such as social interaction [31], stress [32], or
vital signs could potentially increase our understanding of
physical effort for a specific activity [33]. Directly capturing
context, behavior, and activities of daily living using ambient
[34] and smartphone technologies [24] will help us to better
relate objective measurements to events and transitions in a
patient’s life. Ultimately, we aim to build on the progress
presented here in terms of establishing accuracy, feasibility,
and leveraging context to make meaningful comparisons to
further build the link between performance, behavior, subjective
perceptions of health, and clinical outcomes [35] and to predict
long-term changes in health.
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