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Abstract

Background: As societies become more complex, larger populations suffer from insomnia. In 2014, the US Centers for Disease
Control and Prevention declared that sleep disorders should be dealt with as a public health epidemic. However, it is hard to
provide adequate treatment for each insomnia sufferer, since various behavioral characteristics influence symptoms of insomnia
collectively.

Objective: We aim to develop a neural-net based unsupervised user clustering method towards insomnia sufferers in order to
clarify the unique traits for each derived groups. Unlike the current diagnosis of insomnia that requires qualitative analysis from
interview results, the classification of individuals with insomnia by using various information modalities from smart bands and
neural-nets can provide better insight into insomnia treatments.

Methods: This study, as part of the precision psychiatry initiative, is based on a smart band experiment conducted over 6 weeks
on individuals with insomnia. During the experiment period, a total of 42 participants (19 male; average age 22.00 [SD 2.79])
from a large university wore smart bands 24/7, and 3 modalities were collected and examined: sleep patterns, daily activities,
and personal demographics. We considered the consecutive daily information as a form of images, learned the latent variables
of the images via a convolutional autoencoder (CAE), and clustered and labeled the input images based on the derived features.
We then converted consecutive daily information into a sequence of the labels for each subject and finally clustered the people
with insomnia based on their predominant labels.

Results: Our method identified 5 new insomnia-activity clusters of participants that conventional methods have not recognized,
and significant differences in sleep and behavioral characteristics were shown among groups (analysis of variance on rank:
F4,37=2.36, P=.07 for the sleep_min feature; F4,37=9.05, P<.001 for sleep_efficiency; F4,37=8.16, P<.001 for active_calorie;
F4,37=6.53, P<.001 for walks; and F4,37=3.51, P=.02 for stairs). Analyzing the consecutive data through a CAE and clustering
could reveal intricate connections between insomnia and various everyday activity markers.

Conclusions: Our research suggests that unsupervised learning allows health practitioners to devise precise and tailored
interventions at the level of data-guided user clusters (ie, precision psychiatry), which could be a novel solution to treating insomnia
and other mental disorders.

(JMIR Mhealth Uhealth 2019;7(12):e14473) doi: 10.2196/14473
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Introduction

Approximately 30% of contemporary people have one or more
symptoms of insomnia, and insomnia sufferers encounter
difficulty falling or staying asleep [1,2]. Work schedule; sleep
irregularity; naps; and nicotine, alcohol, and caffeine
consumption can have significant effects on insomnia symptoms
[3,4]. While an individual’s intermixed behavioral characteristics
might affect sleep behaviors, these are not considered in current
diagnostic systems such as the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition or the International
Classification of Diseases.

With concepts of precision psychiatry emerging, individual
characteristics including genetic or neuroimaging, behavioral
characteristics, and individual symptoms of illness are being
used to make better decisions for diagnosis or treatment.
Advances in machine learning and deep learning techniques
can make precision psychiatry possible in clinical situations.
For instance, unsupervised learning has been applied to
distinguish traits of patients with various psychiatric disorders
from those of healthy subjects [5,6]. When considering the
heterogeneous characteristics of insomnia patients, an approach
using precision psychiatry concepts can help develop better
treatment methods for insomnia.

There has been considerable research using unsupervised
machine learning methodologies in medical sciences not limited
to psychiatry. One study reviewed the literature on detecting
various diseases via computer-aided diagnosis and identified
the best machine learning methodology for each disease [7].
Specific to using images as inputs, researchers have developed
a single-layer sparse autoencoder to automatically classify tissue
types from dynamic contrast-enhanced magnetic resonance
imaging [8]. Another study discovered ground-truth networks
in the brain through unsupervised learning of functional
magnetic resonance imaging data [9]. As these research projects
demonstrate, unsupervised learning has shown its potential to
produce highly accurate models in the real world.

Several approaches have been proposed to handle the
unstructured data type common in medical research. The support
vector machine algorithm has been used on brain images for
detecting Alzheimer disease in patients as well as for finding
related brain parts with signs of Alzheimer disease [10]. One
study built a convolutional neural network model to learn
relevant features from unstructured raw data automatically and
then made a convolutional neural network–based multimodal
disease risk prediction model [11]. Another work collected data
from an online social network (Twitter), constructed symptom
weighting vectors by exploiting sentiment analysis, and tried
to detect latent infectious diseases [12]. Some researchers have
adopted wearable devices as inputs and built a neural network
based on a multilayered perceptron to detect cardiovascular
disease [13].

Despite the potential of a precision approach to insomnia
treatment, little effort has been made to classify patients with

insomnia using sleep and behavioral patterns. We hypothesized
that certain symptom clusters representing specific sleep and/or
behavioral patterns exist among individuals with insomnia.
Sleep and behavioral characteristics that can affect insomnia
symptoms are easily collected through smart bands. In this
study, we tried to find certain clusters representing different
sleep or behavioral characteristics using smart band data. Our
unsupervised learning classification approach can be a
cost-effective alternative that can bring positive insights for
developing everyday interventions to assist in insomnia recovery
(see Multimedia Appendix 1 for more information about
implementation details including codes and datasets).

Methods

Recruitment
We applied unsupervised learning to gathered time-series data
from an experiment. Participants were recruited using an online
board of a large university community. To recruit subjects with
insomnia symptoms, we used the Insomnia Severity Index (ISI)
[14], Korean version [15]. The ISI is calculated based on
responses to 7 questions that ask about sleep problems
individuals have experienced in the most recent 2 weeks. For
example, the questionnaire asks “How satisfied/dissatisfied are
you with your current sleep pattern?” and the respondents
answer using a 5-point Likert scale (1=very satisfied,
2=satisfied, 3=moderately satisfied, 4=dissatisfied, 5=very
dissatisfied). This index is used as a standard metric of treatment
response in clinical research.

A total of 50 participants whose ISI scores were 15 or above
(ie, an indication of a mild to severe level of insomnia)
participated (26 male; average age 22.63 [SD 3.02] years).
Height and weight information were also gathered to calculate
body mass index (BMI). In the study, we recruited young,
healthy participants. Applicants being treated for medical or
psychiatric illnesses were excluded from the experiment. The
experiment was approved by the Korea Advanced Institute of
Science and Technology institutional review board (approval
number KH2018-40). Subjects’ behavioral and sleep
characteristics were collected via a smart band, the Charge 2
(Fitbit Inc) [16].

Intervention
The experiment was conducted for 6 weeks from April 23 to
June 3, 2018, and the subjects’ data were sent to a server. The
first author gave weekly reminders to encourage subjects to
wear the device continuously. Eight subjects were excluded
from the study since they failed to wear the device for longer
than 2 consecutive days. The remaining 42 participants finished
our experiment, and we analyzed data from the subjects (19
male; average age 22.00 [SD 2.79]). The data features gathered
and analyzed in our study are shown in Textbox 1. All values
were normalized before analysis (see Figure 1 for the
normalization method).
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Textbox 1. List of data gathered from the smart band–wearing experiment.

Modality 1: Sleep pattern (source: Fitbit)

• sleep_start_time: time when a user goes to bed in units of seconds

• sleep_end_time: time when a user gets out of bed

• onbed_min: total time duration for staying in bed

• sleep_min: total time duration for actual sleeping

• sleep_efficiency: sleep min/onbed min

• awaken_min: total time duration of waking while sleeping

• awaken_moments: total frequency of waking up while sleeping

Modality 2: Daily activity (Fitbit)

• calories_consumed: total number of calories consumed per day

• active_calories: total number of calories consumed for activities per day

• Walks: total frequency of steps per day

• distance: total distance a user moves per day

• Stairs: total frequency at which a user climbs stairs per day

• active_ratio: daily moving time over the total time wearing the device

Modality 3: Personal demographic (Survey)

• Age: age of the participant

• Gender: gender of the participant

• Body mass index: kg/m2

• Insomnia Severity Index: result from the survey

Figure 1. Min-max scaler for normalizing each feature, where all values for each feature are normalized between 0 and 1.

Fitbit provides a rich set of information about the wearer’s sleep.
For example, it tracks the total time that a person is in bed as
well as the predicted total sleep time. Its autodetection and
prediction are based on various behavioral or biological patterns
such as information on heart rate and movement. There is one
paper confirming the validity of the data from the Charge 2
[17]; it reports that sleep sensitivity (ie, predicting falling asleep)
of Fitbit is remarkable, about 0.96, and the measured wake after
sleep onset is similar to that of the existing polysomnography
(PSG) method. Another study also demonstrated that the
retrieved data from actigraphy corresponded acceptably well to
that of PSG [18]. However, at the same time, we need to be
cautious of using the data retrieved from wearables, since there
might be a specificity (relatively low precision) issue with the
wearables [19]. While it is possible for smart bands to give false
sleep reports, we chose smart bands over PSG because they are
easier to use and can obtain sleep measures regularly not in the
clinical setting but in the wild. In addition to the sleep log, the
Fitbit also reports a variety of information about the subjects’
activity, including the calories consumed, steps walked, distance
moved, and stairs climbed.

Data Analysis
Among the Fitbit-provided features in Textbox 1, we considered
the reliability of information about sleep stages to be relatively
low; therefore, 3 sleep features (rapid eye movement sleep,
narrow sleep, deep sleep) were excluded from the analysis.
Instead, sleep efficiency was added, which is calculated as the
fraction of time dedicated to actual sleep out of the time spent
lying in bed. Sleep efficiency is an essential factor in
determining sleep quality [20]. Additionally, we introduced a
new variable, the active ratio, which examines the total fraction
of time spent on any activity.

Due to the nature of sleep, we needed to examine time-series
data and consider the entire sequence of activities leading to
each sleep event [21]. Today’s sleep can be affected collectively
by today’s activity, yesterday’s sleep, and so on. Therefore, it
may be acceptable to jointly consider logs like this across
multiple sleep and behavioral features. Our goal was to
automatically identify clusters of sleep and behavioral features
in hopes of identifying meaningful groups of individuals with
insomnia who exhibit similar sleep-related dysfunctions.
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Results

Approach Overview of Cluster Analysis
Cluster analysis has been a popular research topic in computer
science [22]. In this study, we have tried two different
approaches to clustering: synchronic and diachronic. In the
synchronic approach, we would consider the dataset as one
whole snapshot and cluster features within a snapshot all
together. There were two issues with the synchronic approach
(see Multimedia Appendix 1 for more detailed research
procedures and results of this approach): (1) the clustering
performance was not good enough in general and (2) this
approach does not consider the consecutive patterns within and
between features. Thus, we developed a novel diachronic
approach, presented in the following section, in which we cluster
the chunk consecutive daily logs first and then classify users
based on their dominant clusters of chunk logs. This method
represents insomnia-related patterns as a sequence of images.

Diachronic Unsupervised Learning of Insomnia
Patterns
Supervised learning of clinical data may develop an overfitting
problem because data are unstructured, sparse, noisy, or irregular
[23]. In such conditions, unsupervised learning can be a good
alternative. In particular, a convolutional autoencoder (CAE)
that learns the abstract latent representations of data is known
to be appropriate for the task [24]. We implemented a CAE and
prepared a collage of daily features as an input image. This
approach allowed us to capture the entire set of features
simultaneously within the assigned time window.

When clustering high-dimensional data, it is crucial to reduce
dimensions to avoid expensive computational costs and memory
loss [25]. In handling high-dimensional data, the target clusters
often lie in subspaces of the full space [26]. Hence, reducing
dimensions via conventional methods such as singular value
decomposition or principal component analysis may not yield
correct clustering results, mainly when the target clusters are
not in the same subspace. To avoid this issue, we implemented
a CAE to effectively reduce the dimensions in the data since
the latent variables of the CAE may include subspace
information via filters. We also chose to implement CAE before
clustering because a previous study argued that subsequence
time-series clustering based on a sliding window might not be
meaningful [27]. By treating the data with CAE first and then
applying to cluster, the outcome patterns of the clusters are
affected not by the subsequence time-series data but by the
derived latent variables per image. Moreover, we can also expect
that by presuming the data into images, the latent variables of

CAE are more robust to the noisy daily changes of the Fitbit
logs.

Clustering Steps
The neural net–based clustering approach operates in 5 steps.

Step 1: Preprocessing of Time-Series Data
We combine modality 1 (sleep pattern) and modality 2 (daily
activity) in Textbox 1 to construct a multiplex vector of 12
dimensions (cf, modality 3, personal demographics, was not
included since its data did not frequently change over the 6-week
period, so it was solely employed in the comprehensive
qualitative analysis process). In this step, with respect to
modality 1, the onbed_min feature was excluded from the source
dataset because it showed high correlations with other features,
similar to the synchronic approach (see Multimedia Appendix
2 for the cross-correlations among 12 features of modalities 1
and 2). Let sleep vector vs={x1, x2, ..., x8} and activity vector
va={y1, y2, ..., y6}; then, the daily multiplex vector of subject
αvα={x1α, ..., x8α, y1α, ..., y6α}.

Step 2: Composing Sequential Images From Data
Sequentially connected multiplex vectors can be treated as an
image chunk. We then composed the consecutive multiplex
matrix to learn latent variables from images that represent
individuals’daily log series. We modeled the daily sleep patterns
as a Markov decision process because, according to previous
sleep research, sleep deprivation (ie, sleep debt) has cumulative
effects on waking function, and tonight’s sleep debt will mostly
be affected by recent sleep patterns (ie, sleep 1 to 2 days before)
[28]. As a result, we connected each daily multiplex vector with
a sliding window over 8 days (ie, the total 8-day logs are
combined as one window always to include a weekend, where
a window slides to the next vector, which is the next day). We
applied a discount factor (γ) such that on the first window, the
consecutive multiplex vector of the subject α per day can be
formulated as in Figure 2.

We then finalized the sequential multiplex matrix, as shown in
Figure 3. Fixing 8 days as a window size leaves a total of 42
days worth of data (ie, 42 data points). This result means that
each user is represented by 35 sets of images (42–8+1=35),
which is the batch size. The total number of input image chunks
for the CAE is 1470 (42 users×35 images=1470). Let the
sequential multiplex matrix of the first image chunk for the
subject α be defined as in Figure 4. As a consequence, the
sequential multiplex matrix of all subjects for all 35 images can
be framed as in Figure 5 (see Multimedia Appendix 1 for more
information about the mathematical notations).

Figure 2. Consecutive multiplex vector of the subject α per day on the 1st image chunk, where t1 is defined as the 9th of vα (ie, the 9th day from the

starting date) and m as the corresponding closeness rank number (mth of vα) to t1 within the image chunk (1≤m≤8).
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Figure 3. Converting the consecutive sleep and activity data to images: sliding windows of 8-day chunks (# of Features=12, # of Days [ie, win-size]=8).

Figure 4. Sequential multiplex matrix of the subject α on the 1st image chunk, where t1=9.

Figure 5. Sequential multiplex matrix of all subjects for all 35 images, where β indicates the 2nd participant, tn≤43, and tn+1=tn+1.

Step 3: Learning Representations With Reducing
Dimensions via Convolutional Autoencoder
In the proposed model depicted in Figure 6 for the designed
CAE, the pooling layer has been omitted due to the small size
of the input images (8×12). Additionally, we set up only one
convolutional layer due to the relatively small amount of data
(141,120 pixels=1470×8×12). Discount factor γ was set between
0.60 and 0.99. Then we iterated the model until finding the
optimal learning rate, optimal γ value, optimal vertical size (cf,
the horizontal size was fixed to 12, ie, the number of features),
number of convolutional filters, and number of latent variables
(ie, encoded_size in Figure 6).

We tested all combinations among 5 hyperparameters and found

that the optimal values were 1e–4 with the AdamOptimizer
(optimal learning rate); 0.75 (optimal γ value); 3 (optimal
vertical size); 30 (number of convolutional filters); and 15
(number of latent variables), for each of these hyperparameters
with the lowest L2-norm regularized reconstruction loss value
of 1.09 (see Multimedia Appendix 1 for more information about
the optimization and overfitting issue). To confirm the learning
results, Figure 7 depicts the 35 input images and 35
reconstructed outputs of one random participant (UserId 26).
This visual coherence ensures that the CAE efficiently reduced
the input size dimensions (ie, 8×12→15) by learning the vital
latent representations of data.
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Figure 6. Convolutional autoencoder to find the latent variables of insomnia-related patterns per 8 days.

Figure 7. Convolutional autoencoder (CAE) reconstruction results of the learned CAE for one random subject.

Step 4: Clustering Images via Latent Variables
We clustered the latent variables as follows. As an initial step,
we used t-SNE (ie, stochastic neighbor embedding with
t-distribution) to reduce the number of dimensions from 15 to
2 additionally (ie, major hyperparameters for t-SNE were
perplexity=30.0 [29,30], see Multimedia Appendix 1 for more
information related to t-SNE; metric=euclidean;
method=barnes_hut; the clustering result from the largest value

of average silhouettes [AS] was chosen out of 100 trials). We
then applied k-means and hierarchical clustering algorithms to
form clusters of the 8-day chunk images. The results are
displayed in Figure 8; both clustering results indicate the same
cluster number of 6, and they were found reasonable by the AS
values. However, the results of k-means clustering showed better
results following the AS as well as the sum of squared errors
(SSE). Therefore, we chose k-means to be the choice of the
final user clustering step.

Figure 8. Clusters of 8-day chunk images based on sequential sleep/activity patterns. D: dimensions; C: clusters; AS: average silhouettes; SSE: sum
of squared errors.
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Step 5: Clustering Individuals With Insomnia
Each cluster of the 8-day images was labeled as cluster A, B,
C, D, E, and F. We then composed a sequence of codes for each
user (eg, the best-matched cluster code for each of the 35 images
representing the user’s logs, such as “A-A-D-C-C-E-B-...”).
Finally, to determine one dominant cluster type per user, the
PageRank algorithm was implemented and used among the
stochastic relations between those 6 extracted labels. This
intuition is feasible since participants’ sequential codes, which
are the series of the latent space representations per 8-day image
for both sleep pattern and daily activity modalities, became the
subjects’ series of the comprehensive insomnia-related patterns;
therefore, the codes can be modeled as a hidden Markov model,
meaning that one’s next state is dependent on the current state
[28]. We then set the largest stochastic value of the labels per
participant to be the dominant cluster, which is identical to
finding a cluster with the highest PageRank value (ie, the
probability of arriving at the cluster after many steps).

Evaluation Outcomes
Table 1 shows the clustering evaluation results among the two
approaches concerning the diachronic clustering of daily vectors
(v). The first approach is without CAE, meaning the original
dataset is converted into chunk images (one image is composed
of the 8 consecutive daily vectors with 96 dimensions) and then
filtered via t-SNE (96→2 dimensions) and clustered by 3
clustering methods. The second approach is our model, and as
introduced above, the original dataset is converted into chunk
images and then inputted into CAE, and the latent variables of
CAE are clustered by 3 clustering methods after the variables
are filtered through t-SNE (96→15→2 dimensions).

We calculated two metrics to measure the clustering
performance: the AS and the SSE. With AS, if the value is
greater or equal to 0.4, then the clustering result is guaranteed

to be significant [31]. By contemplating consecutive pattern
information together via composing 35 images from the weekly
based consecutive v per user, we could confirm that k-means
clustering with our process showed the best performance (ie,
the highest value of AS and the lowest of SSE) in clustering v.
With respect to the first approach, the clustering performances
were worse, and the possible reason for this result is that
although the number of dimensions becomes large due to the
chunked v, the approach could not successfully extract the latent
features of the chunks while dramatically reducing the number
of dimensions from 96 to 2.

Table 2 presents how the 42 subjects were eventually divided
across the identified clusters of v by using our process with
k-means clustering. Cluster F did not contain any members.
The table shows the PageRank value, which represents the
strength of the association between subjects and clusters. Cluster
IDs are sorted by this PageRank value. Both cluster A and
cluster D have the largest subject count of 12 people. The
average BMI and ISI values are also given for each of the
clusters. The BMI and ISI values were similar across clusters.

A psychiatrist conducted both qualitative and quantitative
analyses of the 5 clusters. The number of subjects for each
cluster is small and does not meet normality, and therefore, we
performed an analysis of variance (ANOVA) on rank and
Kruskal-Wallis test. There were several features that showed
statistically significant differences among clusters (ANOVA
on rank: F4,37=2.36, P=.07 for sleep_min; F4,37=9.05, P<.001
for sleep_efficiency; F4,37=8.16, P<.001 for active_calorie;
F4,37=6.53, P<.001 for walks; F4,37=3.51, P=.02 for stairs).
Detailed results were described in Figure 9 as well as Tables
MA3-a and MA3-b in Multimedia Appendix 3 (we also
performed the ANOVA and post hoc Tukey honest significant
difference test and included the results in the same
supplementary material for reference).

Table 1. Evaluation of user clustering results for two diachronic approaches.

RemarkNEOdSSEcASbNCaApproach

Chunk images used without a CAEf14119.44670.20751First with DBSCANe

Chunk images used without a CAE—g35.01900.33944First with hierarchical clustering

Chunk images used without a CAE—22.61030.39415First with k-means clustering

Chunk images used with a CAE3064.71790.12754Ours with DBSCAN

Chunk images used with a CAE—24.39880.44856Ours with hierarchical clustering

Chunk images used with a CAE—21.55320.46536Ours with k-means clustering

aNC: number of clusters.
bAS: average silhouettes.
cSSE: sum of squared errors.
dNEO: number of excluded outliers.
eDBSCAN: density-based spatial clustering of applications with noise.
fCAE: convolutional autoencoder.
gNot applicable.
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Table 2. Diachronic clustering results of 42 participants suffering from insomnia.

FEDCBACluster ID

0 (0)5 (12)12 (29)4 (10)9 (21)12 (29)Subjects, n (%)

—a0.360.420.450.540.57PageRank

—22.9 (2.3)20.2 (3.0)26.0 (2.7)20.8 (2.3)22.8 (3.3)BMIb (kg/m2), mean
(SD)

—18.8 (2.4)16.9 (1.8)18.2 (1.6)19.1 (2.4)19.1 (1.5)ISIc, mean (SD)

aNot applicable.
bBMI: body mass index.
cISI: Insomnia Severity Index.

Figure 9. Bar plots of the major smartband features per cluster (†P<.10, *P<.05, **P<.01, ***P<.001 in analysis of variance on rank and Kruskal-Wallis
test results for 5 groups, also find Tables MA3-a and MA3-b in Multimedia Appendix 3).

Discussion

Principal Findings
This research conducted a 6-week experiment to collect smart
band data and analyzed it to identify relationships between
insomnia and daily activities. Our analysis finds that participants
who seemingly face similar levels of insomnia based on the ISI
score belonged to different clusters based on unsupervised
learning. This finding means that our neural net–based clustering
method could identify, beyond conventional diagnosis, new
meaningful sleep-activity relationships that could be used to
devise tailored interventions. Our method could determine which
cluster an individual belongs to via data indicators of sleep and
behavior acquired in the study.

Among the derived clusters of people with insomnia (see Figure
9), we found clusters B, C, and E to be more similar to one
another and clusters A and D to contain similar sleep-activity

profiles. Within the former group, subjects in cluster B were
relatively long sleepers (even with insomnia) with low sleep
efficiency. These subjects were in bed long hours, yet they could
not easily fall asleep. Sleep restriction was a potentially useful
intervention for these subjects [32]. In contrast, the subjects in
cluster E exhibited a short sleep time with high sleep efficiency.
These subjects also burned more calories per day. Chronic
restriction of sleep may have affected symptoms of insomnia
in this group [33]. While subjects in cluster C seemed to be
morning persons, as indicated by the awake time patterns, their
activity levels were relatively low, as shown in the active calorie,
walk, and stair data. These subjects were treated with different
interventions from the other similar clusters. In the latter group,
clusters A and D had similar sleep patterns, such as total sleep
time and sleep efficiency. However, subjects in cluster A
indicated higher activity levels, such as walks and stairs,
compared with cluster D. Cluster D also showed the lowest
ranges for both BMI and ISI compared with other clusters, where
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a smaller BMI value represents nonobese status and a smaller
ISI value represents a milder insomnia level. Such subtle
differences would have been difficult to notice with conventional
methods or supervised learning. These results suggest that
cluster-based intervention for individuals with insomnia could
be an accurate method for alleviating symptoms of insomnia.

This study demonstrates that unsupervised learning of insomnia
activity data gathered from wearable fitness devices could
identify meaningful clusters. The 5 derived clusters each had
distinctive characteristics, meaning that they can be used to
derive different therapies and diagnoses. In accordance with
our finding, one study also classified thousands of participants
who answered online surveys by using latent class analysis so
that they could find insomnia disorder subtypes [34], yet they
were more focused not on past behavioral and sleeping patterns
but on individual personalities as well as stressful surroundings
in revealing the clusters. One more difference is that they solely
used a conventional statistical method. Our study highlights
that merely looking at sleep logs can reveal a limited aspect of
insomnia; one needs to look at the full spectrum of both daily
activities and sleep logs. Finally, our findings align with those
of a previous study that revealed the average sleep quality is
better related to many behavioral aspects of the person than the
average sleep quantity [35].

Limitations
This work has several limitations. First, participants were from
the same university, which may induce sampling biases. A larger
scale study can draw conclusions that apply to the general
public. In the future, we plan to conduct experiments targeting
generic patients who visit hospitals regularly due to insomnia

to ensure the generality of the clustering result. Second, a small
sample size can reduce the statistical power, and it can affect
the reducibility for future study. Third, various behaviors, such
as consuming alcohol, tobacco, or caffeine, can affect patterns
of sleep and activity. However, these factors were not considered
in the current clustering analyses, mainly due to the small sample
size and limited information on these behaviors (eg, consuming
frequency per day or week). In that sense, a future study is
needed to verify our preliminary insights. Fourth, when
constructing the CAE, we prepared the input and output images
irrespective of subjects. As a consequence, the learned latent
variables cannot capture subtle dissimilarities that may exist
across participants. To reduce this potential bias, a learning
model may diminish the latent factors in composing images
among participants while training. Last, we used t-SNE when
reducing the dimensionality of the latent features of CAE
images, and there could be type 1 errors when clustering
dimension-reduced data because t-SNE forcibly fits original
data into a t-distribution. We further plan to adopt and test other
dimensionality reduction methods toward the extracted latent
variables of CAE images to relax the possible type 1 error issue.

Conclusion
This study, although preliminary, gives new insights for future
studies in the field of mobile health. Motivated by the results
of this study, in the future we hope to develop tailored
intervention strategies that can be matched to each cluster for
relieving insomnia symptoms, which will be a meaningful step
in precision psychiatry. In the meantime, we plan to consider
qualitative factors such as the level of sleep as well as
quantitative aspects of sleep-related factors.
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