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Abstract

Background: Modern smartphone use is pervasive and could be an accessible method of evaluating the circadian rhythm and
social jet lag via a mobile app.

Objective: This study aimed to validate the app-recorded sleep time with daily self-reports by examining the consistency of
total sleep time (TST), as well as the timing of sleep onset and wake time, and to validate the app-recorded circadian rhythm with
the corresponding 30-day self-reported midpoint of sleep and the consistency of social jetlag.

Methods: The mobile app, Rhythm, recorded parameters and these parameters were hypothesized to be used to infer a relative
long-term pattern of the circadian rhythm. In total, 28 volunteers downloaded the app, and 30 days of automatically recorded
data along with self-reported sleep measures were collected.

Results: No significant difference was noted between app-recorded and self-reported midpoint of sleep time and between
app-recorded and self-reported social jetlag. The overall correlation coefficient of app-recorded and self-reported midpoint of
sleep time was .87.

Conclusions: The circadian rhythm for 1 month, daily TST, and timing of sleep onset could be automatically calculated by the
app and algorithm.

(JMIR Mhealth Uhealth 2019;7(5):e13421) doi: 10.2196/13421
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Introduction

Background
Human beings, like other animals and plants, have a biological
clock that helps to prepare their physiology for the fluctuations

of the day. This regular adaptation is referred to as the circadian
rhythm. Since the 1970s, scientists have investigated the
molecular mechanisms controlling the circadian rhythm [1-7].
Chronic circadian dysregulation has recently been implicated
in the increased risk of cancer, neurodegenerative disorders,
metabolic disorders, and inflammation [8]. Circadian disruption
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has also been associated with several psychiatric disorders, such
as bipolar disorder, major depression, and schizophrenia.
However, although research has led to a better understanding
of the biological basis of the circadian rhythm, most clinical
studies are conducted either in the artificial settings of a
laboratory (eg, polysomnography), which are not scalable for
administration to a large population [9], or through subjective
self-report questionnaires with the value reduced by biases
[10-12].

Nowadays, human circadian rhythms could be observed from
their digital footprint. Digital footprint refers to data rising from
day-to-day interactions with newer technologies such as
smartphones [13]. Real-time and passively collected data can
provide a long-term recording of the circadian rhythm in a
naturalistic setting and contribute toward self-awareness or
clinical applications, such as sleep diary and social jetlag
estimation. In addition, smartphone ownership has shown to
not be affected by socioeconomic status [14]. Given the
convenience of smartphones, health-related mobile apps might
serve as a digital lifeline, particularly in rural and low-income
regions, helping mental health care professionals with medical
intervention and behavioral modification [15]. The widespread
use and deep reach of smartphones in modern life motivate the
use of smartphones to measure behaviors in an affordable,
reliable, and unobtrusive way.

Objective
This pilot study had proposed that the longest nonusage episodes
during night-time could represent actual sleep time [16]. A
previous study also preliminarily validated that the consistency
between app-recorded and self-reported sleep time was 83.0%.
However, this validation was based on 14-day app-recorded
data with 1 self-reported weeknight and weekend night sleep
time. The current version of the app, Rhythm, with 2 major
algorithm revisions is hypothesized to improve the consistency
of app-recorded and self-reported sleep time. In addition, the
app-recorded sleep indicators, especially as midpoint of sleep
time, can be used to infer a relative long-term pattern of the
circadian rhythm. The specific aims of this study were (1) to
validate the app-recorded sleep time with daily self-reports by
examining the consistency of total sleep time (TST), as well as
the timing of sleep onset and wake time, and (2) to validate the
app-recorded circadian rhythm with the corresponding 30-day
self-reported midpoint of sleep and the consistency of social
jetlag.

Methods

Participants and Procedure
A total of 28 college students (13 men, mean age 20.8 (SD 1.6)
years, range 17 to 23) were recruited. The sleep time data were
collected by the mobile app, Rhythm, from February to June
2018. After informed consent, the participants were asked to
install Rhythm for at least 30 days. Data collected on the first
day and the last day were excluded owing to the incomplete
nature of data on those dates. The app-recorded sleep data of
the first 30 days of each participant were selected to be analyzed.
The 30-day data consisted of about 16.9 days weekday data and
13.1 days weekend data.

This app automatically estimated sleep onset and wake time via
an algorithm daily, and participants received a notification from
this app to show their sleep onset and wake time last night at
21:00 every night. Then participants were asked to adjust the
sleep onset and wake time as their self-reported sleep time. If
the difference of sleep time between self-reported and
app-recorded was greater than 2 hours, the researchers would
confirm the self-reported sleep time with participants via a
phone call. The participants were blind to the purpose of the
confirmation process. The study was approved by the
Institutional Review Board of National Health Research
Institutes. All clinical investigations were conducted according
to the principles expressed in the Declaration of Helsinki.

Measures

Designing the App, Rhythm
The app, Rhythm, automatically recorded smartphone behaviors,
especially the notifications and screen-on and screen-off timing.
This app collects data in the background without interrupting
smartphone operation or impacting battery life (less than 1%)
[16-18]. The app saves all recorded behavior data in a log file
and routinely uploads to the database every midnight (01:00)
and the following noon (12:00). The sleep indicators were
calculated, and the server would send a notification with their
sleep onset, wake time, and TST at 21:00. We choose 21:00 as
the time to send the notification because these sleep indicators
could not be calculated in real time on their smartphones. In
addition, participants might easily ignore these notifications
during their working hours.

Smartphone use from screen-on to the successive screen-off
was defined as one episode of use. This app calculated the daily
total duration of smartphone usage episodes. The usage episode
with no notification within 1 min before screen-on was classified
into proactive use. The upper right box of Figure 1 shows a
sample of reactive use and proactive use. Only proactive usage
episodes were included in the calculation of sleep time. To avoid
a high number of frequent notifications confounding proactive
use as reactive use, which has a notification within 1 min before
screen-on, all notifications from the app which presented more
than 500 times per day were excluded. In contrast to these
proactive usage episodes, the event from screen-off to screen-on
was defined as the nonusage episode.

Figure 1 shows 3 examples to demonstrate the algorithm of
identifying sleep time via smartphone use data. For the first
example, the maximal nonusage episode between 22:00 and the
following 10:00 is defined as sleep time. The other 2 examples
demonstrated an additional algorithm to identify the sleep onset
or wake time not located between 22:00 and 10:00. First, the
dummy screen-off (sleep onset) at 22:00 and screen-on (wake
time) at 10:00 were labeled to the nonusage episodes with the
screen-off before 22:00 and screen-on after 10:00. Second, if
the maximal nonusage episode between 22:00 and the following
10:00 was labeled a dummy screen-off at 22:00 or screen-on at
10:00, the original screen-off before 22:00 or screen-on after
10:00 was resumed as the timing of sleep onset and wake time,
respectively. Finally, the sleep onset, wake time, midpoint of
sleep, and TST could be identified.
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Figure 1. Definitions of reactive use and proactive use and the rules of identifying sleep time via smartphone use data.

Validation of the App-Recorded Sleep Indicators and
Circadian Rhythm

Validation of the App-Recorded Sleep Indicators
A paired t test was used to examine the differences between
app-recorded and self-reported indicators, namely sleep onset,
wake time, midpoint of sleep time, and TST. Figure 2 shows
the consistency of the app-recorded and self-reported sleep time
by an overlap ratio [19], and the overlap ratio can
mathematically be expressed as follows:

Overlap Ratio = Overlap (TSTx) / [(TSTapp + TSTself)
/ 2] × 100%

The app-recorded and self-reported TST can be calculated as
TSTapp and TSTself. The overlapping TST between app-recorded
and self-reported TST is defined as TSTx. In Figure 2, the
overlap ratio for the example is:

(23:36 ~ 06:00) / {[(23:00 ~ 06:00) + (23:36 ~ 06:49)]
/ 2} = 90.0%

In addition, a paired t test was used to compare these overlap
ratios on weeknights and weekend nights.

Validation of the Circadian Rhythm
The Pearson correlation coefficient of app-recorded and
self-reported midpoint of sleep time within a participant’s
30-day data was calculated along with the average midpoint of
sleep differences between weeknights and weekend nights, and
these differences are social jetlag [20,21]. Then, a paired t test
was used to examine the difference between app-recorded and
self-reported social jetlag.

All statistical assessments were 2-tailed, and P<.05 was
considered to be statistically significant. Statistical analyses
were performed using SPSS version 18.0 software (SPSS Inc).

Figure 2. Definition of sleep onset time, midpoint of sleep, and wake time. TST: total sleep time.
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Results

The average total daily smartphone use duration of the
participants was 5.73 (SD 3.42) hours. Table 1 shows that there
is no significant difference between app-recorded and
self-reported midpoint of sleep time. App-recorded sleep onset
had a 242.9-second delay from self-reported onset with a
borderline P value (.053). App-recorded wake time had a
significant 623.7-second advance to self-reported wake time
(P=.001). App-recorded TST had a significantly shorter 866.6
seconds than self-reported time (P<.001). However, the overlap

ratio of app-recorded and self-reported was 90.4%. There was
no significant difference of overlap ratio between weeknights
and weekend nights (P=.213).

Figure 3 shows 28 participants’ average app-recorded and
self-reported midpoint of sleep time and the correlation
coefficients from Day 1 to Day 30. These daily correlation
coefficients ranged from .70 to .95, and the overall coefficient
between app-recorded and self-reported midpoint of sleep time
was .87 (N=840). There is no significant difference (P=.140)
between app-recorded (34.4 [SD 52.5] min) and self-reported
social jetlag (27.0 [SD 49.8] min).

Table 1. The consistency between app-recorded and self-reported sleep indicator.

Elapsed time since midnight (seconds)Sleep indicators

P valuet 27Self-reportedApp-recorded

Mean (SD)Average timeMean (SD)Average time

.0531.944959.64 (6662.52)01:22:405202.53 (7093.71)01:26:43Sleep onset

.001a−3.3530727.93 (8417.06)08:32:0830104.20 (9037.06)08:21:44Wake

.103−1.6417843.74 (6362.29)04:57:2417653.27 (6707.71)04:54:13Midpoint

<.001b−4.0225768.30 (8279.86)07:09:2824901.67 (9165.46)06:55:02Total sleep time

aP<.05.
bP<.001.

Figure 3. Circadian rhythm fluctuations for app-recorded and self-reported midpoint of sleep time with 1 SD error bar.
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Discussion

Principal Findings
After a review of the literature, this is the first study to validate
an innovative approach to automatically record 1-month
circadian rhythm and sleep time by a mobile app. The high
correlation (r=.87) between app-recorded and self-reported
circadian rhythm was validated by 28 participants and their
30-day sleep-wake cycles with a total of 840 pairs of
app-recorded data and self-reports. Collecting data passively
from a person’s smartphone (app) may be more informative
than self-reports. This data collection method can provide
continuous monitoring over longitudinal periods. In addition,
the value of self-reports might be reduced by biases [13],
whereas data collection by this automatically operated app is
less prone to biases, as the process of collecting data from
everyday interactions with technology is unlikely to induce
reactivity. In addition, of note is that the temporal resolution of
self-reported sleep time is usually 1 hour [22]. Compared with
the temporal resolution of 1 second in this study, these
app-generated parameters increased the temporal resolution
3600-fold compared with the resolution in conventional
epidemiology surveys.

Literature Review/Related Work
There have been several mobile apps on the market to measure
sleep automatically via smartphone sensors. Best Effort Sleep
[23] uses a sensor-based inference algorithm that combines
smartphone usage patterns along with environmental cues such
as light and ambient sound to infer a user’s sleep duration.
Similarly, Toss ‘N’ Turn [24] also collects sound, light,
movement, screen state, app usage, and battery status to classify
sleep state and quality. The systems, iSleep [25] and
wakeNsmile [26], use a built-in phone microphone to detect
body movement and sounds such as cough and snoring to predict
sleep phases. However, such apps typically assess sleep time
or sleep phases but these mobile apps do not take the circadian
rhythm into consideration.

These mobile sensing-based algorithms with less power
consumption would advantage from delineating the circadian
rhythm from a long consecutive sleep recording. Only a couple
of mobile apps compute the sleep time and circadian rhythm
solely based on smartphone usage patterns. The pilot study we
performed identified proactive smartphone screen-on and
screen-off patterns to estimate sleep time and achieved 83%
accuracy [19]. UbiComp [27] similarly showed that smartphone
usage patterns were able to detect sleep duration as well as
symptoms of sleep deprivation. Although these mobile
sensing-based apps were validated to assess sleep time, this is
the first study to validate both sleep time and circadian rhythm
for 30 days with corresponding day-by-day self-reports.

Strengths
Technically, 2 additional criteria were added to improve the
algorithm of sleep time estimation with the consistency of 90.4%
in this study. First, the extended tracing of sleep onset before
22:00 and wake time after 10:00 could identify the relative
irregular circadian rhythm compared with the other methods

that limited sleep time between 22:00 and 10:00. Second, the
exclusion of frequent notifications elaborated the differentiation
from proactive and reactive use and delineated the sleep time
more precisely. These 2 improvements in the present algorithm
promoted the accuracy of TST estimation from 83.0% [19] to
90.4%. Owing to the extended tracing of the circadian rhythm
and much precise sleep time identification, the correlation
coefficient of app-recorded and self-reported 1-month circadian
rhythm was .87. In addition, the app-recorded and self-reported
social jetlag was similar, without any significant difference.
These findings showed that using a smartphone to record passive
data, the timing of screen-on and screen-off, and notifications
could automatically calculate the sleep time and circadian
rhythm for 1 month.

Despite no significant difference between the app-recorded and
self-reported sleep time midpoints, the app-recorded wake time
was significantly earlier than self-reports by 10.4 min (623.7
seconds) and app-recorded sleep onset was longer than
self-reports by 4.0 min (242.9 seconds) with a borderline P
value (.053). The later sleep and earlier wake timing of app
records counteracted the differences in midpoints of sleep time,
the indicators of circadian rhythm. Therefore, the 1-month
circadian rhythm based on the midpoint of sleep correlation of
app records and self-reports reached .87 in this study. The study
results revealed that it is feasible to monitor the circadian rhythm
automatically by this app that we developed. However, the
app-recorded TST might be 14.4 min (866.6 seconds) shorter
than the self-reported time despite the consistency of sleep time
being 90.4%.

The differences of sleep and wake timing between app records
and self-reports might have resulted from some habitual bedtime
behaviors, such as bedtime smartphone use before sleep and
lying in bed after waking. In addition, distorted time perception
[18] also play an important role in these timing differences,
especially in participants with average daily smartphone use of
5.84 (SD 2.92) hour/day in this study. The participants might
use the smartphone at waking up and might have stayed in bed
for an average 10.4 min to be aware that they actually woke up.
In this condition, the app could estimate time in bed by
self-reported TST and sleep time by app-recorded TST.
Therefore, the sleep efficiency, defined as the ratio of sleep to
time in bed, could be estimated by TSTapp/TSTself. Although
the gold standard method to define the sleep and wake timing
is polysomnography, this app-recorded sleep-wake cycle in a
naturalistic environment has provided a more cost-efficient and
convenient way to continuously delineate the circadian rhythm.

Limitations
There are several methodological limitations that should be
noted when interpreting the study’s findings. First, the study
utilized a selected sample with excessive smartphone use
(average daily smartphone use duration: 5.84 (SD 2.92)
hour/day) and late chronotype (average sleep onset at 01:26:43
and TST: 6.92 hours). A previous study had demonstrated the
association between excessive internet use and late chronotype
[10]. In addition, both excessive smartphone use and late
chronotype might limit the ability to generalize these findings
because this algorithm to estimate sleep patterns depended on
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participants’ smartphone events. Using smartphone use data
combined with an activity wristband that gathers the whole
day’s activities and physiological indicators could improve the
reliability of computing the circadian rhythm for participants
owning such devices. Second, the app was based on the Android
operating system. Various versions applicable to other operating
systems such as iOS and Windows should be developed in the
future. In addition, the app failed to record notifications in 1
smartphone brand. However, it is essential to calculate the sleep
time by screen-on, screen-off, and notifications. Third, this
algorithm to determine sleep time could not account for sleep
interruptions with proactive smartphone use or shift workers’

daytime sleep. This algorithm should be adjusted and validated
for patients with sleep disturbance and shift workers. Finally,
although these app-recorded sleep indicators were validated by
participants’ daily self-reports, it would be better to use the
current gold standard to assess circadian rhythm, actigraphy, to
validate the app-recorded sleep time in a future study.

Conclusions
In conclusion, this study validated the algorithm of sleep
estimation and circadian rhythm by using the app, Rhythm, that
can collect passive data from naturalistic settings. The circadian
rhythm for 1 month, daily TST, and timing of sleep onset could
be automatically calculated by the app.
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