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Abstract

Background: Time-resolved quantification of physical activity can contribute to both personalized medicine and epidemiological
research studies, for example, managing and identifying triggers of asthma exacerbations. A growing number of reportedly
accurate machine learning algorithms for human activity recognition (HAR) have been developed using data from wearable
devices (eg, smartwatch and smartphone). However, many HAR algorithms depend on fixed-size sampling windows that may
poorly adapt to real-world conditions in which activity bouts are of unequal duration. A small sliding window can produce noisy
predictions under stable conditions, whereas a large sliding window may miss brief bursts of intense activity.

Objective: We aimed to create an HAR framework adapted to variable duration activity bouts by (1) detecting the change points
of activity bouts in a multivariate time series and (2) predicting activity for each homogeneous window defined by these change
points.

Methods: We applied standard fixed-width sliding windows (4-6 different sizes) or greedy Gaussian segmentation (GGS) to
identify break points in filtered triaxial accelerometer and gyroscope data. After standard feature engineering, we applied an
Xgboost model to predict physical activity within each window and then converted windowed predictions to instantaneous
predictions to facilitate comparison across segmentation methods. We applied these methods in 2 datasets: the human activity
recognition using smartphones (HARuS) dataset where a total of 30 adults performed activities of approximately equal duration
(approximately 20 seconds each) while wearing a waist-worn smartphone, and the Biomedical REAl-Time Health Evaluation
for Pediatric Asthma (BREATHE) dataset where a total of 14 children performed 6 activities for approximately 10 min each while
wearing a smartwatch. To mimic a real-world scenario, we generated artificial unequal activity bout durations in the BREATHE
data by randomly subdividing each activity bout into 10 segments and randomly concatenating the 60 activity bouts. Each dataset
was divided into ~90% training and ~10% holdout testing.

Results: In the HARuS data, GGS produced the least noisy predictions of 6 physical activities and had the second highest
accuracy rate of 91.06% (the highest accuracy rate was 91.79% for the sliding window of size 0.8 second). In the BREATHE
data, GGS again produced the least noisy predictions and had the highest accuracy rate of 79.4% of predictions for 6 physical
activities.
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Conclusions: In a scenario with variable duration activity bouts, GGS multivariate segmentation produced smart-sized windows
with more stable predictions and a higher accuracy rate than traditional fixed-size sliding window approaches. Overall, accuracy
was good in both datasets but, as expected, it was slightly lower in the more real-world study using wrist-worn smartwatches in
children (BREATHE) than in the more tightly controlled study using waist-worn smartphones in adults (HARuS). We implemented
GGS in an offline setting, but it could be adapted for real-time prediction with streaming data.

(JMIR Mhealth Uhealth 2019;7(2):e11201) doi: 10.2196/11201
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Introduction

Background
Time-resolved quantification of physical activity is important
because physical activity is linked with human health. Physical
activity has direct health benefits, and the American College of
Sports Medicine and the Centers for Disease Control and
Prevention [1] publish physical activity guidelines to promote
and maintain public health (eg, children should do at least 60
min of physical activity per day). Physical activity also has
indirect effects on health by modifying exposures of pollutants.
The National Human Activity Pattern Survey [2] found that
human activity patterns play a key role in explaining variation
in pollutant exposures—by impacting the timing, location, and
degree of exposures—and related health outcomes. It follows
that high-resolution time-resolved monitoring of human activity
may have clinical and research applications. Not only could a
person’s moderate-to-vigorous activity (or inactivity) be logged
to quantify typical spatio-temporal patterns but deviations from
the typical routine could also be identified as possible targets
for intervention. The widespread use of wearable smartphones
and smartwatches, together with advances in communication,
computation, and sensing capabilities, makes real-time human
activity recognition (HAR) possible by providing remote data
acquisition and on-device processing.

Indeed, wearable sensors and mobile devices are being
increasingly used in studies assessing physical activity, sleep,
mobility, medication adherence, and a variety of other areas
[3]. Our study is motivated by the “Pediatric Research using
Integrated Sensor Monitoring Systems” (PRISMS) program—
launched in 2015 by the National Institute of Biomedical
Imaging and Bioengineering—to develop a sensor-based,
integrated health monitoring system for studying pediatric
asthma. Asthma is a heterogeneous, multifactorial disease that
is one of the most common causes of emergency hospital visits
in children [4]. Important risk factors for asthma exacerbation
include allergen and air pollutant exposures and viral infection
[4], but physical activity also plays an important role in asthma
incidence [5], acute symptoms [6], and long-term control [7,8].
In a framework such as PRISMS, HAR may facilitate the
management of asthma and the identification of triggers of
exacerbation.

Windowing in Human Activity Recognition Modeling
Approaches
Data for HAR are increasingly collected using wearable sensors
(eg, accelerometers and gyroscopes) that permit continuous,

real-time monitoring [9-13]. Most HAR studies summarize
accelerometer and gyroscope data streams—as well as the
resulting instantaneous activity predictions—using a time-based
windowing approach. The reasons for this are two-fold. First,
the typical duration of human activities is significantly longer
than the sensors’ sampling rate (eg, 10-50 Hz). Second, raw
data from an accelerometer or gyroscope are highly variable,
noisy, and oscillatory, so instantaneous raw values may provide
insufficient information to differentiate the associated activity.
The size of the window is constrained by the sensor sampling
frequency and is an important parameter that affects the accuracy
of the HAR prediction, the computational loads of the algorithm,
and the energy consumption on the wearable device. When
selecting the size of a fixed-size window, there is a trade-off
between being too short (captures fine details and produces
noisy predictions) and being too long (misses short-duration
activity bouts and produces more stable predictions). In a
platform such as PRISMS where researchers might want to
tailor context-sensitive interactions with study participants (eg,
triggering a notification or survey) based on physical activity
patterns, windows that are too short could generate frequent
interactions with users, leading to notification fatigue and
reduced compliance. Longer windows could perform well at
certain times of the day when activities are fairly constant over
long periods (eg, sedentary classroom time) but poorly during
periods of high variability (eg, gym class and getting ready for
school). A variable-sized sampling window approach with
data-driven break points (at times when the activities may
change) has the potential to improve HAR and improve the
usability of platforms involving HAR.

Time Series Segmentation
Fixed-size sliding windows are 1 type of a larger class of
segmentation methods in time series analysis. Segmentation
methods divide a time series into segments having similar
characteristics. Most segmentation algorithms can be framed
in several ways: (1) producing the best representation using
only a given number of segments, (2) producing the best
representation such that the maximum error for any segment
does not exceed the given threshold, or (3) producing the best
representation such that the combined error of all segments is
less than the given threshold [14]. Multivariate segmentation
methods segment multidimensional signals. Multivariate
segmentation has been studied in several contexts using various
approaches (each with different assumptions), including
Bayesian change point detection [15], hypothesis testing [16],
mixture models, hidden Markov models [17], and convex
segmentation [18]. For this study, we selected a multivariate
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segmentation algorithm called greedy Gaussian segmentation
(GGS) [19], which is based on maximizing the likelihood of
the data for a fixed number of segments. GGS assumes that in
each segment, the mean and covariance are constant and
independent of the means and covariances in all other segments.
GGS is a scalable greedy algorithm and is applicable to solve
much larger problems (in terms of vector dimension and time
series length) than many of other above methods.

In this paper, we provide background on the GGS algorithm
and perform a novel application of GGS to offline HAR,
comparing GGS with the standard fixed-size sliding window
approach. We use data from 2 HAR studies with different
prescribed activity durations and different sensor wear
modalities (waist-worn sensor and wrist-worn sensor). After
processing the data using either segmentation approach, we
used standard feature engineering and machine learning methods
to predict activities and compared the accuracy of the 2 different
segmentation approaches.

Methods

Data
The human activity recognition using smartphones (HARuS)
dataset consists of 61 experiments conducted by 30 volunteers
aged 19 to 48 years [20]. Triaxial accelerometery and gyroscope
data were collected at 50 Hz by a waist-worn smartphone
(Samsung Galaxy S II). Each experiment was about 7 min long.
In each experiment, the HARuS protocol scripted 12 ambulation
activities, including 6 basic activities (each approximately 20
seconds in duration) and 6 postural transition activities
(stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and
lie-to-stand). The 6 basic activities include 3 static postures
(standing, sitting, and lying) and 3 dynamic activities (walking,
walking downstairs, and walking upstairs). The raw data were
directly acquired from the smartphone readings, and the
activities were labeled by manual review of video recordings
of each experiment. To be consistent with previous studies [11],
we only modeled the 6 basic activities and deleted the 6 types
of postural transition activity bouts and all unlabeled sessions,
all of which were of relatively short duration and unlikely, for
example, to be strongly associated with asthma exacerbation in
studies using PRISMS [5]. The dataset was divided into the first
55 experiments for training (2 experiments each for 26 people
and 3 experiments for 1 participant) and 6 experiments (2
experiments each for 3 people) for holdout testing. The 6 raw
signals of experiment 1 are plotted in Multimedia Appendix 1.

The Los Angeles PRISMS Center BREATHE dataset [21-23]
was collected on 16 participants, aged 5 to 15 years, using the
BREATHE Kit, an informatics platform designed to monitor
multiple exposures, behaviors, and activities in context to
identify personal triggers and predict the risk of pediatric asthma
exacerbations in real time. Triaxial accelerometry and gyroscope
data were collected at 10 Hz using a wrist-worn Motorola Moto
360 Sport smartwatch. Participants performed each of the 5
activities (standing, sitting, lying, walking, and walking on
stairs) for 10 min and running for 5 min (to minimize
discomfort). Unlike the HARuS dataset, participants were

permitted to perform natural movements (especially free arm
movement such as sitting while typing or using a smartphone)
during each activity. The raw data were acquired as the end
product of a data pipeline (from smartwatch to the BREATHE
app on the smartphone via Bluetooth and then securely uploaded
to the BREATHE servers wirelessly and in real times). For the
BREATHE dataset, we modeled all 6 scripted activities:
standing, sitting, lying, walking, walking on stairs (labels did
not differentiate up and down stairs), and running. We used
experiments from 14 of the 16 participants as 2 participants had
substantial quantities of missing data. In the BREATHE dataset,
data were saved as separate files for each activity, for each
participant. To evaluate whether GGS segmentation improves
prediction under a scenario of variable activity bout durations,
we generated artificial activity data files for each participant by
(1) randomly dividing his or her activity sessions (each about
10 min long) into 10 subsessions; then (2) randomly shuffling
all subsessions (60 in total); and finally (3) concatenating all
60 subsessions into 1 data file, potentially resulting in fewer
than 60 distinct activity bouts if bouts with identical activities
are located next to each other. Hence, we produced 14 artificial
activity files with artificial unequal activity bout durations, one
for each of the 14 participants. The artificial dataset was divided
into the first 12 participants for training and the last 2
participants for holdout testing. The 6 raw signals of experiment
1 are plotted in Multimedia Appendix 1.

Workflow
Figure 1 provides an overview of our workflow. For both
datasets, the raw data were first preprocessed by applying a
median filter (kernel size=3) to remove outliers. Afterwards, a
Butterworth [24] filter was used to remove artifacts and baseline
wandering noise associated with the data acquisition process
(eg, the constant force of gravity or shaking the device).
Specifically, a third-order low-pass Butterworth filter was
applied separately to each triaxial component (x, y, and z of the
accelerometer and gyroscope). A power spectral density (PSD)
was calculated and used to choose the cut-off frequency, over
which the sensor signals were attenuated. PSD is a metric that
estimates the distribution of power over frequency, and it has
been widely implemented to evaluate filters of high-frequency
with baseline-wandering noise [25].

Subsequently, the data streams were temporally aligned. The
sampling frequency observed in practice can be a result of
practical constraints (eg, battery saving and restricted access by
the software stack in mobile device’s operating systems). Thus,
observed data can be sampled irregularly, with mismatch
between the 2 sensors. In the HARuS dataset, there were no
mismatched time stamps (ie, only existing for 1 sensor) when
we concatenated accelerometer and gyroscope readings
according to their time stamps. However, the BREATHE dataset
contained considerable mismatching, and both the accelerometer
and the gyroscope were not perfectly collected at 10 Hz. To
align the 2 sensor readings, we first downscale sampled the raw
data at 50 Hz to round their time stamps to the nearest 50 Hz
sampling point, and then we applied a linear interpolation
method.
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Figure 1. The workflow of the human activity recognition framework. GGS: greedy Gaussian segmentation.

Specifically, we added (as necessary) records for all 50 Hz time
stamps to both sensor data files and linearly interpolated missing
sensor readings (approximately 80% because of the
downscaling) based on the left 5 adjacent nonmissing values
and the right 5 adjacent nonmissing values. In addition to the
missing values caused by the mismatching time stamps, there
was also a number of longer periods with missing values in the
BREATHE dataset. After aligning the 2 sensors, we truncated
time periods with more than 10 seconds of consecutive missing
values.

Data transformation was used to augment the original data (6
signals from 2 triaxial sensors) with additional transformed
signals. Statistical features were later extracted from both the
raw and transformed signals. Specifically, 8 new signals were
generated: 6 derivatives with respect to time (1 for each of the
6 original signals) and 2 Euclidean norms (1 for the x-, y-, and
z-axis of each sensor). Hence, a total of 14 signals were available
(6 original measured signals and 8 new calculated signals).

Time windows were generated using 2 approaches. First,
multivariate segmentation on the 6 original signals produced
windows of varying sizes, with break points selected using
training data to reflect changes of the means and covariances
of the raw signals (a detailed description follows). Second, for
comparison, we created various sizes of nonoverlapping
fixed-length sliding windows (4 sizes for HARuS dataset: 0.2
second, 0.8 second, 3 seconds, and 8 seconds; 6 sizes for
BREATHE dataset: 0.2 second, 0.8 second, 3 seconds, 8
seconds, 12 seconds, and 40 seconds). Window sizes were
chosen to include approximately the window size in the original
HARuS study (2.56 seconds) [20] and to reflect a wide enough
range to include the optimum window size for both datasets.

Within each set of windows, we extracted statistical features
for input into a machine learning model. These statistical

features were either based on time domain (the original
time-based windows) or frequency domain (Fourier
transformation of the original time-based windows). For each
set of windows, we calculated a total of 168 features: 6 statistics
(arithmetic mean, SD, median absolute deviation, minimum,
maximum, and entropy) on 14 signals and on both the time and
frequency domains (6 x 14 x 2=168).

Multivariate Segmentation
A brief description of GGS [19] is as follows. Consider a
multivariate time series consisting of T time instants x1, x2,...,

xT ∈ Rm, where m is the number of features (ie, m=6 in our
study). The time series need not be uniformly sampled in real
time (see note in Discussion on the independence assumption).
Given K break points b1,..., bK ∈ (1,..., T) between a starting
point b0= 1 and an end point bK+1= T, we assume that xt ~ MVN
(µbi, Σbi) ∀ t ∈ (bi,..., bi+1) ∀ i ∈ [0, K] and are independent
samples, where µbi and Σbi denote the mean vector and
covariance matrix of the multivariate normal distribution within
the interval of (bi,.., bi+1). A GGS can be learned on the
multivariate time series by fitting a greedy algorithm to
maximize the covariance-regularized log-likelihood.

In Figure 2 equation a, where l (b, µ, Σ) denotes the
log-likelihood before regularization, b denotes the vector of
break points, µ denotes [µb0,..., µbK], Σ denotes [Σb0,..., ΣbK], and
λ ≥ 0 is an a priori specified hyperparameter that controls the
amount of regularization [19]. The greedy heuristic algorithm
follows a top-down subroutines of adding a new break point
with the largest increase of Φ(b,µ,Σ) at each step until K, and
then in a bottom-up way adjusts the positions of all break points
until no change of any 1 break point increases Φ(b,µ,Σ). A curve
of the covariance-regularized log-likelihood versus K can be
used to select K for a given dataset.
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Figure 2. Equations.

Gradient Boosted Trees Classification
To achieve high accuracy using a scalable method, we predicted
activity classes using Xgboost [26], an implementation of a
tree-based boosting widely used in machine learning challenges.
For a given dataset (D) with n observations and p features (ie,

p=168 in our analysis), D={(xi ∈ Rp, yi ∈ R)} ∀ i ∈[1, n],
Xgboost ensembles M trees denoted fm to predict the output yi.

The model is trained in a greedy, additive manner starting from

m=1 (Figure 2, equation b). Let ŷi
m−1 be the prediction of yi at

the (m−1)th iteration. We add fm to minimize the following

objective (Jm) until the satisfying convergence between the
prediction and the ground truth, where j is a predefined
differentiable convex loss function that measures the difference
between the current prediction and the ground truth and Ω is a

predefined regularization term that penalizes the complexity of
the model to prevent overfitting:

Xgboost has features that can outperform other implementations
of tree-based boosting (eg, boosted trees in scikit-learn and
generalized boosted regression model in R) such as (1) using
an exact (or approximate, for large datasets) greedy algorithm
to enumerate over all possible splits to find the best solution,
(2) alleviating slow-downs using a cache-aware prefetching
algorithm, and (3) enabling out-of-core computation by dividing
the data into multiple blocks, each stored on disk, to use
machine’s maximum resources (see Figure 2, equation c).

For the HARuS and BREATHE datasets, we tuned and
implemented an Xgboost model with m=200 trees and learning
rate=0.1 (more specifications in Tables 1 and 2) using p=168
features calculated on each segment (from fixed-sized windows
or GGS) of the training data. Segment-specific predictions for
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the testing data were translated into instantaneous predictions
to facilitate comparison across segmentation approaches. Final

evaluations of accuracy were based on instantaneous predictions.

Table 1. Confusion matrix of instantaneous predictions using greedy Gaussian segmentation from the 6 test experiments in the Human Activity
Recognition using Smartphones dataset.

Precision (%)Recall (%)Xgboosta predicted categoriesTrue categories

LYgSTDfSTeWDdWUcWb

92.32100000935011238W

89.4399.6101201297110700WU

99.6683.3604001165900WD

79.7885.140279811037000ST

85.9881.49012546192696240STD

99.8810015266000190LY

aXgboost specification: base_score=0.5, booster=“gbtree,” colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=2, min_child_weight=1, missing=None, n_estimators=200, n_jobs=1, nthread=None, objective=“multi:softprob,” random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=True, subsample=1. Overall accuracy: 91.06%.
bW: walking.
cWU: walking upstairs.
dWD: walking downstairs.
eST: sitting.
fSTD: standing.
gLY: laying.

Table 2. Confusion matrix of instantaneous predictions using greedy Gaussian segmentation from the 2 test experiments in the BREATHE dataset.

Precision (%)Recall (%)Xgboosta Predicted categoriesTrue categories

WKgSTDfSTReSTdRcLb

68.7676.6303938830692016638874L

82.5454.4111693791124020315931587R

72.6564.19154803086438596012483S

71.1772.80615623204675119296505559STR

72.0589.917754300051270887STD

74.3779.495245559764846555122146WK

aXgboost specification: base_score=0.5, booster=“gbtree,” colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=200, n_jobs=1, nthread=None, objective=“multi:softprob,” random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=True, subsample=1. Overall accuracy: 79.4%.
bL: lie.
cR: run.
dS: sit.
eSTR: stair.
fSTD: stand.
gWK: walk.

Results

Human Activity Recognition Using Smartphones
Dataset
The PSD curves to determine the cut-off frequency of the
Butterworth filter are displayed in Figure 3. All 6 PSD curves
taper to 0 at higher frequencies, with largest values in the lower
frequency range from 0 Hz to 5 Hz. There is little baseline

wandering noise in high frequencies (>10 Hz). For consistency
with previous studies [11], we chose 20 Hz as the cut-off
frequency.

For GGS in the HARuS training data, the total
covariance-regularized log-likelihood elevated rapidly as K
increased from 0 to an inflection point around 16, and then even
less rapidly (Figure 4). To favor more detailed segmentation
results and allow for some incorrectly identified break points,
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especially during noisy periods and the transitory periods, we conservatively selected 50 break points.

Figure 3. Triaxial (x, y, and z) power spectra density curves of accelerometer (top row) and gyroscope (bottom row) of the human activity recognition
using smartphones training dataset. ACC: accelerometer; Gyro: gyroscope; PSD: power spectral density.

Figure 4. Total covariance-regularized log-likelihood curve of the human activity recognition using smartphones training dataset.
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Figure 5. Multivariate segmentation break points (K=50) displayed using vertical dashed lines on the time series of x-axis accelerometer readings from
experiment 1 in the human activity recognition using smartphones training dataset.

As shown in Figure 5 for experiment 1, the 13 bouts of the 6
nontransitory activities were generally well separated by the 50
break points. For this experiment, the first bout of sitting and
the second bout of laying were both relatively noisy, and
erroneous break points were created within these sessions.

We trained an Xgboost model (Figure 6), a support vector
machine (SVM) model using a radial basis function kernel and
a random forest model using the segmented data. The
instantaneous accuracy rate of the Xgboost model using GGS
in the 6 holdout experiments was 91.06% (Table 1). This result
is higher than the 89.3% accuracy reported in the original
HARuS study on the same set of 6 activities [11], and it also
should be noted that their accuracy was calculated using sliding
window predictions and not instantaneous predictions. Had we
calculated accuracy using segment-level predictions, our
accuracy would have been 95.96%. When activities were
misclassified, they tended to be misclassified as other similar
energy activities (Table 1). For example, sitting was most

frequently misclassified as standing. The results of the SVM
model and the random forest model are summarized in
Multimedia Appendix 1.

In comparison, the instantaneous accuracy of Xgboost models
fitted using fixed-width sliding windows was highest for the
0.8-second window (91.79%), as shown in Figure 7. This
optimal window size is smaller than the one used in the original
HARuS paper (2.56 seconds) [20]. As might be expected from
experiments designed to have equally sized activity bouts, the
0.8-second fixed-size sliding window accuracy was slightly
higher than that from GGS (91.06%). In the HARuS data,
predictions were relatively stable, with some additional
variability for the smallest size sliding windows (Figure 8). The
3 most important features from Xgboost using GGS were the
segment-specific mean, minimum of the x-axis of the
accelerometer, and the mean of the x-axis of the gyroscope
(Figure 9).

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 2 | e11201 | p. 8http://mhealth.jmir.org/2019/2/e11201/
(page number not for citation purposes)

Li et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Instantaneous predictions using greedy Gaussian segmentation (top row) and ground truth (bottom row) from the 6 test experiments in the
human activity recognition using smartphones dataset.

Figure 7. Accuracy of instantaneous predictions using 4 different fixed-size sliding windows (SWs) in the 6 test experiments in the human activity
recognition using smartphones dataset. The horizontal dashed line represents the accuracy using greedy Gaussian segmentation. GGS: greedy Gaussian
segmentation.
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Figure 8. Predictions using 4 different fixed-sized sliding windows (SWs) and greedy Gaussian segmentation, as well as the ground truth for the 6 test
experiments in the human activity recognition using smartphones dataset. GGS: greedy Gaussian segmentation; SW: sliding window.

Figure 9. Importance of the top 15 features from Xgboost using greedy Gaussian segmentation from the human activity recognition using smartphones
dataset. Abbreviations in the feature names are standard deviation (std), minimum (min), maximum (max), mean absolute deviation (mad), Euclidean
magnitude (norm), and derivative (jerk). The operators in the names should be read in the order of from the right to the left. For example, acc_x_jerk_max
means the maximum value of the derivative values on the x-axis of the accelerometer sensor. Acc: accelerometer; Gyro: gyroscope.

BREATHE Dataset
On the basis of the PSD plots of the training data (Figure 10),
we again chose 20 Hz as the cut-off frequency for the
Butterworth filter. The gyroscope energies are in the same scale
as the HARuS dataset; however, the accelerometer readings
have much larger amplitudes, which makes the curves look
smoother in the range of approximately 5 Hz. The zoom-in
windows in the accelerometer’s 3 subplots show the variations
of the PSD curves in the range from 2.5 Hz to 7.5 Hz on a
similar scale to that used in the PSD plots for the HARuS data.

The covariance-regularized log-likelihood curve for the 12
training experiments in the BREATHE dataset (Figure 11) had
one inflection point at approximately K=60 but no clear second
inflection point (through K=300) as we had observed in the
HARuS dataset. Interestingly, there were, by design,
approximately 60 activity bouts in each BREATHE experiment,
demonstrating that GGS again identified the number of different
activity bouts. We arbitrarily chose K=100 break points for
multivariate segmentation as it was a round number larger than
the most obvious inflection point. From Figure 12, it appears
that 100 was an adequate number of break points. A choice of
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60 break points would have been inadequate to segment
approximately 60 bouts as some noisier bouts were erroneously
partitioned into multiple segments.

Similar to the HARuS dataset, 3 models were trained: Xgboost,
SVM, and random forestAs evident from Figure 13, the
predictive accuracy for certain activities varied across
participants (eg, the accuracy for running was 71.5% for the
participant in experiment 13 and 74.4% for the participant in
experiment 14). Similar to the HARuS results, most
misclassified records were shuffled either within the active
group (walk, stair, and run) or the inactive group (sit, lie, and
stand). If the activities had been grouped into active or inactive,
the instantaneous accuracy rate would have been 95.0%. The
results of the SVM model and the random forest model are
shown in Multimedia Appendix 1. The instantaneous accuracy

rate of the Xgboost model using GGS was 79.4% (Table 2 and
Figure 14).

The accuracies of Xgboost from the 4 smallest fixed-size sliding
windows (the same sizes as used in the HARuS dataset)
increased monotonously. To achieve the reverse U-shape curve
indicating that we obtained the optimum window size, we
included 2 additional window sizes. The highest accuracy was
achieved for the 8-second window (72.7%) as shown in Figure
13. As expected in this dataset with activity bouts of unequal
duration, the smart-sized GGS segmentation (79.4% accuracy)
considerably outperformed the fixed-size sliding windows. Not
only was GGS more accurate but it also produced considerably
less noisy predictions as shown in Figure 15. The 2 most
important features from Xgboost using GGS were segment
specific: mean z-axis and the minimum norm of the triaxial
accelerometer signal (Figure 16).

Figure 10. Triaxial (x, y, and z) power spectra density curves of accelerometer (upper 3 subplots) and gyroscope meter (lower 3 subplots) of the
BREATHE training dataset. ACC: accelerometer; Gyro: gyroscope; PSD: power spectral density.
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Figure 11. Total covariance-regularized log-likelihood curve of the BREATHE training dataset.

Figure 12. Multivariate segmentation break points (K=100) displayed using vertical dashed lines on the time series of x-axis accelerometer readings
from experiment 1 in the BREATHE training dataset.
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Figure 13. Instantaneous predictions using greedy Gaussian segmentation (top) and ground truth (bottom) from the 2 test experiments (13 and 14) in
the BREATHE dataset.

Figure 14. Accuracy of instantaneous predictions from Xgboost using 6 different fixed-size sliding windows (SWs) in the 2 test experiments in the
BREATHE dataset. The horizontal dashed line represents the accuracy from Xgboost with greedy Gaussian segmentation. SW: sliding window; GGS:
greedy Gaussian segmentation.
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Figure 15. Predictions from Xgboost using 6 different fixed-sized sliding windows (SWs) and greedy Gaussian segmentation as well as the ground
truth for experiment 13 of the BREATHE test data. SW: sliding window; GGS: greedy Gaussian segmentation.

Figure 16. Importance of the top 15 features from Xgboost using greedy Gaussian segmentation from the BREATHE dataset. Abbreviations in the
feature names are SD, minimum (min), maximum (max), mean absolute deviation (mad), Euclidean magnitude (norm), and derivative (jerk). The
operators in the names should be read in the order of from the right to the left. For example, acc_x_jerk_max means the maximum value of the derivative
values on the x-axis of the accelerometer sensor.

Discussion

Summary of Findings
We found that Xgboost using GGS outperformed Xgboost using
fixed-size sliding windows in a dataset with unequal activity
bout durations (BREATHE), by producing more accurate and
considerably more stable predictions. When implemented in a
platform such as PRISMS, GGS should be able to identify short

bursts of activity while still producing relatively smooth
predictions. Identification of short activity bouts is particularly
important for appropriately quantifying vigorous activity in
children [27]. Noisy predictions from fixed-size sliding windows
might need to be smoothed by pooling (ie, majority vote) for
improved face validity of reported activity classifications and
to avoid triggering excessive user notifications. Note that we
presented our results using instantaneous predictions—to allow
for comparisons across segmentation methods—that resulted
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in slightly lower accuracy than previous studies presenting
segment-level predictions. In practice, segment-level predictions
are typically used.

Major differences between the HARuS and BREATHE datasets
included not only activity bout duration (equal vs unequal),
participant ages (adults vs children), and experimental protocol
(tightly proscribed activities vs activities allowing for more
natural movements) but also how the sensors were worn. This
difference in wear location is likely the cause of the differences
between the most important features in the Xgboost models.
The axes of a device (smartwatch or smartphone) are typically
labeled as x, denoting the side-to-side dimension; y, denoting
the forward and backward dimension; and z, denoting the up
and down dimension. Incorporating these axes with the wearing
position of the 2 datasets, forward movement would correspond
to signal along the x-axis for HARuS participants and the z-axis
(slightly deviated to x-axis) for BREATHE participants. For
both datasets, the most important features appeared to be related
to forward motion (x-axis for the HARuS data and z-axis or
combination of axes, ie, the norm for the BREATHE data) and
the direction perpendicular to this motion (eg, mean values of
the y-axis of the accelerometer, acc_y_mean, which had the
third highest score in the HARuS data and the fourth highest
score in the BREATHE data).

Limitations
In this study, the models were trained by clip-independent
method. Time dependency is more obvious in datasets with
temporal context, and many researches applied hidden Markov
model (HMM) to such datasets as motion videos or images [28],
body makers [29], and so on. For pure waist- or wrist-worn
accelerometer or gyroscope meter, the signals do not have the
strong time dependency as those temporal context data. Second,
to compare the time-dependent methods, HMM should be tested
with other analogic methods such as long short-term memory
(LSTM), but not GGS. GGS is a way to clip the data such as
the fixed-length sliding window. We can either apply
clip-independent method as in this study or HMM or LSTM to
test the time dependency among those clips.

The major weaknesses of the GGS approach are computational
load and space requirements. To deploy GGS on streaming data,

we would need to maintain a much larger cache memory of the
latest received streaming data in comparison with the traditional
fixed-length sliding window methods. GGS also requires time
series of continuous features. However, sensor data (such as
accelerometer and gyroscope) are typically quantitative, so this
requirement is reasonable. Furthermore, missing values need
to be either removed or interpolated. As for scalability, GGS

has a runtime complexity of O(KTn3) in the normal mode and

O(Tn3) in a warm start mode, in which the algorithm directly
starts with a random set of K breaking points. Fixed-size sliding
window approaches have better runtime complexity of O(n).
Thus, the greedy heuristics needs to be improved in our future
study. However, as the number of segments (K) is generally
much smaller than the optimum number of fixed-size windows,
GGS could largely save computational loads in the subsequent
feature engineering, especially when tremendous feature to be
extracted. Statistically, the GGS algorithm assumes that the
multivariate time series can be described as independent samples
from a multivariate Gaussian distribution within each segment.
Time series data typically display autocorrelation, which would
violate the independence assumption, especially when breaking
points were not enough to separate the autocorrelated parts into
different segments.

Conclusions
Identification of the break points that signify changes in physical
activity plays an important role in quantifying HAR. In
platforms such as PRISMS, HAR can be used not only to
quantify the total duration of time in, for example, light,
moderate, or vigorous activity but also to trigger user
notifications or alerts or provide real-time feedback on activity.
Our GGS-based approach shows great potential in variable
activity bout duration scenarios and produces fewer variable
predictions that should minimize unnecessary interactions with
the user. However, computational and implementation
limitations exist. Interesting future work will be focused on
deploying GGS in real-time data streams and, more generally,
finding heterogeneous segments when introducing additional
sensor signals measured at different frequencies and on different
scales (eg, sensors for physiological signals such as heart rate).
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