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Abstract

Background: Sickle cell disease (SCD) is an inherited red blood cell disorder affecting millions worldwide, and it results in
many potential medical complications throughout the life course. The hallmark of SCD is pain. Many patients experience daily
chronic pain as well as intermittent, unpredictable acute vaso-occlusive painful episodes called pain crises. These pain crises
often require acute medical care through the day hospital or emergency department. Following presentation, a number of these
patients are subsequently admitted with continued efforts of treatment focused on palliative pain control and hydration for
management. Mitigating pain crises is challenging for both the patients and their providers, given the perceived unpredictability
and subjective nature of pain.

Objective: The objective of this study was to show the feasibility of using objective, physiologic measurements obtained from
a wearable device during an acute pain crisis to predict patient-reported pain scores (in an app and to nursing staff) using machine
learning techniques.

Methods: For this feasibility study, we enrolled 27 adult patients presenting to the day hospital with acute pain. At the beginning
of pain treatment, each participant was given a wearable device (Microsoft Band 2) that collected physiologic measurements.
Pain scores from our mobile app, Technology Resources to Understand Pain Assessment in Patients with Pain, and those obtained
by nursing staff were both used with wearable signals to complete time stamp matching and feature extraction and selection.
Following this, we constructed regression and classification machine learning algorithms to build between-subject pain prediction
models.

Results: Patients were monitored for an average of 3.79 (SD 2.23) hours, with an average of 5826 (SD 2667) objective data
values per patient. As expected, we found that pain scores and heart rate decreased for most patients during the course of their
stay. Using the wearable sensor data and pain scores, we were able to create a regression model to predict subjective pain scores
with a root mean square error of 1.430 and correlation between observations and predictions of 0.706. Furthermore, we verified
the hypothesis that the regression model outperformed the classification model by comparing the performances of the support
vector machines (SVM) and the SVM for regression.
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Conclusions: The Microsoft Band 2 allowed easy collection of objective, physiologic markers during an acute pain crisis in
adults with SCD. Features can be extracted from these data signals and matched with pain scores. Machine learning models can
then use these features to feasibly predict patient pain scores.

(JMIR Mhealth Uhealth 2019;7(12):e13671) doi: 10.2196/13671
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Introduction

Background
Sickle cell disease (SCD) is a hematologic disorder that can
cause a multitude of complications throughout a patient’s life,
with pain being the most common and a significant cause of
morbidity. The pain experienced by SCD patients is often
chronic with acute vaso-occlusive crises that are unpredictable
and lead to frequent visits to the emergency department (ED)
and day hospital for management [1]. Of these patients, 1 in 4
will be admitted and can result in unplanned hospitalizations
with missed days from work and school, significantly impairing
a patient’s quality of life [2]. Acute pain management is
palliative, with hydration and pain control via narcotic and
nonsteroidal anti-inflammatory drugs (NSAIDs). With pain
being inherently subjective, both medical providers and patients
express difficulty in determining ideal treatment and
management strategies for pain.

In the last several years, there has been an increasing focus on
developing and implementing individualized pain plans [3].
However, in addition to the slow adoption of these
individualized plans, difficulty also lies in understanding the
patient’s degree of pain and response to pain management. With
at least 1 in 4 patients with SCD seen in the ED being admitted
to the hospital, it is critical to determine accurately which
patients require additional pain management and which patients
can be discharged.

More recently, technology has been leveraged to use mobile
apps for recording symptoms in real time and wearable devices
to provide more frequent physiologic measurements. The field
of mobile health (mHealth) has continued to grow and has been
used in a variety of different clinical settings. Many studies
have attempted to help patients and providers connect using
mobile technology to better understand and treat a multitude of
symptoms, including pain [4-6]. Many of the initial mHealth
systems and apps are smartphone-based and allow patients to
self-report symptoms and activity in addition to recording
objective data [7-9].

We previously reported the usefulness and validity of our
mHealth app for patients with SCD [7-9]. The app has
undergone multiple upgrades in the user interface based on
feedback, as we continue to foster patient engagement. We have
included additional health and mood questions, and the app was
recently expanded to specific patient populations including bone
marrow transplant patients [10]. In this study, we used
Technology Resources to Understand Pain (TRU-Pain) app,
which allows patients to record pain and other symptoms
throughout their treatment, as described above [7]. In addition,

TRU-Pain now allows the integration of wearable devices such
as the Microsoft Band 2 to passively obtain physiologic data
such as heart rate (HR), accelerometer activity, and galvanic
skin response (GSR) using the AppleCare Kit platform.

In the face of the continued opioid crisis, the search for more
objective measures of pain continues to rapidly evolve in
medicine, and studies looking at a variety of objective measures
to predict pain have been published in recent years. Among
these studies, the types of objective data utilized to predict pain
vary in invasiveness (vital signs vs neuroimaging) but show
promise for utilizing such data to predict pain. Bendall et al [11]
examined prehospital vital signs to predict pain severity using
ordinal logistic regression and found that elevated respiratory
rate, HR, and systolic blood pressure (specifically in older
adults) were associated with more severe pain. A more invasive
study by Lee et al used multimodal neuroimaging and HR
variability with machine learning techniques to predict clinical
pain in patients with chronic low back pain [12].

Owing to the growing volume of clinical data and the
requirement of high accuracy predictive models, machine
learning techniques have been increasingly utilized in medicine.
They have been applied to multiple health care domains, from
analgesic response prediction to postoperative pain estimation
[13-15]. Machine learning techniques have also previously been
utilized effectively in SCD studies [16,17]. Our previous study
has also shown promising results in pain assessment [18]. Using
nurse-obtained vital signs for patients with SCD admitted for
pain crisis, our best model predicted pain with an accuracy of
0.429 on an 11-point rating scale (0 to 10) and 0.681 on a 4-point
rating scale (none, mild, moderate, and severe) [18]. In these
studies, machine learning can be described as a computational
method to build efficient and accurate prediction models using
known past information [19].

Objectives
We now aim to use physiologic data obtained from a wearable
device matched with mobile app and nurse-obtained pain scores
to predict pain scores at between-subject level using machine
learning techniques. The combination of mobile apps and
wearable sensors has been used in several studies to provide
novel solutions to different health problems [20-22]. To date,
there has been a paucity of research in SCD focused on pain
prediction, despite the critical need. The ability to objectively
and accurately predict pain severity and onset could result in
more prompt and effective treatment of pain crises, leading to
improved outcomes, as well as encouraging more diligent use
of medications [23,24]. Using our past experience, our
hypothesis for this study was as follows: For SCD patients
presenting in acute pain, can we feasibly obtain objective data
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from a wearable device and then utilize machine learning
techniques to accurately predict pain scores?

Methods

Recruitment and Data Collection
Following Duke Institutional Review Board approval, patients
presenting for acute pain crisis to the day hospital were
approached and asked to participate in the study. A convenience
sample of eligible patients who were willing to participate was
consented. A small number of patients approached declined to
participate, but this specific number was not recorded, and no
patients withdrew from the study after consent. Of the 27
patients consented, 20 were included in this study because of
insufficient data from the wearable device in 7 patients. Patients
were consented Monday through Friday based on the availability
of study team members. Study duration was variable based on
patient’s length of stay in the day hospital. The study included
a one-time visit only. Patients might have had other chronic
medical conditions but were not excluded based on these
conditions, and subgroup analysis was not undertaken.

Following consent, a Microsoft Band 2 wearable was placed
on the patient’s wrist. The Microsoft Band 2 is a commercially
available smart band that is compatible with many smartphones;
it has multiple objective sensors including HR monitor, a 3-axis
accelerometer and gyrometer, a GSR sensor, and a skin
temperature sensor. The physiologic and activity measures
utilized in the study are shown in Textbox 1. Overall, we
adopted 8 wearable sensor signals to estimate pain scores (HR,
R-R interval [RR; time between peak of QRS complex of
electrocardiogram to subsequent QRS electrocardiogram peak],
GSR, skin temperature, accelerometer [Z axis], angular velocity
[Y axis], angular velocity [Z axis], and steps). These 8 signals
were chosen partially based on signals readily available on the

Microsoft Band 2 as well as previously postulated physiologic
correlations with pain. Patients in more pain typically experience
higher HR and will move less frequently in the setting of pain
[25,26]. Furthermore, greater RR variability has been correlated
with better pain treatment outcomes [27]. However, these
objective measures have not been well established on their own
to correlate with pain. Previous study by our group has supported
the use of temperature, systolic blood pressure, diastolic blood
pressure, oxygen saturation, and respiratory rate as statistically
significant predictors in pain for SCD patients [18].

Patients were also provided with an iPad with the TRU-Pain
app to record pain scores and other symptoms in conjunction
with nurse-reported pain scores using a visual analog scale from
0 (none) to 10 (worst). Each patient was instructed on the use
of the TRU-Pain app. The TRU-Pain app allowed patients to
use a slider bar to rate their pain on the visual analog scale from
0 to 10. The app also allowed patients to note other symptoms
and rate general health and mood (scale of 0 to 10). The
TRU-Pain app implemented these general health and mood
measures and a platform upgrade to AppleCare Kit, replacing
our previous app, Sickle Cell Disease Mobile Applications to
Record Symptoms via Technology. Nursing pain scores were
assumed to be entered at the time they were obtained.

Both objective data from the Microsoft Band 2 and the
TRU-Pain app were uploaded to a Health Insurance Portability
and Accountability Act–compliant Citrix ShareFile cloud-based
server. Patients were continuously monitored while in the day
hospital, and at the time of discharge, the devices were returned.
If patients were admitted, data before transfer were included
even if the devices traveled with the patient during admission.
Patients were not provided specific questions regarding
acceptability and feasibility of participation, but the feasibility
of the study was determined by the accuracy of machine learning
algorithms in predicting pain scores.

Textbox 1. Physiologic and activity measures from Microsoft Band 2 (values for acceleration in X and Y directions equal that of Z direction—only
acceleration in Z direction is included in this study; angular velocity in X direction was not correctly captured and was excluded from the dataset).

• Heart rate

• R-R interval

• Galvanic skin response

• Skin temperature

• Acceleration in X direction

• Acceleration in Y direction

• Acceleration in Z direction

• Angular velocity in X direction

• Angular velocity in Y direction

• Angular velocity in Z direction

• Steps

Data Preprocessing
To apply machine learning analysis on the collected wearable
sensor data (physiologic and activity signals from the Microsoft
Band 2 in Textbox 1), 3 data preprocessing steps need to be

performed: time stamp matching, feature extraction, and feature
selection. In time stamp matching, pain scores had to be matched
with the wearable sensor data using the time stamp as close to
the exact time of data collection as possible. However, the
wearable sensor data samples were collected typically per
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second, and the pain scores were collected at varying times
throughout the stay, with time stamp formatted in hours and
minutes only. To complete this best possible match, each pain
score was matched with the 1-min long wearable sensor data
segment that was tracked at the same hour and minute. By
assuming that pain scores usually do not change rapidly within
a short period, we also matched the app pain scores without
exact time matching to the wearable sensor data when the time
stamp difference was less than 10 min.

We obtained 40 matched records containing a 1-min long
wearable sensor data segment and a pain score from the mobile
app that logged at the same (or approximately the same) period.
However, a sample size of 40 was not sufficient for the intended
data analysis. To further increase the sample size, we included
nurse-documented pain scores in our dataset. Our group made
the assumption that nurse-documented scores were similar to
patient-reported scores in the app. Nurse-documented pain
scores were matched with wearable sensor data using the within
10-min time stamps methodology as described above. By
including nurse-documented pain scores, our final dataset
contained 107 data samples (40 mobile app and 67 nursing
notes).

After time stamp matching, each pain score was mapped to a
1-min long wearable sensor data segment that included 8 signals
as mentioned in Textbox 1 above. As the sensor signal was
recorded typically every second, a 1-min long segment having
8 signals contained 480 (8×60) data points. It is difficult to
process raw sensor signals directly in any analytical task.
Therefore, we transformed raw sensor signals to a more suitable
data representation format by feature extraction. First, a moving

average filter was applied to raw sensor signals to remove noise.
The moving average filter is the most common filter in digital
signal processing to reduce random noise [28]. Then, 8 statistical
features (as described in Table 1) were extracted for each of the
8 signals. These extracted features represented the properties
of the original raw signals while reducing the volume of data.

The feature extraction yielded up to total 64 (8×8) features.
Given the relatively small sample size (107), a feature selection
method was applied (wrapper method) to remove irrelevant or
redundant features and to further reduce the number of features
[29]. The wrapper method has been reported to be able to
improve the predictor performance when compared with variable
ranking methods [29]. The basic idea of the wrapper method is
selecting the subset of features that yields the best possible
performance of a given learning algorithm. A total of 2 types
of search strategies are widely adopted in the wrapper method:
forward selection and backward elimination. In forward
selection, one starts with an empty set and features are
progressively added into the subset, whereas in backward
elimination, one starts with the full feature set and progressively
eliminates the feature with worst performance [30].

Table 2 shows the reduced feature set using the wrapper method
with forward selection. A total of 10 features were selected from
5 signals. The table also illustrates the reduced feature set with
backward elimination, which contains total 14 features from 7
signals. In both feature selection approaches, no features of
acceleration in Z direction (AccZ) were selected, which might
be because the information contained in AccZ was already
covered by Steps.

Table 1. List of features extracted from wearable signals.

DescriptionFeature

Average value of the signalMean

Amount of variation of the signalStandard deviation

Average rate of change of the signalMean of derivative

Square root of the mean of the squares of a set of valuesRMSa

Difference between the maximum and minimum peakPeak to peak

The ratio of the largest absolute value to the RMS valuePeak to RMS

Number of local maximums (peaks)Number of peaks

Sum of the absolute squares of time-domain samples divided by the lengthPower

aRMS: root mean square.
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Table 2. Signals and reduced feature sets.

FeatureSignal

Backward eliminationForward selection

Heart rate •• PowerMean of derivative
• Number of peaks

R-R interval •• Standard deviationNumber of peaks
• Peak to RMSa

Galvanic skin response •• MeanMean
• •Peak to RMS Peak to peak

Steps •• Number of peaksMean
• •RMS Power
• Peak to peak

Skin temperature •• PowerPeak to RMS
• Mean of derivative
• Number of peaks

—bAngular velocity in Y direction • RMS
• Number of peaks

—Angular velocity in Z direction • Peak to RMS
• Number of peaks

aRMS: root mean square.
bNot applicable

Machine Learning Techniques
The prediction of numeric pain score, the main study outcome,
can be treated as either a regression problem or a classification
problem. As the pain scores from app data are float numbers,
it is more reasonable to build a regression model to provide
continuous estimation of the target variable. More importantly,
there is only 1 target variable (pain score) in the regression
model. In contrast, there will be 11 classes if pain is treated as
a classification problem, as there are 11 distinct possible pain
scores (0 to 10). The number of classes can be reduced by
employing a sparse rating scale. Using a widely adopted more
sparse 4-point rating scale, the 11-point pain scores can be
categorized as none (0), mild (1-3), moderate (4-6), and severe
(7-10) [31]. However, because of our small sample size, we
hold the hypothesis that the regression model is more appropriate
than the classification model in this study. We adopted 4 widely
used regression algorithms in our analyses: Ridge regression
(Ridge), Lasso regression (Lasso), Gaussian process for
regression (GPR), and support vector machines for regression
(SVR). In addition, we applied support vector machines (SVM)
to predict the pain scores using the 4-point rating scale and
compared the results with SVR.

For linear models, we utilized Ridge and Lasso [32,33]. Linear
models are easy to fit and interpret, but they cannot model the
nonlinear relationships between explanatory variables and the
outcome variable. The other 2 algorithms are nonlinear models.
A Gaussian process (GP) is a collection of random variables
such that any finite subset of them has a joint multivariate
Gaussian distribution. A GP can be fully specified by a mean
function and a positive definite covariance function (or kernel).

GPR is one of the Bayesian learning methods in which a
previous distribution over the mapping function between inputs
and outputs is conditioned on observations (training process).
Then, the posterior distribution can be used to make predictions
[34]. GPR provides a powerful way to quantify the uncertainty
in model estimations to make more robust predictions on new
test data. Finally, SVM are usually applied to classification
problems. In classification, the SVM model maps the input
samples into the feature space, then creates a decision surface
among classes with the largest distance to any data point.
However, it can also be applied to regression problems where
we seek to find a continuous function that maps input variables
to output variables, called SVR. For SVR, the goal is to find a
function that deviates from the training output by a value no
greater than a certain distance for each training point, and at the
same time, is as flat as possible [35]. The nonlinearity of the
algorithm can be obtained by utilizing kernel modulations.

Results

Overview
A total of 20 adult patients (of 27 consented) had complete data.
Median age was 28 years, with a range of 20 years to 66 years
(Table 3). A total of 11 (11/20, 55%) patients were female,
whereas 9 (9/20, 45%) were male. Moreover, 10 patients (10/20,
50%) had type SS SCD, 8 (8/20, 40%) had type SC, and 2 (2/20,
10%) had S beta thalassemia. The average length of stay in the
day hospital was 3.79 (SD 2.23) hours. In addition, 2 patients
were subsequently admitted to the hospital. Nursing pain scores
decreased in 16 out of 20 patients (80%). Patients had an average
decrease in visual analog pain score of 2.75 (SD 2.34). A total
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of 11 patients had multiple pain scores through the TRU-Pain
app, and 91% (10/11) of the patients had a decrease in pain
score, with an average decrease in pain score of 2.69 (SD 2.53).

Patients presenting to the day hospital often receive intravenous
fluids, antiemetics, NSAIDs, and opioids. The opioid doses

received during their day hospital stay are shown in Table 3.
The last 3 columns are the number of visits each patient had to
the ED and day hospital as well as admissions over the past
calendar year.

Table 3. Patient demographics.

Inpatient
stays in prior
year

Day hospital
visits in prior
year

Emergency de-
partment visits in
prior year

MedicationsInsuranceSickle cell
disease type

SexAge (years)Patient

1111Dilaudid 6 mg; Oxycodone
5 mg

PubliccSCbFa211

383Dilaudid 8 mgPublicSSdF252

341Dilaudid 8 mgPrivateSCF243

040Dilaudid 16 mg; Oxycodone
5 mg

PublicSSMe404

223Dilaudid 9 mgPublicSB+fM485

031Dilaudid 12 mgPublicSS alphagM396

131Dilaudid 9 mgPublicSCF377

2101Dilaudid 8 mgPublicSCF388

141914Dilaudid 4 mg; Dilaudid

PCAh
PublicSSM219g

1685Dilaudid 16 mg; Oxycodone
20 mg

PublicSSF2810

17123Dilaudid 6 mgPublicSSM3611

000Dilaudid 8 mg; Morphine 4
mg

PublicSSM6612

61210Dilaudid 11 mgPublicSCM4413

12719Dilaudid 8 mgPublicSB0iF2814

10618Dilaudid 9 mgPublicSCF2015

43012Dilaudid 13 mgPublicSSF2616

2220Dilaudid 16 mgPublicSSF3817

3851Dilaudid 8 mgPrivateSCM2218

847Dilaudid 8 mg; Oxycodone
10 mg

PublicSCM2819

7100Dilaudid 5 mg; Oxycodone
10 mg

PublicSSF2120

aF: female.
bSC: type SC (hemoglobin S and hemoglobin C).
cPublic: at least some portion of insurance is Medicare or Medicaid.
dSS: type SS (hemoglobin S and hemoglobin S).
eM: male.
fSB+: type S beta thalassemia plus (hemoglobin S and beta thalassemia plus).
gSS alpha: type SS with alpha thalassemia (hemoglobin S and hemoglobin S with alpha thalassemia).
hPCA: patient-controlled analgesia.
iSB0: type S beta thalassemia zero (hemoglobin S and beta thalassemia zero).

Regression Results
A total of 4 regression algorithms were implemented on 2
reduced feature sets. Results were validated using 10-fold

cross-validation. Moreover, 2 evaluation metrics were applied
to evaluate the performance of algorithms—the root mean square
error (RMSE) and Pearson correlation [34]. RMSE is the square
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root of the average of squared differences between predictions
and actual observations. It is measured on the same scale and
has the same units as the pain score. Another metric is the
Pearson correlation between predicted values and the actual
values, which has a value between +1 and −1, where 0 means
no linear correlation and +1 or −1 means total linear correlation.
The higher the correlation value, the better the performance of
the regression model. Table 4 summarizes the performance of
the 4 algorithms on the 2 reduced feature sets.

For the dataset in our study, the standard deviation of 107 pain
scores is 2.013, which can be interpreted as the RMSE of using
the mean value as the predicted pain values. All the regression
models obtained RMSE lower than the mean-only model. With
10 features in the forward selection feature set, the SVR had
the best performance as the RMSE of 1.721 and the correlation
of 0.522, followed by the GPR obtaining the RMSE of 1.764
and the correlation of 0.475. These results demonstrate the
feasibility of using objective wearable sensor measurements to
estimate subjective pain scores. With 14 features in the
backward elimination feature set, the performance of GPR and

SVR is further improved. The SVR model is slightly superior
to the GPR model, with an RMSE of 1.430 and correlation of
0.706, respectively, which are also the best performance results
obtained using regression methods. These data show that there
was a strong association between the subjective pain scores (via
app or nurse-obtained) and the predicted pain scores derived
from wearable sensor signals.

The result of the SVR model with the best performance can be
visualized in Figure 1. It is a scatter plot of the actual pain scores
and predicted pain scores using the SVR model with the least
squares regression line. The slope value of the least squares
regression line is the same as the correlation of 0.706 in Table
4 and demonstrates a strong correlation of values between the
actual pain scores and the predicted pain scores.

To better analyze the results of these regression methods, the
residual plots of 4 regression models using the backward
elimination feature set are illustrated in Figures 2-5. The dashed
lines show the positive and negative standard deviation (2.013)
of pain scores. The performances of Ridge and Lasso are nearly
the same, which can be seen from Figures 2 and 3.

Table 4. Algorithm performances on 2 reduced feature sets using 4 regression methods.

Backward elimination feature setForward selection feature setRegression algorithm

CorrelationRMSECorrelationRMSEa

0.3701.8440.3811.853Ridge

0.3701.8910.3581.871Lasso

0.6831.4730.4751.764Gaussian process for regression

0.706b1.430b0.5221.721Support vector machines for regression

aRMSE: root mean square error.
bBest performed model as described in the text.

Figure 1. Scatter plot of the predicted and actual pain scores using the support vector machines for regression model.
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In either Figure 2 or 3, there is a roughly inverted U pattern,
suggesting a nonlinear relationship between predictor variables
and pain scores. Thus, performances of linear models were
notably lower than the other 2 nonlinear models. The
distributions of residuals in Figures 4 and 5 are similar, which
explains the comparable performance of the GPR model and
the SVR model. The SVR model slightly surpassed the GPR
model by having lower extreme residuals. Specifically, there
are 2 outliers in both Figures 4 and 5, marked as points 1 and
2 (with actual pain scores of 0.41 and 2, respectively). The

reason for the poor performance of these 2 points is the lack of
training samples with lower pain values. It suggests that we can
further improve our model performances by training the model
with more samples having mild and moderate pain scores or
having a larger dataset. Although a larger dataset is possible to
obtain in future studies, an uneven distribution of pain scores
will likely persist when acute pain crises are analyzed, as SCD
patients will typically not present to medical care with lower
pain scores and will manage minor crises at home [36].

Figure 2. Plot of the residuals versus predicted pain scores using the backward elimination feature set.

Figure 3. Plot of the residuals versus predicted pain scores using the backward elimination feature set (lasso).
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Figure 4. Plot of the residuals versus predicted pain scores using the backward elimination feature set (gaussian process for regression).

Figure 5. Plot of the residuals versus predicted pain scores using the backward elimination feature set (support vector machines for regression).

Classification Results
To apply classification to the original dataset, pain scores
ranging from 0 to 10 were categorized into 4 classes as
mentioned above: none (0), mild (1-3), moderate (4-6), and
severe (7-10). The number of samples for the 4 pain levels are
2, 4, 34, and 67, respectively and indicates a high-class
imbalance among the 4 classes. As patients visit the hospital
because of pain management issues, the skewing to higher level
pain scores makes clinical sense.

The SVM classifiers were applied on the categorized input
dataset and evaluated for accuracy. F1 scores as well as a
weighted F1 score were also evaluated. Accuracy is the ratio

of correctly predicted pain scores over total number of pain
scores. F1 score is the harmonic mean of precision and recall
for each pain score, where precision is the ratio of the number
of correctly identified entities with this pain score over the total
number of this particular pain score predicted by the model.
Recall is the ratio of the number of correctly identified entities
with this pain score over the total number entities with this pain
score in the dataset [35]. The weighted average F1 scores is the
average of F1 score among all pain scores weighted by the
number of instances of each pain score, and it is a better choice
for evaluating datasets with multiple classes [37].

The classification result of the SVM model was compared with
that of the best performance model, which was the SVR model
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applied on the backward elimination feature set as described
above. In the experiment, both SVM and SVR were
implemented on the backward elimination feature set. For a fair
comparison, the same kernel was used in SVM and SVR. In
addition, the continuous predicted pain scores of the SVR model
were categorized into 4 classes. In this way, the accuracy, F1
scores, and weighted F1 score were calculated for the SVR
model. Table 5 shows the performance comparison between the
SVR model and the SVM model. Overall, the SVR model
outperformed the SVM model in each evaluation metric.

From Table 5, we can see that the performance of both the SVM
and SVR models were affected by the class-imbalance problem,
as the F1 scores for no pain and mild pain were much lower
than that for the higher pain scores. However, the SVR model
can better overcome this issue by treating the outcome as a

single continuous variable, as opposed to treating the prediction
as a multiclass classifier. The SVR model obtained an F1 score
of 0.286 for mild pain even when there were only 4 training
samples with mild pain scores in the dataset. In addition, by
assuming pain as a continuous variable, there are ordinal
relationships between pain levels in SVR. For example, a pain
score 5 is greater than pain score 4 in this model. On the
contrary, the ordinal relationship is not considered in the SVM
model. Treating pain as an ordinal variable is a more reasonable
assumption, and it may be another reason why the regression
models outperform the classification model. In summary, our
results verified the hypothesis that the regression model (SVR)
would obtain a higher performance than the classification model
(SVM) with a small sample size and when there was a
class-imbalance problem in the dataset.

Table 5. Prediction performances on the 4-level pain scale using support vector machines for regression and support vector machines.

Weighted F1
score

F1 score of
severe pain

F1 score of moderate
pain

F1 score of
mild pain

F1 score of no
pain

AccuracyAlgorithm

0.6630.7860.537000.682Support vector machines

0.728a0.8030.6750.28600.729aSupport vector machines for regression

aBest performed model as described in the text.

Discussion

Principal Findings
This study demonstrates the feasibility of using physiologic
data collected on a wearable device and applying these data
using machine learning techniques to accurately predict
subjective pain scores. The best accuracy was found using the
machine learning technique SVR, with an accuracy of 0.729
prediction of pain on a 4-point scale. In addition, for patients
treated in the day hospital for pain, we found expected
improvement in pain and physiologic measures such as HR
from the beginning to the end of their stay.

Our predictive results are encouraging and provide insight into
potential techniques to predict pain and the understanding of
individual physiologic response to pain and treatment. A few
investigators have recently begun to evaluate the potential use
of physiologic data to develop digital phenotypes for pain and,
subsequently, an individualized pain prediction model. As
discussed previously, objective and physiologic data of varying
invasiveness have been utilized in medicine to better understand
disease processes and symptoms, including SCD. Coates et al
have extensively published on objective data in SCD, including
spin-tagged magnetic resonance imaging to assess cerebral
oxygen extraction and metabolic rate, biventricular dimensions
and function to assess cardiac iron load, and the use of a
graphical Lasso model to evaluate functional brain connectivity
in SCD [38-40]. This group has also published analysis of
laboratory measurements of carbon monoxide and heme
oxygenase for acute pain crisis prediction [41]. Other groups
have studied red blood cell mechanical sensitivity and biomarker
signatures of SCD severity [42,43]. The use of machine learning
in a variety of areas of medicine including outcome prediction
for chemoradiotherapy, breast cancer survival prediction, and

early prediction of asthma exacerbations have recently been
published [44-46]. However, to date, the combined use of
objective and physiologic data with machine learning techniques
for pain in SCD is lacking.

Strengths and Limitations
A more objective pain prediction model could significantly help
medical providers manage pain crises. As described, data
collected from wearable devices can be utilized to improve pain
management via advanced machine learning methods. In this
analysis, we aimed to build predictive models for pain based
on objective, physiologic wearable sensor data. This study is
of great value given that the data utilized were obtained from a
wearable device and provided minimal to no risk to patients.
Furthermore, wearable sensor data were acquired frequently
and obtained passively from patients as compared with
nurse-documented vitals, which were obtained approximately
every 2 hours.

Importantly, wearables and mobile apps (to track symptoms
and pain scores over time) paired together to form an mHealth
pain prediction system, as in this study, could fairly easily be
applied to the inpatient and outpatient settings. mHealth systems
are attractive for providers as pain can be tracked on a more
frequent basis and can provide more personalized care for
patients and potentially prevent ED visits, day hospital visits,
and hospital admissions. Further work is needed in this field to
continue to develop models with increasing accuracy in
predicting pain to help guide management and patient care [47].

There are limitations to our study, including obtaining a
convenience sample from our day hospital only and the small
number of patients. Patients with SS and SC can be treated the
same clinically, but the study included patients with thalassemia
who may have a more or less severe phenotype depending on
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the type of thalassemia. Specific analysis on these patients was
not performed for this feasibility study. The study is also limited
given that patients might have had underlying medical
conditions that could affect HR, and this was not controlled for
in our study. In addition, each patient had pain control achieved
through individualized pain protocols, which varied among
patients and were administered at various intervals. Therefore,
it was impossible to control for these pain medications during
this initial study. Medications administered, both opioid and
nonopioid, may affect vital sign parameters independently
(namely, opioids decreasing HR). The administration of pain
medication, however, provides an important future opportunity
to also evaluate pre- and postadministration objective datasets
for pain prediction. Although all patients were in the day hospital
either in a chair or bed, their environment was not completely
controlled, and HR changes might have occurred with movement
in and out of the bed or chair as well as to use the restroom, and
these movements were not accounted for. HR can also vary
outside of pain when a patient is at rest based on a multitude of
different factors including stress, excitement, and breathing.

In addition, our group had to make the assumption that
nurse-documented pain scores and patient-reported pain scores
in the app were not dissimilar, but this is also an area for further
study. One hypothesis would be that the patients could report
a lower pain score to the nurse to look tough, but an alternative
hypothesis may be a patient elevating their pain score to be
given additional medication. There is also the assumption that
the physiologic measures from the wearable device are accurate.
We attempted to take data averaged over 1 min (with recordings
typically every second) to minimize variability. We chose the
Microsoft Band 2 because of the ability to acquire the raw data
directly from the wearable and because of previous studies
showing its relative accuracy. Stahl et al [48] and Shcherbina
et al [49] have reported that wrist-based monitors, including the
Microsoft Band, provided an accurate measurement of HR in
most activity settings. Xie et al [50] further demonstrated that

wearable devices had a high accuracy with respect to HR,
number of steps, distance, and sleep duration.

Utilizing mobile devices and technology have great promise as
we have discussed, but HR data and other physiologic
parameters should be interpreted in the clinical context of the
patient’s history and exam. For example, a tachycardic patient
should be thoroughly evaluated to rule out life-threatening
conditions before attributing tachycardia to pain. Although our
group has shown that wearable sensor data are feasible to obtain
and can be used to create models for predicting pain scores,
models and objective vital signs need to be paired with clinical
experience and judgment for ideal patient management.

Conclusions
Future directions include refining the predictive model with a
larger dataset. We are continuing to troubleshoot our data
extraction procedure to minimize lost data. Furthermore, we
could attempt to expand our models by examining patient’s
disease severity (related to number of ED visits, day hospital
visits, and hospitalizations per year), length of stay in the day
hospital, etc, to obtain a more ideal model for pain score
prediction. Given that we combined app pain scores with nursing
pain scores, further study is needed to determine if these can be
treated as similar scores. Related to medication administration,
we could examine HR changes before and after medication,
time since last dose, total net dose of medications, etc, and
attempt to project pain score and the need for medication before
the patient requests medication. This would be an essential part
of a real-time pain forecasting system and allow a trial that
evaluates the timing of administration of additional doses of
opioids based on physiologic and objective data alone. Our
initial results indicate promise in pursuing each of these efforts,
and our study is a valuable addition to ongoing studies
investigating how physiologic and objective data can be used
to help providers better understand and treat pain.
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GSR: galvanic skin response
HR: heart rate
mHealth: mobile health
NSAID: nonsteroidal anti-inflammatory drug
RMSE: root mean square error
RR: R-R interval
SCD: sickle cell disease
SVM: support vector machines
SVR: support vector machines for regression
TRU-Pain: Technology Resources to Understand Pain
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