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Abstract

Background: Smartphones are becoming increasingly ubiquitous every day; they are becoming more assimilated into our
everyday life, being the last thing used before going to sleep and the first one after waking up. This strong correlation between
our lifestyle choices and smartphone interaction patterns enables us to use them as sensors for sleep duration assessment to
understand individuals’ lifestyle and sleep patterns.

Objectives: The objective of this study was to estimate sleep duration based on the analysis of the users’ ON-OFF interaction
with their smartphone alone using the iSenseSleep algorithm.

Methods: We used smartwatch sleep assessment data as the ground truth. Results were acquired with 14 different subjects
collecting smartwatch and smartphone interaction data for up to 6 months each.

Results: Results showed that based on the smartphone ON-OFF patterns, individual’s sleep duration can be estimated with an
average error of 7% (24/343) [SD 4% (17/343)] min of the total duration), enabling an estimate of sleep start and wake-up times
as well as sleep deprivation patterns.

Conclusions: It is possible to estimate sleep duration patterns using only data related to smartphone screen interaction.

(JMIR Mhealth Uhealth 2019;7(5):e11930) doi: 10.2196/11930
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Introduction

In the last decade, smartphones and mobile or connected devices,
in general, are taking on a bigger role in our everyday life. Day
by day, the time humans spend interacting with their smartphone
is increasing [1], both because these devices can now serve
more tasks, thereby helping us along daily life activities (eg,
for navigation and communication) and also because they are
designed to be engaging. Moreover, smartphones are equipped
with several built-in sensors, for example, accelerometer, light
sensor, and microphone that can provide valuable data, which
can be used to get an insight into an individual’s life. For
example, smartphones can be instrumented to provide
recommendations about lifestyle and to follow a specific

exercise regimen [2], understand the user’s stress level [3], or
just provide overall support for lifestyle choices (eg, for exercise
and nutrition) to facilitate better aging [4].

One of the most important aspects of everyday life of individuals
that has gained a lot of attention recently is sleep. People’s
feelings and actions throughout the day are strongly correlated
with how much they slept (ie, the sleep duration) and how well
they slept (ie, the sleep quality). In general, sleep affects
personal health. An insufficient amount of sleep can cause
fatigue and lack of concentration during the day [5]. Moreover,
clinical studies show that poor sleep habits and sleep disorders
are related to many serious diseases, including obesity and
depression [6-8]. Increasing and converging evidence indicates
that much like the majority of other organisms on the planet

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 5 | e11930 | p. 1http://mhealth.jmir.org/2019/5/e11930/
(page number not for citation purposes)

Ciman & WacJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

mailto:katarzyna.wac@unige.ch
http://dx.doi.org/10.2196/11930
http://www.w3.org/Style/XSL
http://www.renderx.com/


[9], biochemistry of the human body varies predictably
throughout the day [10], a phenomenon known as the circadian
rhythm. It has even been proven that circadian rhythms affect
our mood, levels of concentration, digestion, sleep patterns, and
much more [11].

The importance of sleep in everyday life has driven researchers
to study if, and to which extent, more accessible devices, for
example, smartphones or wearable devices, can be used to assess
sleep quantity and quality of individuals and, in the long term,
help them understand how their sleep-related behaviors could
be changed. For these reasons, several developments related to
smart, personal, miniaturized, and affordable devices, including
smartwatches such as Fitbit [12], Withings [13], and Apple
Watch [14] that use an array of embedded accelerometers,
temperature, and heart rate sensors to estimate the sleep of the
user, will make accurate sleep information, measured at the
user’s home, available to medical experts.

Moreover, a recent study by the Pew Internet and the American
Life Project found that 65% of mobile phone owners (and
impressively 90% of teens) sleep with their phone on or near
their bed, with many users using their smartphone as an alarm
clock [15]. Results presented in this study show how the
closeness of the smartphone in everyday life makes this device
suitable for understanding the sleep habits of its users. Compared
with approaches that require external devices, by only using the
smartphone, the cost of entry for a sleep analysis tool is reduced,
thus making this information more accessible to everyone.

In this study, we hypothesized that it is possible by using only
a smartphone, and in particular, the information related to the
users’ interactions with the smartphone screen, to understand
and estimate their sleep habits. In particular, we compare the
sleep duration derived from the smartphone interaction patterns
with the sleep duration estimated by a smartwatch worn by the
healthy study volunteers during the entire day and night. In our
research, we leverage the BASIS Peak Smartwatch (by Intel
Corp, Santa Clara, CA, USA) [16]. In this study, we show that
it is possible to estimate sleep duration of each user, based solely
on the smartphone interaction datasets, collected longitudinally
in a minimally obtrusive and lightweight way. On the one hand,
this information can be very useful as a contextual background
to better diagnose sleep-related disorders once the individual
conducts the sleep lab study. On the other hand, according to
the literature [17], this information can be very useful to assess
(and potentially mitigate) the risk of developing an illness in
the long term (eg, cardiovascular disease and diabetes) correlated
with unhealthy sleep patterns. The proposed approach is not
intended to facilitate real-time sleep detection and real-time
intervention but to facilitate longitudinal assessment and
behavior change.

Methods

Study Design
The goal of our research is to understand how and to what extent
it is possible to use only smartphones, and in particular, the data
related to the interactions of the user with the smartphone screen,
to evaluate the sleeping patterns of the user and have an insight

about his or her routines (eg, sleep deprivation) that could lead
to a disease later in the individuals’ life.

Sleep Logs
The first point necessary to address is related to the ground truth
data, for example, sleep logs of each individual that will later
be compared with the results of the smartphone-based
computational modeling of the sleep behavior. The first option
for annotating data was the usage of a diary where users could
annotate sleep moments before going to sleep and when waking
up [18,19] or daily reconstruction methods [20] to interview
the users with the aim of reconstructing their daily habits,
including sleep. These methods are prone to possible subjective
errors and imprecision stemming from forgetfulness of the
participants to complete the logs, memory bias, or providing
information about when they went to bed but not necessarily
when they started sleeping. For these reasons, we decided to
base our research on more reliable data, which could give a
precise insight into their sleeping behavior.

We provided the users with a BASIS Peak Smartwatch [16] to
wear in their daily life. The Basis Health Tracker (by Intel Corp,
Santa Clara, CA, USA) is a wristwatch with an embedded
actigraph. Besides the standard features provided by this
smartwatch, for example, step counter, calories burned, and
heart rate, the important aspect of this device is that it can
automatically detect sleep episodes. Given the evidence from
the medical literature, BASIS can be considered as a baseline,
as it is the closest to the ground truth of sleep assessment than
any other self-reported method. The BASIS sleep duration
estimation has been successfully evaluated within diverse studies
against gold standard polysomnography, for example, by Patel
et al [21], who showed no statistically significantly different
results for the total sleep time comparing the 2 methods for 40
participants.

The on-board algorithm of the smartwatch provides information
about the different sleep phases (rapid eye movement, light,
and deep sleep) based on the user’s physiological measures;
however, we are interested mainly in the following: the start,
the end, and the duration of the sleep of each user. Another
feature of the BASIS is the ability to identify sleep interruptions
during the night. Interrupted sleep occurs when a subject wakes
up for few minutes and, for example, goes to a bathroom, and
then goes back to sleep in less than 15 min. In this case, the
sleep duration for the night is reduced by the duration of the
interruptions. There is also an option for unknown values being
provided by the BASIS, which represent the cases in which the
BASIS’ on-board algorithm is unable to interpret the
physiological measures and to classify the type of sleep
(typically such a lack of knowledge is due to insufficient heart
rate coverage). In such a case, if the set of unknown values is
between 2 sleep episodes and is less than 15 min, it is also
considered as a sleep period; it is discarded otherwise.

Smartphone Logs
This study aims to understand if it is possible to analyze the
users’ interaction with the smartphone to infer their sleep
patterns. For this reason, we were interested in collecting data
about the interaction of the user with his or her smartphone,
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and, in particular, when the user turns ON and OFF the
smartphone screen—assuming that it is the smartphone owner
turning ON or OFF the phone; interacting with his or her
smartphone and hence, not sleeping.

To collect these data, we instrumented the smartphone with the
mobile Quality of Life logger (mQoL-log) [22]. This app,
developed by the Quality Of Life Technologies (QoL) Group
at the University of Geneva (Switzerland, qol.unige.ch) and
currently used in the QoL Living Lab (mqol.unige.ch), can
collect and register most of the events that take place in the
smartphone. For example, it collects time-stamped data about
the apps used (eg, Facebook and email), the screen events such
as the screen being turned ON or OFF, the physical activity of
the users (walking and running) and used network 3G/4G or
Wi-Fi performance information. All the data collection and the
task of uploading it to the dedicated QoL lab server are made
automatically in the app background, and there is no interference
with the daily routine of the smartphone use. In this way, the
mQoL-log collects data unobtrusively, without affecting the
daily life of the users. Despite all the information available and
the vast data being collected from the smartphone users, the
algorithm presented in this study uses only information related
to the state of the screen (screen ON and screen OFF), to
minimize the amount of data being used and its potential
privacy-obtrusiveness, and hence, maximize the user acceptance
for the algorithm. In particular, the mQoL-log logs 3 different
events: SCREEN ON, SCREEN OFF, and screen PRESENT.
SCREEN ON represents the screen being turned ON, PRESENT
when the screen is unlocked and the smartphone is ready for
interaction with apps, and SCREEN OFF when the screen is
turned OFF. It is important to note that the ON state of screen
considered in this study only corresponds to user-interaction
events, that is, SCREEN ON is recorded only when the user
touches the ON button and not when the screen lights up in
response to, for example, notifications and without necessarily
being initiated by the user.

Figure 1 represents the timeline of the events when the screen
is turned ON and OFF, or turned ON, unlocked (PRESENT),
and turned OFF.

The basic requirement of the algorithm, denoted iSenseSleep,
is to identify when the user is sleeping by only analyzing the
user’s smartphone interaction data, and, in particular, when the
screen is turned ON and OFF.

iSenseSleep relies on two consecutive functions: (1) identifying
what are all the possible time intervals along 2 consecutive days
that could identify as sleep episodes and (2) evaluating these
episodes to determine which one is the most probable one to
represent the longest (likely overnight) sleep.

The first function works as follows: We denote the screen event
as a tuple of SCREEN ON and SCREEN OFF events recorded
consecutively by the mQoL-log (so, both cases in Figure 1
represent a screen event). Given a list of screen events for 2
consecutive days, the first step of the iSenseSleep algorithm is
to identify all tuples, that is, consecutive screen events that are
separated by at least 4 hours. Second, the iSenseSleep algorithm
evaluates the SCREEN ON events in the morning hours after
at least 4 hours since the last SCREEN OFF event. The
algorithm reasons if the SCREEN OFF event before the
SCREEN ON at the wake-up time is really the event when the
user went to sleep (along the evening hours) or an event in the
middle of the night when he or she woke up and checked the
smartphone. For this reason, the algorithm clusters all possible
events around this SCREEN OFF event (if there are other events
in the range of 5 min) and picks up the previous SCREEN OFF
event (before the one in the middle of the night) that is registered
at least 2 hours earlier that night. If this is the case, iSenseSleep
assumes the last screen event considered for sleep duration
calculation as the last one before the sleep break in the middle
of the night.

Figure 1. Different screen events recorded by the mQoL-log (Left: Screen ON and OFF; Right: Screen turned ON, unlocked (PRESENT), and turned
OFF). mQoL-log: mobile Quality of Life logger.

The operation of identifying the possible sleep episodes is
repeated until all the screen events (SCREEN OFF and SCREEN
ON) are analyzed. Once (1) the function of the algorithm
provides the list of time intervals relating to sleep episodes, (2)
the evaluation function derives 3 scores to provide a likelihood
value for all the episodes to understand which one most likely
relates to the overnight sleep episode of the user. To do this,
the function (2) assigns a score to the different episodes
identified by (1) along 2 consecutive days, comparing it with
the assumed time to bed (eg, how far it is from 22 hours or 10
pm) and the identified time of wake up, for example, how far
it is from a normal wake-up time (derived based on the entire
smartphone log dataset). Function (2) also assigns a score to a
sleep episode by evaluating how much time passed between the

usual wake-up time during weekends and weekdays, and what
is the total duration of the sleep for this episode. On the basis
of these 3 values, the function provides an evaluation of all the
possible episodes to select the one that identifies the overnight
sleep of the user with the highest probability.

User Study and Data Collection
For this research, we recruited both young university students
(10) and adults (working mothers, 4), 14 in total, to have 2
different groups of individuals and to understand the behavior
and the performance of the algorithm with 2 different daily
behaviors and daily usage of the smartphone. In particular,
students can be considered as more digitally native [23], hence
more attached and closer to their phone, while working mothers
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are probably less attached, as they have an entirely different
lifestyle from students and are busy with work and caregiving
activities. This is also reflected in the fact that we had aimed to
recruit 10 working mothers but given the time constraints on
the recruitment and the lack of immediate availability of the
potential participants, we failed to do so. The study has been
approved by the IRB of University of Copenhagen (Denmark)
in 2015 under the protocol number 2015-15-0117/519-0019
/15-5000 and took place at the end of 2015-mid 2016 in
Copenhagen, Denmark.

For the women group (S01-S04), we initially recruited 4
working mothers (in their 30s and 40s, caring for at least 1
child), whereas for the student group (S05-S14), we recruited
10 participants (aged between 18 and 30 years, 8 of them are
males). For each user, we provided 1 BASIS Peak smartwatch

and installed the mQoL-log app on his or her smartphone. The
users were encouraged to wear the watch at all times, even for
sports and under the shower. The smartphone and smartwatch
data were automatically synchronized with the QoL servers
without the intervention or interaction of the users.

Participation in the study was free, and participants could leave
the study whenever they wanted, in addition to having autonomy
of wearing the smartwatch or not. The working mothers group
provided an average of a bit more than a month of data—that
is, 46 days of data (±23), whereas the students’ group—almost
5 months of data—that is, 148 days (±64), with some
contributing full 6 months of data. Table 1 provides the total
amount of participation days, whereas Figure 2 shows the
distribution between weekdays and weekends (Saturday and
Sunday).

Table 1. Number of participation days (S01-04: working mothers; S05-S14: students).

Total daysWeekend daysWeekdaysSubject ID

17314S01

821270S02

46640S03

40634S04

21730187S05

19123168S06

17023147S07

19215167S08

16318145S09

13318115S10

12713114S11

127545S12

18216S13

21727190S14

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 5 | e11930 | p. 4http://mhealth.jmir.org/2019/5/e11930/
(page number not for citation purposes)

Ciman & WacJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Percentage distribution of week or weekend days for each study subject.

Trial Registration
Study protocol “Understanding Diverse Factors Influencing
Individuals’ Sleep Quality And Smartphone-Based Ubiquitous
Assessment Of Individual Sleep Patterns”: Protocol
2015-15-0117/519-0019/15-5000 approved by the Institutional
Review Board, Faculty of Science, University of Copenhagen,
Denmark; Protocol Director: Professor K Wac, Active since
2015.

Results

Sleep Duration
The sleep duration derived by the iSenseSleep algorithm
presented in the previous section has been compared with the
ground truth data provided by the BASIS smartwatch. The
average sleep duration, as measured by the BASIS and the
iSenseSleep algorithm, are provided for both the working
mothers’ group and the students’ group (Table 2).

Recommended Sleep Duration
Figure 3 provides the data calculated using iSenseSleep
algorithm and the BASIS data compared with the recommended
amount of sleep hours for healthy adults [24], as we will discuss
further in this paper.

We additionally compared differences between the beginning
and the end of the sleep, to have a closer look in how much time
passes between when the person stops using the smartphone
(ie, when the last smartphone event (ON or OFF or PRESENT)
is recorded) and he or she falls asleep according to the
smartwatch. We report the cumulative average difference

between the BASIS smartwatch and iSenseSleep-derived time
for the beginning and the end of the sleep. Values are calculated
considering the absolute value of the difference. Table 3 shows
the average error (SD) of the iSenseSleep algorithm for sleep
duration, sleep beginning, and sleep end times for working
mothers’ and the students’ group.

As we can see from the results, the error made by the
iSenseSleep algorithm is on average approximately 13% of the
sleep duration value for the working mothers’ group
(corresponding to average of 53 min), or approximately 7% for
the students’ group (corresponding to average of 24 min). If we
divide the days between weekdays and weekends, the
iSenseSleep error is similar for weekdays (12%±10% for
working mothers and 7%±6% for students), whereas it increases
to 13% when considering only weekends for working mothers
and to 9% for the students’ group. Overall, the sleep duration
error is persistent for working mothers, while it is lower for
weekdays and larger for weekends when considering the student
population.

The iSenseSleep error for the start time and the end time of the
sleep is slightly higher both for the women and the students’
group. In particular, the starting time error for the working
mothers’ datasets is about 108 min (26% of the entire sleep
duration), whereas for the students, this error is about 79 min
(18%) on average for all days together. During the weekdays,
the error is the same for working mothers, and it increases by
an additional 18 min for students—resulting in 97 min (23%).
The sleep start time error is the same for the working mothers
across the whole dataset, whereas it is higher for the students
at weekends.
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Table 2. Average sleep duration comparing the BASIS smartwatch and the iSenseSleep algorithm.

Sleep duration (min), mean (SD)Group and subject ID

Weekend daysWeekdaysAll days

iSenseSleepBASISiSenseSleepBASISiSenseSleepBASIS

Mothers

458 (18)389 (20)409 (15)393 (13)418 (14)393 (10)S01

493 (19)378 (23)509 (25)406 (17)507 (16)402 (15)S02

379 (17)392 (30)377 (29)464 (10)377 (34)455 (13)S03

506 (23)503 (15)433 (17)437 (18)444 (25)446 (15)S04

Students

465 (15)386 (29)483 (20)436 (15)481 (23)429 (15)S05

429 (24)461 (22)485 (15474 (10)478 (25)473 (16)S06

384 (37)374 (23)376 (15378 (30)377 (24)377 (22)S07

479 (17)453 (35)450 (23449 (13)454 (35)450 (13)S08

429 (27)443 (35)463 (18486 (29)459 (24)482 (14)S09

476 (19)453 (27)441 (37481 (24)446 (36)478 (16)S10

350 (24)344 (34)381 (23417 (17)378 (45)409 (19)S11

362 (16)501 (24)376 (29408 (27)374 (16)417 (24)S12

272 (23)519 (12)355 (35454 (24)346 (25)462 (16)S13

434 (26)468 (29)424 (34450 (23)426 (39)452 (29)S14

Figure 3. Average sleep duration by the BASIS smartwatch and iSenseSleep versus the recommended sleep per night (gray line: 7 hours=420 min;
yellow line: 9 hours=540 min).
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Table 3. Sleep statistics' differences between the BASIS smartwatch and the iSenseSleep algorithm.

Weekend days, mean (SD)Weekdays, mean (SD)All days, mean (SD)Group

PercentageMinPercentageMinPercentageMin

Working mothers

13 (12)50 (45)12 (10)53 (43)13 (10)53 (41)Sleep duration

27 (12)108 (43)26 (9)108 (32)28 (8)108 (28)Sleep start time difference

17 (9)65 (41)21 (9)86 (34)20 (9)83 (28)Sleep end time difference

Students

9 (8)41 (40)7 (6)32 (27)7 (4)24 (17)Sleep duration

23 (6)97 (18)18 (3)78 (17)18 (3)79 (16)Sleep start time difference

20 (13)84 (47)16 (5)72 (25)17 (5)68 (22)Sleep end time difference

The end time error is similar to the start time error but higher
than the error for the sleep duration. In particular, the working
mothers’ group has an average error of 83 min (20%)
considering all the days together, or 86 min (21%) for weekdays
and 65 min (17%) for weekends. On the other hand, for students,
the average error is 68 min (17%) considering all the days
together, and 72 min (16%) for weekdays and 84 min (20%)
during weekends. The sleep end time error is higher for the
weekdays for the working mothers than at the weekends,
whereas the opposite is true for the students.

In the following section, we provide a discussion about these
results and how they can be interpreted and leveraged when
designing technologies helping individuals to develop healthier
sleep habits.

Discussion

Principal Findings
Results show that based on the smartphone ON-OFF patterns,
an individual’s sleep duration can be estimated with an average
error of 24 ± 17 min (7% ± 4% of the total duration), enabling
estimates of sleep start and wake-up times as well as sleep
deprivation patterns.

To evaluate the accuracy of the iSenseSleep algorithm, we
calculated the statistical significance between the average
duration of the sleep calculated by the algorithm and the ground
truth data provided by the BASIS smartwatch. Assuming a
normal distribution of the datasets, if the P value is larger than
.05, it indicates that there is no significant difference between
values provided by the two, and therefore, the iSenseSleep
algorithm is adequate. We performed a paired, one-tailed t test
to compare the 2 values of sleep duration. For the all days, for
the working mothers’ group, P=.35, whereas for the students’
group P=.14. We conclude that the iSenseSleep algorithm that
is based only on the smartphone interaction data analytics can
be used to estimate the sleep duration within a group of subjects.
Moreover, t test results conducted for each single study subject
show the algorithm’s performance within subject. Results are
provided in Table 4.

As we can see from Table 4, for less than 50% of participants
(6 over 14), the average sleep duration estimated by iSenseSleep

is statistically different from the ground truth data; this is mostly
because of iSenseSleep underestimating the sleep duration of
the individual. Given this result, it is possible to make several
conclusions about the performance and validity of our algorithm.

First of all, using only the data related to screen events of the
smartphone, for example, SCREEN ON and SCREEN OFF, in
this study, we have shown that it is possible to provide an
estimate of the smartphone owners’ sleep duration with a small
probability of the estimation error being at most around 100
min.

In addition, considering the sleep duration recommendations
[24] for the adult category, from the data calculated using the
algorithm, it is possible to see that only a few of the users sleep
on average enough during the night (eg, S03, S06, S09, and
S10), whereas all the others lack sleep. Some of them, for
example, S01, S02, S07, and S11, may even suffer from sleep
deprivation and should increase the amount of sleep time. For
smartphone users who are likely to rely on their phones more,
sleep deprivation is very likely to be captured by the iSenseSleep
(S01, S07, and S11), despite the sleep duration’s estimation
error. For others, such as S03, S12, or S13, the feedback to the
user could be to stay away from interacting with their phone
during the night (eg, implementing automatic switching OFF
function) because even if they are sleeping long enough (as
underestimated by the iSenseSleep algorithm), the night phone
sleep breaks lasting more than 5 min are not healthy.

Moreover, there are other aspects of the algorithm that are
interesting. First of all, the accuracy of the algorithm is higher
when calculating the duration of the sleep than when evaluating
the individual’s sleep start or end time. This result can be
explained by the fact that usually when people wake up, before
using the phone or turning it ON, they stay in bed without
sleeping and just wait for the right moment to get up. Moreover,
when going to sleep, even if the smartphone is one of the last
things an individual is interacting with, there is an amount of
time that passes before the person will effectively fall asleep.
These 2 conditions make the identification of the moment of
sleep start and wake-up times more challenging than the
calculation of the duration of the sleep, which is then shifted in
time with respect to sleep start or end time yet adequately
estimates the duration.
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Table 4. Average sleep duration by the BASIS smartwatch versus iSenseSleep algorithm, and statistical significance tests.

Sleep deprived?Algorithm estimate
(Under or over)

P valuebMin, mean (SD)Subject ID

AlgorithmBASISiSenseSleepBASIS

NoYes—a.31418 (14)393 (10)S01

NoYesOver<.001507 (16)402 (15)S02

YesNoUnder<.001377 (34)455 (13)S03

NoNo—.46444 (25)446 (15)S04

NoNoOver<.001481 (23)429 (15)S05

NoNo—.27478 (25)473 (16)S06

YesYes—.50377 (24)377 (22)S07

NoNo—.38454 (35)450 (13)S08

NoNo—.06459 (24)482 (14)S09

NoNo—.23446 (36)478 (16)S10

YesYesUnder.002378 (45)409 (19)S11

YesNo—.20374 (16)417 (24)S12

YesNoUnder.003346 (25)462 (16)S13

NoNoUnder.002426 (39)452 (29)S14

aThe iSenseSleep algorithm estimates sleep duration accurately (does not underestimate or overestimate)
bResults were deemed statistically significant at P<.05: the algorithms differ.

The second aspect we can see from the results is a comparison
between weekdays and weekends. Both for the working mothers’
group and the students’ group, the accuracy of the algorithm
during weekdays is higher with respect to the accuracy during
weekends. This may come from 2 different lifestyle choice
aspects. The first one is related to the fact that during the
weekends, lifestyle of each person is less standard and coherent
with respect to the rest of the days, such as socializing in the
evening, eating together outside of the house, etc, thus strongly
reducing the amount of time spent with the smartphone.
Interestingly enough, mothers have less error for the wake-up
time at weekend, than at the weekdays—meaning that they must
pick up their phone early at the weekend to, for example, leave
the house with the family. In weekdays, they may be occupied
with preparing the children alone—before they pick up their
phone when leaving the house. In contrast, the students pick up
the phone earlier at the weekdays (exhibiting smaller error for
the wake-up times)—most likely being late for school or work,
whereas leaving it longer behind at the weekends (most likely
staying longer at home before leaving for shopping or weekend
activities). On the other hand, the number of weekends is much
lower than the number of weekdays in our dataset, thus reducing
the accuracy of the algorithm because there is fewer data
available to compare with the ground truth.

Comparing the 2 user groups, what is clear is that the accuracy
of the algorithm is higher when considering the students’group,
compared with the working mothers’ group. Despite the fact
that the number of working mothers is lower than the number
of students, what influences the accuracy of the algorithm is
probably the users’ lifestyle and the closeness to the smartphone.
In particular, students can be considered more digitally native
than working mothers, thus making their last interaction with

the smartphone closer to their sleep time. Working mothers may
have family commitments and make behavioral choices resulting
in a different relation between their sleep and their smartphone
usage.

Limitations
iSenseSleep provides an estimation of the sleep duration patterns
of its user; however, it has some study limitations as well as
algorithm-specific limitations that can reduce its total accuracy.

Overall, the limitation of the algorithm is that it may not be
representative for all populations and be more suitable for
digitally native populations [23]. Overall, given the small sample
of working mothers, the results gathered for this population are
rather indicative and cannot be conclusive. We admit that
limitation and at the same time indicate that, overall, as mobile
users become increasingly more attached to their phones, the
algorithm will be able to provide more accurate sleep
assessments for a larger variety of populations than initially
planned for, for example, for older users relying on smartphone
for their daily life tasks, including using their smartphone as an
alarm clock [15].

Somehow related to this, a limitation of the algorithm may stem
from the choice of baseline method for its comparison. Namely,
leaving out a choice of the smartwatch datasets as a baseline,
we could have selected other, more smartphone-related baseline
methods. In the related work section, we indicate the other
smartphone or HCI-analysis methods with an error of 42 min
(Chen et al [25]) or 45 min (Abdullah et al [26]) for sleep
duration; these methods leveraged microphone and luminosity
sensors besides, for example, charging patterns. In contrast, in
this work, we leverage only ON or OFF button of the
smartphone without privacy-sensitive data sources such as
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microphone. In addition, our results are supported by 14
participants engaged in data collection of up to 6 months
compared with 8 people 1 week per person study (Chen et al)
or a study with 9 persons for 3 months (Abdullah et al).
Therefore, even if the choice of baseline may seem to be a
limitation, we claim that the choice of validated BASIS
smartwatch data is motivated toward this end.

As the first limitation related to the algorithm itself, we
recognize that the algorithm is suitable for modeling sleep
duration and sleep patterns of users who study or work in
conventional daylight hours [27], and it is not suitable for
modeling sleep duration and sleep patterns of users who study
or work on shifts or along unconventional hours (7% of
population of employed adults in Europe and 16% in the United
States [27]), who do not sleep during standard sleeping times
but whenever they can depending on working shifts. This
problem is not easy to solve using only the screen events of the
smartphone, as the algorithm assumes sleeping episodes
occurring during the night (after 10 pm or 22 hours), thus
penalizing the possible sleeping episodes that are not within
this time range. On the other hand, removing the penalization
of the possible sleep episodes that are far from the night-sleep
times imposes to calculate the likelihood function using only,
for example, the length of the possible sleep duration, hence
strongly reducing the accuracy of the algorithm in standard
conditions and sleeping patterns. For example, imagine a
primary school teacher not touching the phone over consecutive
6 or 8 hours of work time, which would end up being assessed
as sleeping along the day, while completely inaccurate. One
possible way to overcome this limitation is to introduce a short
user profile that may calibrate the iSenseSleep given the
individual’s self-declared standard sleeping times.

The second limitation is related to the usage of the smartphone
by the user and is something that is already highlighted by the
accuracy of the algorithm during the weekends or with the
working mothers’ group. In particular, if the individual is not
very attached to the smartphone, meaning that the smartphone
is not used frequently along the day, especially in the evenings,
the algorithm overestimates the time the user goes to bed and
underestimates the time when he or she wakes up, as there is a
non-negligible delay between the last and the first smartphone
interaction versus when the user goes to bed and wakes up. To
mitigate this problem, one possible solution is to use other
sensors available on the smartphone, such as, for example, the
accelerometer and built-in activity recognition, or sense if the
phone is charging, to understand if the smartphone, and therefore
the user, is potentially still awake and moving around.

Comparison With Previous Work
This paper aims to understand in which way inclusion of a
smartphone in our everyday life activities can be leveraged to
understand our sleep patterns. For example, Dey et al [28]
conducted an empirical experiment estimating how close the
smartphone is to its user along daily life activities. With this
study, they showed that the smartphone is at the room distance
for almost 90% of the time and that it is possible to predict the
proximity level of the smartphone with about 80% accuracy
with features simple to collect and model on the smartphone

itself (eg, Wi-Fi AP name). This and studies by Patel et al
[29,30] show how smartphones are getting closer to their users
day by day; hence, they can be leveraged to longitudinally and
in a minimally obtrusive and lightweight way sense users’
lifestyle and infer some aspects (including sleep) without users’
intervention or explicit data input.

As sleep is one of the most important aspects of our life, several
researchers have focused their attention on how it is possible
to understand and infer sleep patterns of smartphone users. For
example, Abdullah et al [26] showed how phone usage patterns
could be used to detect and predict individual daily variations
indicative of temporal preference, sleep duration, and sleep
deprivation. They followed 9 participants for 97 days and
collected ground truth data using a manual journal where
participants annotated their sleep moments during the night. An
average sleep duration error among all the participants was
about 45 min (10% of the average sleep duration).

In addition, Lane et al [31] assessed the sleep, physical activity,
and social interactions leveraging several smartphone sensors;
for sleep, they leverage phone charging patterns, accelerometer,
as well as microphone data to understand the noise level of the
environment the user is in and to classify the activity as sleeping
(or not). Lane et al used logistic regression models for sleep
duration estimate, and the results were provided only for 5
persons, each collecting 1-week of data via self-reports. The
error with respect to the sleep duration was reaching up to 1.5
hours.

Chen et al [25] developed an algorithm for sleep detection using
sensors available on the smartphone, in particular, charge events,
time, and length of smartphone usage and microphone or
luminosity sensor. Combining all the information available,
they developed the Best Effort Sleep model, which was tested
on a 1-week 8-person study comparing the calculated data with
the Zeo headband and the Jawbone wristband, resulting in an
average error of sleep duration of about 42 min.

Contrary to the above-mentioned works of Abdullah et al [26],
Lane et al [31], and Chen et al [25], iSenseSleep approach results
in smaller average error for the sleep duration without using
privacy-sensitive datasets from the user’s smartphone.
Furthermore, we have used wearable datasets as a ground truth,
to avoid the use of subjective self-reported data used by
Abdullah et al [26].

Min et al [32] developed an algorithm for sleep detection based
on smartphone sensors, and in particular, using the
accelerometer, the microphone, the ambient light sensor, the
screen proximity sensor, the running processes, the battery state,
and the display screen state. They used all these sensors to
develop an algorithm tested with 27 participants during 1 month.
Ground truth data were collected using a sleep diary. The system
classified correctly sleep state with a 93% accuracy and overall
sleep quality with an 81% accuracy. Sleep duration was neither
modeled nor evaluated.

Hao et al [33] developed iSleep, a smartphone app that uses the
built-in microphone of the smartphone to detect the events that
are related to sleep quality, such as body movements, coughing,
and snoring, and infer quantitative measures of sleep quality.
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The model is based on a decision-tree algorithm to classify
various events and calculate acoustic features. They tested the
algorithm with 7 participants during 51 nights of sleep, and the
accuracy was above 90% for event classification in different
scenarios. Sleep duration was neither modeled nor evaluated.
Contrary to Min et al [32] and Hao et al [33], iSenseSleep
approach focuses exclusively on the sleep duration without
leveraging the privacy-sensitive datasets from the user’s
smartphone.

Furthermore, the authors of Somnometer (by Shirazi et al [34])
developed their own app (also connected to social network) that
acts as an alarm clock, and they have evaluated the sleep
duration for an individual based on data collected within the
app. The authors compared the sleep duration assessed by the
app with the wearable device (HedgeHog) for 20 nights and
concluded that their app can be used as a sleep duration sensor
(without providing numerical results supporting its accuracy).
The work on Somnometer focused then on the social sharing
features and their update among the Somnometer users.

Compared with the presented approaches, our approach is
slightly different because it aims at understanding sleep duration
of each individual considering only the interaction they have
with their phone, without using information collected from other
sensors, especially privacy-sensitive sensors such as
microphone, used by many other authors indicated above.
Moreover, ground truth data are not collected using diaries or
other methods that are affected by a subjective self-report error
but using objective data collected from a smartwatch. In this
research, we show how smartphones are becoming accurate
proxies of our everyday life and that they can be easily used to
provide an estimation of individuals’ sleep duration.

Conclusions
Smartphones are getting becoming increasingly ubiquitous every
day, getting closer to their owners, being carried around in a
pocket, and becoming more integrated into the everyday life of
individuals. This proximity of the smartphone with the daily
life of users opens the door to many different opportunities for
leveraging smartphone use to bring more understanding of the
daily activities and routines of the users.

In this study, we presented the possibility of evaluating users’
sleep patterns by analyzing their interaction with their
smartphone, and in particular, only the smartphone screen
interaction data (screen ON and OFF). The approach presented
here, denoted iSenseSleep; is lightweight; nonintrusive, as it
does not affect individuals’ life; privacy preserving because it
does not use any privacy-related information (eg, phone
microphone or light sensors); and it is low cost because it does
not require any other external devices for sleep duration
estimation. iSenseSleep has been evaluated against the wearable
BASIS peak datasets for 2 different user groups, one consisting
of 4 working mothers, and another comprising 10 students.
These 2 groups can be considered very different from each other
because the second one is significantly more digitally native
than the first one; usually the usage of smartphone is higher in
adolescents and young adults than in adults. Results show how,
on average, the difference between the sleep duration calculated
with the algorithm and the ground truth data of the smartwatch
is about 53 min for the working mothers’ group and 24 min for
the students’ group, that is about 13% and 7% with respect to
their total sleep duration. This error is almost the same for
weekdays and slightly higher (13% and 12%) for weekends.
Moreover, the results show that the difference in sleep duration
evaluated by the iSenseSleep and by the BASIS is not
statistically significant. These results support the possibility of
using smartphones as a nonintrusive, cheap sleep duration
pattern analyzer.

In the future, we plan to increase the accuracy of the algorithm
to have more precise data about individuals’ sleep behavior
(beyond the sleep duration), relying on, for example, historical
trends of the user’s behavior that could help us understand,
which are the sleep episodes, and to analyze if and to what
extent, there is a correlation between sleeping patterns of the
users and their interaction with the smartphone in terms of usage
time, applications used, etc. In addition, more specific efforts
will be provided for estimating the wake-up time—as a
consistent wake-up time is being recognized by the medical
experts as an important contributor to one’s wellness and health
state in the long term.
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