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Abstract

Background: Wearable accelerometers have greatly improved measurement of physical activity, and the increasing popularity
of smartwatches with inherent acceleration data collection suggest their potential use in the physical activity research domain;
however, their use needs to be validated.

Objective: This study aimed to assess the validity of accelerometer data collected from a Samsung Gear S smartwatch (SGS)
compared with an ActiGraph GT3X+ (GT3X+) activity monitor. The study aims were to (1) assess SGS validity using a mechanical
shaker; (2) assess SGS validity using a treadmill running test; and (3) compare individual activity recognition, location of major
body movement detection, activity intensity detection, locomotion recognition, and metabolic equivalent scores (METs) estimation
between the SGS and GT3X+.

Methods: To validate and compare the SGS accelerometer data with GT3X+ data, we collected data simultaneously from both
devices during highly controlled, mechanically simulated, and less-controlled natural wear conditions. First, SGS and GT3X+
data were simultaneously collected from a mechanical shaker and an individual ambulating on a treadmill. Pearson correlation
was calculated for mechanical shaker and treadmill experiments. Finally, SGS and GT3X+ data were simultaneously collected
during 15 common daily activities performed by 40 participants (n=12 males, mean age 55.15 [SD 17.8] years). A total of 15
frequency- and time-domain features were extracted from SGS and GT3X+ data. We used these features for training machine
learning models on 6 tasks: (1) individual activity recognition, (2) activity intensity detection, (3) locomotion recognition, (4)
sedentary activity detection, (5) major body movement location detection, and (6) METs estimation. The classification models
included random forest, support vector machines, neural networks, and decision trees. The results were compared between devices.
We evaluated the effect of different feature extraction window lengths on model accuracy as defined by the percentage of correct
classifications. In addition to these classification tasks, we also used the extracted features for METs estimation.

Results: The results were compared between devices. Accelerometer data from SGS were highly correlated with the accelerometer
data from GT3X+ for all 3 axes, with a correlation ≥.89 for both the shaker test and treadmill test and ≥.70 for all daily activities,
except for computer work. Our results for the classification of activity intensity levels, locomotion, sedentary, major body
movement location, and individual activity recognition showed overall accuracies of 0.87, 1.00, 0.98, 0.85, and 0.64, respectively.
The results were not significantly different between the SGS and GT3X+. Random forest model was the best model for METs
estimation (root mean squared error of .71 and r-squared value of .50).
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Conclusions: Our results suggest that a commercial brand smartwatch can be used in lieu of validated research grade activity
monitors for individual activity recognition, major body movement location detection, activity intensity detection, and locomotion
detection tasks.

(JMIR Mhealth Uhealth 2019;7(2):e11270) doi: 10.2196/11270
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Introduction

Wearable accelerometers have greatly improved the objective
measurement of physical activity over the past 20 years [1].
They have enabled the detection and tracking of activity
intensity and patterns (eg, bouts) in the population and during
intervention studies [2-5]. Most research uses accelerometers
that have been specifically designed to record accelerations to
quantify the amount of time spent in performing activities of
different intensities, which is important for understanding the
health benefits of physical activity. However, there has been a
rapid growth of smartwatches that collect accelerations for both
usability purposes (eg, screen orientation) and for tracking
activity patterns. In fact, the smartwatch market is expected to
grow at an annual rate of 18% through 2021 [6,7], and this
allows an unprecedented opportunity to evaluate activity patterns
without using a dedicated research device.

Compared with dedicated devices, smartwatches contain some
conventional sensors such as heart rate sensors, Global
Positioning Systems, and ultraviolet exposure, but also more
novel utilities such as a speaker, microphone, and Global System
for Mobile Communications data plan for communications.
These additional sensors and utilities open new opportunities
coupling companion measures along with activity patterns that
can be continuously uploaded through wireless networks. Their
multitasking platform and increasing popularity make
smartwatches an ideal tool for researchers to monitor physical
activity in real time without requiring users to wear any
additional, dedicated device. For smartwatches to be acceptable
in research, the accelerometer needs to be validated and data
need to be compared with existing research-grade monitors.

In this study, we validate the triaxial accelerometer in the
Samsung Gear S smartwatch (SGS) that currently makes up
16% of the smartwatch market [8]. This is necessary to ensure
data from this device is acceptable for objectively measuring
time spent in performing activities of different intensities and
for recognizing physical activity type. First, the SGS underwent
validation on a mechanical shaker table, and raw data were
compared against an Actigraph GT9X. Next, a series of
experiments were performed on a treadmill and during common
daily activities. High-resolution raw accelerometer data were
used to extract frequency- and time-domain features that are
used to train and test classification models for activity
recognition tasks. We compared the accuracies of the SGS and
Actigraph GT3X+ (GT3X+) for assessing (1) activity intensity
level, (2) locomotion versus nonlocomotion, (3) location of

major body movement during the activity, (4) sedentary versus
nonsedentary, and (5) individual activity recognition
classification. Moreover, a portable metabolic unit was used to
record metabolic equivalent scores (METs) to estimate activity
intensity and used to further validate the SGS against the
Actigraph. We hypothesized that the SGS would test valid and
be accurate at assessing activity intensity and recognize activity
type as compared with GT3X+.

Methods

Data Collection
We collected data in 3 different experiment setups: (1) a shaker
table, (2) treadmill walking, and (3) 15 daily activities. In all
experiments, we collected data simultaneously from both SGS
[9] and GT3X+. Device characteristics are compared and
described in Table 1 [10,11]. All study procedures were
approved by the University of Florida Institutional Review
Board. All participants provided written informed consent before
participation in the study. First, we collected data using a
mechanical 1-dimensional shaker table by applying acceleration
to both devices for 3 min for 7 different speeds (0.5 Hz, 1 Hz,
1.5 Hz, 2 Hz, 2.5 Hz, 3 Hz, and 3.5 Hz), repeated for each axis.
SGS monitor was positioned on top of the GT3X to ascertain
that they experience the same accelerations. Then, we collected
data during 6 speeds of treadmill walking, where 1 participant
wore both devices on the right wrist and ambulated at 6 different
speeds (1, 2, 3, 4, 5, and 6 mph), 3 min each at each speed. Data
were collected at a frequency of 10 Hz for the SGS and 100 Hz
for GT3X+ for both the shaker table and treadmill test.

In the third experiment, participants wore both devices on their
right wrist while performing several daily activities, as listed
in Table 2 [12]. Expiratory gas was collected during each
activity using a portable, chest-worn, indirect calorimeter
(Cosmed K4b2; COSMED USA). Energy expenditure was

estimated using oxygen uptake (VO2=milliliter min−1kg−1) at a
steady state, generally beginning at 3 min after starting the
activity. Oxygen consumption was subsequently converted to
METs, a value that is often used to gauge the intensity of an
activity relative to a reference resting value (ie, 3.0 METs=3
times the equivalent of resting oxygen consumption). METs
were calculated as the oxygen consumption per minute relative
to body mass (ml/min/kg) divided by a resting value of 3.5
ml/min/kg [12,13]. We linked the resulting MET value for each
task to the average of the extracted features for the task.
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Table 1. Technical specifications of ActiGraph GT3X+ and Samsung Gear S smartwatch.

Samsung Gear S smartwatchActiGraph GT3X+Characteristics

5.8 cm x 4.0 cm x 1.2 cm4.6 cm x 3.3 cm x 1.5 cmDimensions

67 gm19 gmWeight

100 Hz100 HzSampling rate

±2G±8GDynamic range

4 GB4 GBMemory

Table 2. Characteristics of each activity. Accelerometer data were collected from 40 participants.

Participants (n)Duration (min)LocomotionIntensityMajor body movement locationActivity

118NoSedentaryUpperComputer work

128NoLightUpperIroning

88NoLightTotalYoga

138NoLightTotalShopping

98NoLightUpperLaundry

158NoModerateUpperWashing windows

148NoModerateUpperHome maintenance

138NoModerateUpperReplacing bed sheet

138NoModerateUpperMopping

138NoModerateTotalTrash removal

128NoModerateTotalHeavy lifting

98YesModerateLowerLeisure walk

98YesModerateLowerRapid walk

145YesModerateLowerWalk at RPEa 1

135YesModerateLowerWalk at RPE 5

aRPE: ratings of perceived exertion.

Textbox 1. Inclusion criteria for the study.

1. Community-dwelling adults aged 20 years or older

2. Willingness to undergo all testing procedures

3. Weight stable for at least 3 months (±5 lbs)

4. English speaking

A total of 40 community-dwelling adults aged between 20 and
85 years (n=12 males, mean age 55.2 [SD 17.8] years, mean

body mass index 26.8 [SD 6.2] kg/m2), participated in this study.
These 40 participants belonged to a subset of a larger study
whose primary aim was to assess the age effect on energy
expenditure during activities common to daily life in the United
States [12]. The inclusion criteria are provided in Textbox 1.
For a complete list of exclusion criteria refer to [12].

The activities in our study are common daily activities. They
included ironing, yoga, shopping, laundry washing, computer
work, washing windows, home maintenance, replacing bedsheet,
mopping, trash removal, heavy lifting, and walking at 2 different
ratings of perceived exertion (RPE), as well as leisure and rapid
walking [12]. Activity instructions and the setup of the

experiments are described in more detail in the study by Corbett
et al [12]. Participants performed activities based on instructions,
in a laboratory setting, each for 8 min, except for the walking
activities performed at different RPE [14,15]. Activities were
designed to be repeated to achieve an accumulated duration of
8 min.

Analysis
To validate data from the SGS against data from the GT3X+,
we calculated the root mean square (RMS) value of the
accelerometer data over 1 second, for all 3 axes, for each device.
RMS is calculated using Equation 1 (Figure 1).

Here, N is the number of data points and xij refers to a single
data point i from axis j. In this step, we calculated the RMS of
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1-second windows of the data in each axis. Then, we computed
the correlation between the data from the 2 devices along each
axis. This process was performed for the shaker table test data,
treadmill test data, and daily activity data. We used the middle
2 min of 3-min shaker table data, the middle 2 min of 3-min
treadmill data, and the middle 5 min of the 8-min daily activity
tests. The purpose of this selection was to exclude the boundary
start and end segments of activities.

We extracted 15 time- and frequency-domain features found in
the current literature (Table 3) [16,17]. Here, vector magnitude
is defined as in Equation 2 (Figure 2), where x, y, and z are
accelerations in the Cartesian coordinate system. In addition to
the features previously suggested [16], our feature set also
included (1) kurtosis, which is a descriptor of the shape of the
distribution of the acceleration data in each window; (2)
skewness, which measures the asymmetry of the distribution
of acceleration data in the window; and (3) entropy, which helps
in discriminating between activities with similar power spectral
density but different movement patterns [17].

The length of the window of data used for statistical feature
calculation is also important [18,19]. Previous individual activity
recognition studies have used different window lengths, ranging
from 0.1 seconds to 128 seconds [16,20-24]. In this study, we
do not use window lengths smaller than 1 second because we
are using frequency-domain features. We calculated the
statistical features for 6 commonly used window lengths (1-,
2-, 4-, 8-, 15-, and 16-second lengths), to choose the best
window length for our classification tasks. These window
lengths were chosen in accordance with previous literature from
the above list, limited to between windows smaller than 16
seconds. We did not go above the 16-second length as it would
drastically reduce the number of sample points and will
potentially include different actions in a single window of an
activity. We used the overall accuracy metric to select the best
model. The features calculated for the chosen window length
are used in the prediction models.

Classification tasks included (1) detection of the location of
major body movement, (2) detection of activity intensity level,
(3) detection of locomotion, (4) detection of sedentary activity,
and (5) individual activity recognition for the 15 daily activities.

Figure 1. Root mean square (RMS) shows the arithmetic mean of the squares of the accelerometer values.

Table 3. Description of the features extracted from the raw data.

DescriptionFeature

Sample MVM in the windowMean of vector magnitude (MVM)

SDVM in the windowStandard deviation of vector magnitude (SDVM)

Sum of moduli corresponding to frequency in this range/sum of moduli
of all frequencies

Percentage of the power of the vector magnitude (VM) that is in the range
of 0.6-2.5 Hz

Frequency corresponding to the largest modulusDominant frequency (DF) of VM

Modulus of the dominant frequency divided by sum of moduli at each
frequency

Fraction of power in VM at DF

Sample mean of the angle between x-axis and VM in the windowMean angle of acceleration relative to vertical on the device

Sample SD of the angles in the windowSD of the angle of acceleration relative to vertical on the device

Covariance of the VM in the windowCovariance

Skewness of the VM in the windowSkewness

Kurtosis of the VM in the windowKurtosis

Entropy of the VM in the windowEntropy

SD of VM in the window divided by the mean, multiplied by 100Coefficient of variation

Correlation between x-axis and y-axisCorr(x,y)

Correlation between y-axis and z-axisCorr(y,z)

Correlation between x-axis and z-axisCorr(x,z)

Figure 2. Vector magnitude (VM) here is defined as Euclidean norm of the vector from the origin to the point shown by x, y, and z.
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Figure 3. Gini impurity measures the likelihood of incorrect classification of a randomly selected instance of a set, if it were randomly classified
according to the distribution of class labels from the set.

The activities in the study include both simple and complex
activities [25]. Simple activities, which include walking and
computer work in our dataset, consist of repeating a single action
to complete the activity. Complex activities, which include
ironing, yoga, shopping, laundry washing, washing windows,
home maintenance, replacing bedsheet, mopping, trash removal,
and heavy lifting, are composed of several simple actions. For
example, trash removal activity consists of sorting the trash,
finding smaller trash cans, picking up the trash bags, and taking
all the trash to a predetermined location. The heterogeneity of
complex activities can significantly degrade the performance
of an individual activity recognition classifier, as opposed to
recognition of simple individual activities. In this study, we
report the overall accuracy for simple activities, complex
activities, and all activities as well as the balanced accuracy of
each activity. Balanced accuracy is calculated as the arithmetic
mean of sensitivity and specificity.

For the classification tasks, we used decision tree, random forest,
support vector machines, and neural networks models. These
models can flexibly represent various relationships between the
features and the outcome and have been previously used for
activity type classification tasks [16].

We report the ranking of the features’ importance in the random
forest model. The random forest model calculated the
importance of the features using the decrease in the Gini index.
The Gini impurity index is calculated using Equation 3 (Figure
3). Every time a split is made on a variable, the Gini impurity
index for the 2 descendent nodes is less than the Gini impurity
index of the parent node. The decrease in the Gini index for
each variable is calculated by adding up the Gini decreases for
the variables over all trees in the forest.

Here, nc is the number of classes in the outcome and pi is the
ratio of the class i. For the MET estimation regression task, the
feature importance values are calculated based on the total
decrease in node impurities (difference between the residual
sum of squares before and after splitting on the variable),
averaged over all trees in the random forest model.

For both classification and regression tasks, we used nested
cross-validation for evaluating our models. In each fold, we
divided the data into 20% test data and 80% development data.
The development data was further divided into 20% validation
data and 80% training data. Validation data are used for tuning
the parameters of the models and removing collinear features.
Data partitioning was based on each feature extracted from the
window length, rather than by partitioning based on participants,
as individual participants did not have all the tasks, and
separating based on participants might lead to the absence of
some of the classes in some classification tasks, for example,
individual activity recognition classification task. All statistical
analyses were performed in R (version 3.1.3) [26].

Results

We performed 3 different experiments to evaluate the validity
of SGS in comparison with the GT3X+: (1) shaker table, (2)
treadmill, and (3) daily activities. Figure 4 shows the 1-second
RMS of the raw acceleration data collected from both devices
along the 3 x-, y-, and z-axes for the shaker table test and
treadmill test. Correlation values for the 1-second RMS for all
3 axes were high for both the shaker table test and treadmill test
(x-corr=.97, y-corr=.97, and z-corr=.95 for the shaker table and
x-corr=.98, y-corr=.89, and z-corr=.93 for the treadmill test).
Acceleration data from the 3 axes are highly correlated, except
for small shifts in amplitude (Figure 5). Correlation values
between SGS data and GT3X+ for 3 axes are high in daily
activities as well (x-corr>.70, y-corr>.70, and z-corr>.71, except
for computer work; Table 4). Figure 6 shows the similarity in
acceleration measurement for walking activity as an example
of simple activities, and Figure 7 shows the similarity in
acceleration measurement for mopping as an example of
complex activities, along the 3 x-, y-, and z-axes. Figure 6 shows
the repeated single actions for a simple activity, and Figure 7
shows the varying actions occurring during a complex activity.

To test the effect of window length, we repeated our
classification tasks with features extracted using varying window
length (1, 2, 4, 8, 15, and 16 seconds). We initially observed
that random forest has the highest overall accuracy. We
evaluated the effect of window length used for extracting the
features on the performance of the random forest model. Models
trained on the features extracted based on larger window length
had better performance (Table 5) [18]. We used features
extracted from 16-seconds windows for the remainder of the
paper.

Figure 8 shows the performance of our different models in terms
of the overall accuracy, simple individual activity recognition
accuracy, and complex individual activity recognition accuracy.
Random forest has the best performance across all 3 activity
recognition tasks. Although the random forest model is
technically a collection of decision trees, it is designed to correct
the overfitting of decision trees. The random forest model
generally works better than support vector machines in
multi-class classification problems, but the difference is much
smaller for binary classification tasks. Figure 9 shows how SGS
and GT3X+ perform in our classification tasks. Random forest
model’s performance in terms of balanced accuracy of each
activity shows that the devices can detect the simple
activities—computer work and walking activities—better
(Figure 10). Multimedia Appendix 1 gives the normalized
confusion matrix of the detected labels versus actual labels of
the activities as classified by the random forest model.
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Figure 4. The 1-second root mean square of the acceleration data from Samsung Gear S smartwatch and ActiGraph GT3X+ for each axis for the shaker
table.
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Figure 5. The 1-second root mean square of the acceleration data from Samsung Gear S smartwatch and ActiGraph GT3X+ for each axis for the
treadmill test.
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Table 4. Correlations of 1-second root mean square for all 3 axes of the Samsung Gear S smartwatch and ActiGraph GT3X+ by activity. All correlation
values were statistically significant.

z-axisy-axisx-axisTask: correlation

Simple activities

.63.55.83Computer work

.85.86.88Leisure walk

.76.70.78Rapid walk

.87.92.79Walk at RPEa 1

.71.75.70Walk at RPE 5

Complex activities

.86.84.89Shopping

.75.89.94Mopping

.81.84.91Home maintenance

.82.80.90Washing windows

.71.90.94Heavy lifting

.78.81.83Ironing

.78.88.87Replacing bedsheet

.90.88.93Yoga

.84.92.92Trash removal

.79.85.89Laundry washing

aRPE: ratings of perceived exertion.
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Figure 6. Acceleration data from leisure walking (simple activity) for all 3 axes.
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Figure 7. Acceleration data from mopping (complex activity) for all 3 axes.

Table 5. Effect of window length for feature extraction on micro-averaged accuracy using random forest model for individual activity recognition,
locomotion detection, sedentary activity detection, activity intensity level classification, and major body movement location detection. The best
performance for each classification task is presented in italics.

Classification accuracy (seconds)Classification task: window length

16158421

.64.64.60.56.47.45Individual activity recognition

111111Locomotion

.98.98.98.97.97.96Sedentary

.87.87.84.82.81.80Intensity

.85.85.83.81.80.78Major body movement location
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Figure 8. Comparison of the performance of different classifiers for activity recognition task, in terms of overall accuracy for simple tasks, complex
tasks, and total set of tasks. TREE: decision tree model, NNET: neural network model, RF: random forest model, and SVM: support vector machines
model.

Figure 9. Accuracies of the 5-fold cross-validation classification tasks performed on Samsung Gear S smartwatch data and ActiGraph GT3X+ data.
We used the best model and best window length (random forest model and 16-second window length feature extraction). Activ recog: Activity recognition;
Inten detec: Activity intensity level detection; Location detec: Major body movement location detection; Loco detec: Locomotion detection; Seden
detec: Sedentary activity detection.

In the next step, we used our classifiers (decision trees, random
forest, support vector machines, and neural networks) on the
extracted features to classify the activities based on their
intensity, sedentary status, locomotion status, and location of
major body movement. The overall accuracies of the models
are compared for each classification task in Figure 11. The

confusion matrices of the model with the highest
accuracy-random forest model for each task are given in Tables
6 to 9. Random forest has the best performance in all tasks based
on overall accuracy. Figure 12 shows the ranking of features
used in the random forest model for all classification and
regression tasks.
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Figure 10. Balanced accuracy for each activity using the random forest model and 16-seconds window for extraction of features. RPE: ratings of
perceived exertion.

Figure 11. Performance of 4 classifier models in activity type classification tasks in terms of accuracy. NNET: neural networks model; RF: random
forest model; SVM: support vector machines model, TREE: decision trees model.
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Table 6. Normalized confusion matrix showing the percentage of correctly classified instances for the random forest model used for activity type
classification tasks based on intensity level. Each column shows the actual activity and rows represent the predicted labels.

ModerateLightSedentaryActivity

00.020.87Sedentary

0.040.650.12Light

0.950.330.01Moderate

Table 7. Normalized confusion matrix showing the percentage of correctly classified instances for the random forest model used for activity type
classification tasks based on locomotion. Each column shows the actual activity and rows represent the predicted labels.

NonlocomotionLocomotionActivity

00.98Locomotion

10.02Nonlocomotion

Table 8. Normalized confusion matrix showing percentage of correctly classified instances for the random forest model used for activity type classification
tasks based on major body movement location. Each column shows the actual activity and rows represent the predicted labels.

UpperTotalLowerActivity

001Lower

0.110.610Total

0.890.390Upper

Table 9. Normalized confusion matrix showing percentage of correctly classified instances for the random forest model used for activity type classification
tasks based on sedentary. Each column shows the actual activity and rows represent the predicted labels.

NonsedentarySedentaryActivity

0.010.78Sedentary

0.990.22Nonsedentary

Figure 12. Importance of features in terms of the mean decrease in the Gini index in each classification task and in terms of the increase in node purity
for the metabolic equivalent scores estimation regression task, as reported by the random forest model and 16-second window length for feature extraction
(note the different range for the x-axis). METs: metabolic equivalent scores; IncNodePurity: Increase in node purity; cor_x_z: correlation between
x-axis and z-axis; cor_y_z: correlation between y-axis and z-axis; cor_x_y: correlation between x-axis and y-axis; cv: covariance of the vector magnitude;
sd_a: SD of angle; mean_a: mean of angle; pow.625: percentage of the power of the vector magnitude that is in the range of 0.6-2.5 Hz; dom.freq:
dominant frequency of vector magnitude.
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Using random forest, support vector machines, neural network,
and decision trees models for the regression task of METs
estimation shows that the random forest model also has the best
performance for the METs estimation. Random forest, decision
tree, neural networks, support vector machines models had RMS
error values of .71, .77, .99, and .77, respectively. Their
r-squared values—which is the coefficient of determination
defined as the proportion of the variance in the output that is
predictable from the input features—were .50, .40, .01, and .41,
respectively.

Discussion

Principal Findings
The goal of this study was to validate the SGS accelerometer
data against the GT3X+ accelerometer data using several
comparisons. First, the accelerometer data from SGS and
GT3X+ were compared using a mechanical shaker at different
speeds. Second, data were collected and compared from the 2
devices worn by a participant ambulating on a treadmill at
different speeds. Third, data collected during activities common
in daily life were collected and compared in all 3 axes. We also
compared the performance of activity recognition and
classification models using accelerometer data recorded using
SGS against using accelerometer data recorded using GT3X+.

Accelerometer data from SGS and GT3X+ have high
correlations along all 3 axes during shaker tests. However, the
correlations were slightly lower when performing daily
activities. There are several scenarios where these 2 devices
might show different acceleration values. The lower correlation
values during the daily activities might partially be caused by
nonalignment and movement of the 2 devices during the
activities. When the 2 devices are not perfectly aligned, their
axes are not pointing in the same direction. This may cause the
movement to be dispersed across multiple axes with varying
ratios for each device. Another factor that might result in a lower
correlation between the 2 devices is the relative slowness of
movements during activities such as computer work or yoga,
where even small differences are comparatively more
significant.

In our study, all 4 models performed well for activity type
classification tasks. Random forest had the best performance
for all classification tasks. This difference was greater for the
individual activity recognition task. Neural networks model’s
performance was similar to the random forest model, which
were superior to support vector machines, which is more suitable
for binary classification, and decision tree model, which tends
to overfit [27]. Mean vector magnitude was the most important
feature in our tasks, whereas the ranking of other features
understandably varied among the different classification tasks.
We also used the random forest, decision trees, support vector
machines, and neural network models for METs estimation.
Random forest had the best performance in this task as well,
but other models, except for the neural network, had similar
performances.

In this work, we experimented with 1 second, 2 seconds, 4
seconds, 8 seconds, 15 seconds, and 16 seconds nonoverlapping

time windows. Larger window lengths resulted in better
classification accuracy (Table 5). This may be because of
smaller window length capturing shorter duration of actions
that are common among different activities. A window length
of 16 seconds resulted in high accuracies for activity type
classifications such as locomotion versus nonlocomotion.
However, it did not lead to high accuracy for individual activity
recognition. The lower overall accuracy of classifiers for
individual activity recognition can be attributed to the
heterogeneous nature of complex activities that are composed
of multiple simpler actions under the same label. The fact that
the same label here corresponds to different actions deteriorates
the performance of the classifier. To remedy this problem for
future models, one can separately label every single action in a
complex activity.

We observed a slight shift in acceleration amplitude during the
mechanical shaker tests between the 2 devices. For our
classification purposes, this shift would not affect the models
because the relative change in acceleration appeared to be
preserved in the SGS. Therefore, it is not expected to impact
the classification results in practice. However, a comparison
between devices is cautioned until corrections can be made to
equate absolute thresholds of accelerations. Overall, our results
show that the performances of the SGS and GT3X in various
activity recognition tasks and METs estimation are similar and
can potentially be used interchangeably between studies.
However, the raw data are not interchangeable because of the
slight shift explained, and thus, any threshold derived for 1
device needs to be validated for the other device to be compared.

Limitations
There are limitations that need to be acknowledged. First,
inter-device reliability was not tested, given the use of a
commercial device. Another limitation is that SGS was evaluated
in standard settings (eg, shaker table and laboratory activities)
and thus may not be applicable to free-living conditions. In this
study, we compared the performances of the machine learning
models trained on data collected by the 2 devices in laboratory
settings and structured activities. However, free-living activity
recognition tasks are more complicated because of factors such
as a temporal overlap between the activities, similar action units
in several activities, activity fragmentation, and the interpersonal
and intrapersonal variation in activities as well as variation in
wear locations. Future works can focus on comparing the
performance of SGS-based models with GT3X-based models
in free-living activity recognition tasks. Such efforts would need
to implement methods for activity label determination, such as
body-worn camera recordings that allow for later labeling of
the activities performed. In addition, the tasks that were
evaluated are not representative of all the tasks that an individual
may perform. Although the activities constitute a wide range
of movements, the results reported in this study are limited to
the activities tested.

Conclusions
In this study, we showed that data collected from a commercial
brand smartwatch performed similarly to a research-grade
accelerometer to detect a variety of simple and complex activity
types. The comparable performance of models relying on SGS
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and GT3X+ data for activity recognition and energy expenditure estimation verifies the validity of the SGS for research purposes.
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