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Abstract

Background: Wearable devices have evolved as screening tools for atrial fibrillation (AF). A photoplethysmographic (PPG)
AF detection algorithm was developed and applied to a convenient smartphone-based device with good accuracy. However,
patients with paroxysmal AF frequently exhibit premature atrial complexes (PACs), which result in poor unmanned AF detection,
mainly because of rule-based or handcrafted machine learning techniques that are limited in terms of diagnostic accuracy and
reliability.

Objective: This study aimed to develop deep learning (DL) classifiers using PPG data to detect AF from the sinus rhythm (SR)
in the presence of PACs after successful cardioversion.

Methods: We examined 75 patients with AF who underwent successful elective direct-current cardioversion (DCC).
Electrocardiogram and pulse oximetry data over a 15-min period were obtained before and after DCC and labeled as AF or SR.
A 1-dimensional convolutional neural network (1D-CNN) and recurrent neural network (RNN) were chosen as the 2 DL
architectures. The PAC indicator estimated the burden of PACs on the PPG dataset. We defined a metric called the confidence
level (CL) of AF or SR diagnosis and compared the CLs of true and false diagnoses. We also compared the diagnostic performance
of 1D-CNN and RNN with previously developed AF detectors (support vector machine with root-mean-square of successive
difference of RR intervals and Shannon entropy, autocorrelation, and ensemble by combining 2 previous methods) using 10 5-fold
cross-validation processes.

Results: Among the 14,298 training samples containing PPG data, 7157 samples were obtained during the post-DCC period.
The PAC indicator estimated 29.79% (2132/7157) of post-DCC samples had PACs. The diagnostic accuracy of AF versus SR
was 99.32% (70,925/71,410) versus 95.85% (68,602/71,570) in 1D-CNN and 98.27% (70,176/71,410) versus 96.04%
(68,736/71,570) in RNN methods. The area under receiver operating characteristic curves of the 2 DL classifiers was 0.998 (95%
CI 0.995-1.000) for 1D-CNN and 0.996 (95% CI 0.993-0.998) for RNN, which were significantly higher than other AF detectors
(P<.001). If we assumed that the dataset could emulate a sufficient number of patients in training, both DL classifiers improved
their diagnostic performances even further especially for the samples with a high burden of PACs. The average CLs for true
versus false classification were 98.56% versus 78.75% for 1D-CNN and 98.37% versus 82.57% for RNN (P<.001 for all cases).

Conclusions: New DL classifiers could detect AF using PPG monitoring signals with high diagnostic accuracy even with
frequent PACs and could outperform previously developed AF detectors. Although diagnostic performance decreased as the
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burden of PACs increased, performance improved when samples from more patients were trained. Moreover, the reliability of
the diagnosis could be indicated by the CL. Wearable devices sensing PPG signals with DL classifiers should be validated as
tools to screen for AF.

(JMIR Mhealth Uhealth 2019;7(6):e12770) doi: 10.2196/12770
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Introduction

Background
Atrial fibrillation (AF) is the most common cardiac arrhythmia
in clinical practice [1]. The prevalence and incidence of AF
have risen over the years with the aging population [2]. The
gold standard used to diagnose AF is the electrocardiogram
(ECG) [3]. However, many patients with AF present paroxysmal
symptoms or are asymptomatic; thus, the limited accessibility
of the ECG during the symptom could lower the detection rate
of AF. It is important to detect AF regardless of symptoms
because asymptomatic patients with AF could present with
stroke at their first manifestation [4]. AF is one of the major
causes of stroke and its severity is worse in patients with AF
than those without [5]. Therefore, it is important to detect AF
in a potentially high-risk population who might benefit from
stroke prevention with adequate anticoagulation control [6-9].

Recently, photoplethysmography (PPG) has been studied for
long-term monitoring of AF, because of the ease of use and
their utilization using wearable and mobile devices [10-12].
PPG monitoring incorporated into wearable technologies might
permit improvements in the detection rate of AF in high-risk
patients. Past studies using PPG for AF detection relied on
predetermined feature extractions, for example,
root-mean-square of successive difference of RR intervals
(RMSSD) with Shannon entropy (ShE) and machine learning
techniques such as the support vector machine (SVM), artificial
neural network, and k-nearest neighbor [11,13]. The accuracy,
sensitivity, and specificity for differentiating AF from a clean
sinus rhythm (SR; ie, SR without any premature atrial complexes
or PACs) of these methods were promising [14-18]. However,
PACs were frequently exhibited in patients with paroxysmal
AF or in those after successful cardioversion [19-21], which
rendered AF detection using PPG from unclean SRs less
practical. Low accuracy in differentiating AF from SR with
PACs in the feature extraction step was a major limitation of
previous approaches [22,23]. More sophisticated AF detection
algorithms should be designed to render PPG monitoring more
pragmatic.

Objective
We aimed to develop deep learning (DL) classifiers using PPG
as an input to distinguish AF from SR in the presence of PACs.
We also suggested a method to compute a confidence level (CL)
[24,25] for each decision in tested samples so that physicians

could quantify the reliability of the results from the DL
classifiers.

Methods

Study Population and Data Acquisition
This was a prospective, single-center study including patients
with persistent AF admitted for elective DCC from September
2017 to April 2018. A total of 81 consecutive patients were
enrolled. After verifying AF with 12-lead ECG, baseline PPG
signals were collected over a 15-min interval by attaching a
pulse oximeter to the patient’s nondominant arm’s index finger
in the supine position. In addition, a single-lead ECG signal
was acquired simultaneously to confirm the rhythm and was
used as the gold standard. DCC (biphasic 100 to 200 J) was
performed under light sedation after the baseline recording.
Among 81 patients with DCC, 5 patients could not be converted
to SR and 1 patient had improper data acquisition because of
inappropriate bandwidth filters and sampling rate. In total, 75
patients with successful DCC underwent post-DCC PPG and
ECG recording for over 15 min using the same methods. PACs
were also monitored during the post-DCC recording period.
During both periods of the measurements, the subject was
required to rest on the bed with a supine position such that
potential motion artifacts could be minimized. In total, 3
cardiologists interpreted the single-lead rhythm strips and
verified the PACs and other atrial tachyarrhythmia. If there was
a discrepancy between readings, then the senior
electrophysiologists (EKC and EL) interpreted the rhythm and
determined the final conclusion for the rhythms. We applied
bandwidth filters (0.2 to 18 Hz) on both PPG and ECG data and
then exported them in XML format for the DL training. The
study protocol was approved by the Seoul National University
Hospital Institutional Review Board and adhered to the
Declaration of Helsinki.

Dataset Manipulation and Deep Learning Framework
We constructed PPG samples for training and testing from the
PPG recording data of 75 patients. Each patient’s 15-min
pre-DCC and post-DCC data were divided into multiple
30-second fragments with 20-second overlaps. We used a data
augmentation technique to increase the number of samples [24].
Each sample was labeled as AF if it was generated before the
DCC and as SR if generated after the successful DCC. The
detailed dataset manipulation method is presented in Multimedia
Appendix 1.
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Figure 1. Flowchart illustrating the deep learning process. For each subject, 15-min PPG data during pre- and post- direct-current cardioversion periods
were obtained. Each 15-min sample was preprocessed by removing bias, applying bypass filters, and normalization. Then, each sample was subdivided
into 30-second samples with 20-second overlaps for data augmentation. The 30-second samples were trained and tested by 1-dimensional convolutional
neural network (1D-CNN) and recurrent neural network (RNN) methods. Each sample was labeled as atrial fibrillation (AF) or sinus rhythm (SR). The
number in parenthesis shows an example of the corresponding confidence level. In this example, the confidence level for diagnosing AF was 0.9 in
1D-CNN and RNN models, whereas 0.1 in SR for both models. 1D-CNN: 1-dimensional convolutional neural network; AF: atrial fibrillation; PPG:
photoplethysmography; RNN: recurrent neural network; SR: sinus rhythm.

The entire DL framework of AF diagnosis is described in Figure
1. We used a 1-dimensional convolutional neural network
(1D-CNN) and a recurrent neural network (RNN) as 2 DL
architectures and compared their diagnostic performance. The
DL process was divided into 2 phases: training and testing. The
DL classifier consisted of several layers of artificial neurons,
forming a kind of function approximator, simulating the neural
connections of human brains. The neural network (NN) was
trained to approximate a target function, which was the function
of the 30-second-long PPG sample as input and the diagnostic
decision as output. In the training phase, we trained the NN
based on a supervised method that minimized differences
between the AF and SR true labels and the NN outputs using a
back-propagation algorithm. In the testing phase, we evaluated
the trained NN classifiers with data that were not used in the
training phase.

Training and Testing Dataset Design
We used a 5-fold cross-validation approach to compare and
evaluate 2 DL classifiers. The training phase included
randomized features to initialize weight parameters between
the NN nodes (weight and node corresponded to synapse and
neuron, respectively) and the application of a rule to update
weight parameters. Our 5-fold cross-validation process was as
follows. In Scenario A, patients were randomly assigned to 5
groups, in which 4 were the training dataset, whereas the
remainder was the testing dataset. Given that there were 5 groups
of patients, 5 different combinations of the training and testing

datasets were analyzed. In this scheme, no patients belonged to
both the training and testing dataset at the same time, that is,
DL classifiers always faced new patients during testing. We
repeated the validation process over 10 times for each
combination, and the final results were obtained by averaging
the total of 50 validations. In Scenario B, we have performed
5-fold validation with random choices of samples, not in
patients. Therefore, randomly chosen, 80% of the entire samples
were assigned to training, whereas the remaining 20% were
assigned to testing. Unlike Scenario A, Scenario B permits to
allocate samples from the same patient into both training and
testing datasets. We compared the performance with previous
well-known AF detectors including SVM with RMSSD+ShE
[15], SVM with autocorrelation [11], and an ensemble method
by combining the 2 previous methods. Linear-kernel SVM was
used in our study.

Diagnostic Performance Using Different Algorithms
We compared the diagnostic performance of the different
methods by generating receiver operating characteristic (ROC)
curves. The area under the ROC curve (AUC) and the 95% CI
for each method was calculated and compared using the DeLong
test [26]. Statistical analysis was performed as a 2-sided test,
and a P value less than .05 was considered statistically
significant.

We also analyzed the accuracy (total number of true diagnosis
of AF or SR divided by total number of test samples), sensitivity
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(the number of true diagnosis of AF divided by total number of
AF-labeled test samples), specificity (the number of true
diagnosis of SR divided by total number of SR-labeled test
samples), positive predictive value (the proportion of AF-labeled
test samples among the samples diagnosed as AF), and negative
predictive value (the proportion of SR-labeled test samples
among the samples diagnosed as SR). Each value was averaged
over 50 validation processes for the 2 DL classifiers.

Diagnostic Performance According to the Premature
Atrial Complex Burden
We further analyzed the specificity of the DL classifier over
the PAC burden in post-DCC rhythms. In Scenario A, the trained
DL classifier faced new patients during the validation.
Therefore, it is highly likely to encounter unknown samples
during the testing phase. However, if the number of patients in
the training set grows, even though the patients in the validation
are new to the DL classifier, they will likely be similar to the
patients seen in the training set. Scenario B emulates such a
circumstance by making the sample distribution of the testing
dataset similar to that of the training dataset. This could be
achieved because the samples from the same patient could
appear in both datasets. For each PAC burden and scenario, we
compared a specificity by different algorithms. Then we
evaluated whether DL classifiers outperformed previous
algorithms over various PAC burdens and how they are
improved by an assumption of the same sample distribution in
both datasets (Scenario B).

Confidence Levels
In this study, we defined the metric CL to measure the reliability
of the diagnosis by a certain DL classifier. We refer readers to
Multimedia Appendix 1 for a detailed description of the CL.
The true CL represented the confidence of the classifier’s output
when it has correctly diagnosed the patient (ie, AF as AF and
SR as SR), whereas a false CL indicated the confidence when
AF was diagnosed as SR or SR diagnosed as AF. The minimum
CL was 50%, meaning that the diagnosis was randomly AF or
SR, whereas the maximum CL was 100%, indicating that the
diagnosis could be unquestionably AF or SR irrespective of the
number of times the test was repeated.

Results

Baseline Characteristics of Study Population
A total of 75 patients (men 68/75, 91%; mean age 63 years, SD
7.8) were enrolled. Clinical characteristics of the study
population are summarized in Table 1. A total of 18 patients
(18/75, 24%) were long-standing persistent AF (AF history of
>1 year). The median value of the CHA2 DS2-VASc score was
1.

Characteristics of the Study Dataset
A total of 14,298 samples consisting of 30-second-long PPG
were generated from the 75 patients. Each 30-second PPG
sample was synchronized with a single-lead ECG to be
diagnosed as AF or SR. Figure 2 shows examples of AF and
SR determined by PPG recordings.

We developed a PAC indicator that could automatically detect
the number of PACs in each post-DCC PPG sample to quantify
the PAC burden of the study dataset. We applied a simple
criterion: consider a beat as a PAC when the interval with the
previous beat was less than 85% of the average interval.
Multimedia Appendix 2 illustrates the PAC detection results of
the indicator for a post-DCC PPG sample with 5 PAC episodes
and the corresponding ECG signal. The proposed PAC
indicator’s result was verified based on the cardiologist’s
decision with a matched ECG signal. Both the PPG and the
matched ECG samples were reviewed and the sensitivity and
specificity of the PAC indicator after the review were 92.55%
and 98.18%, respectively. The PAC burden of each post-DCC
PPG sample was calculated by dividing the number of PAC
with the number of beats in the sample (Multimedia Appendix
3). Inspection of the PAC indicator showed that 29.79%
(2132/7157) of post-DCC samples contained PACs in their data.

The deep learning method may require considerable
computational power and time during the training. However,
because our NN structure was relatively lightweight because of
a small number of layers (6 layers in 1D-CNN and 2 layers in
RNN), the training phase in our study took about 10 min under
the computational environment with a single GPU system using
NVIDIA TITAN Xp graphics card.

Comparison of the Performance of Deep Learning
Classifiers
The diagnostic performance of the DL classifiers with previous
well-known AF detecting algorithms is summarized in Table
2. The results were obtained under Scenario A. The 1D-CNN
and RNN showed high accuracy (97.58% [139,527/142,980]
and 97.15% [138,912/142,980], respectively), sensitivity
(99.32% [70,925/71,410] and 98.27% [70,176/71,410],
respectively), and specificity (95.85% [68,602/71,570] and
96.04% [68,736/71,570], respectively). In addition, both
methods showed high positive predictive values (95.98%
[70,925/73,893] and 96.12% [70,176/73,010], respectively) and
negative predictive values (99.30% [68,602/69,087] and 98.24%
[68,736/69,970], respectively). We derived ROCs for all the
algorithms and compared the different AUCs (Figure 3). The
AUCs for 1D-CNN and RNN were 0.998 (95% CI 0.995-1.000)
and 0.996 (95% CI 0.993-0.998), respectively, which were
significantly higher than previous methods. The 1D-CNN and
RNN showed larger AUCs compared with the SVM with
RMSSD+ShE, SVM with an autocorrelation or ensemble
method (all P<.001, compared using the DeLong test). There
were no significant differences in the AUC for the 1D-CNN
and RNN algorithms (P=.12).

In Scenario B, the performances of the DL classifiers improved
in overall aspects but more in specificity and positive predictive
value. Both 1D-CNN and RNN had improved sensitivity
(99.71% [71,206/71,410] and 99.51% [71,059/71,410],
respectively), specificity (99.35% [71,104/71,570] and 99.29%
[71,062/71,570], respectively), positive predictive value (99.35%
[71,206/71,672] and 99.29% [71,059/71,567], respectively),
negative predictive value (99.71% [71,104/71,308] and 99.51%
[71,062/71,413], respectively), and accuracy (99.53%
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[142,310/142,980] and 99.40% [142,121/142,980], respectively). Both classifiers had 1.000 of AUCs (95% CI 1.000-1.000).
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Table 1. The clinical characteristics of the study population (N=75).

ValuesVariables

Demographics

63 (7.8)Age (years), mean (SD)

68 (91)Male, n (%)

25.2 (2.9)Body mass index (kg/m2), mean (SD)

1.83 (0.16)Body surface area (m2), mean (SD)

Types of atrial fibrillation (AF), n (%)

57 (76)Persistenta

18 (24)Long-standing persistentb

1 (1,2)CHA2 DS2-VASc scorec

Comorbidity, n (%)

5 (7)Congestive heart failure

38 (51)Hypertension

10 (13)Diabetes mellitus

8 (11)Stroke or transient ischemic attack

1 (1)Myocardial infarction

5 (7)Valvular heart disease

19 (25)Dyslipidemia

3 (4)Chronic renal failure

0Chronic obstructive pulmonary disease

6 (8)Hyperthyroidism

3 (5)Previous AF ablation history, n (%)

Antiarrhythmic agents, n (%)

19 (25)Propafenone

9 (12)Flecainide

4 (5)Pilsicainide

1 (1)Sotalol

40 (53)Amiodarone

18 (24)Beta blocker

12 (16)Calcium channel blockerd

1 (1)Digoxin

Anticoagulant, n (%)

2 (3)Aspirin

18 (24)Warfarin

55 (73)Nonvitamin K oral anticoagulant

Other medications

0Angiotensin converting enzyme inhibitor

16 (21)Angiotensin II receptor blocker

7 (9)Diuretics

13 (17)Statin

aAF history more than 1 month and less than 1 year.
bAF history more than 1 year.
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cThe value is expressed as both median and interquartile range.
dNondihydropyridine class.

Figure 2. Typical examples of 15-second-long photoplethysmography and corresponding synchronized electrocardiogram samples for (A) stereotypic
normal sinus rhythm and (B) atrial fibrillation with suggested confidence level using the 1-dimensional convolutional neural network algorithm. AF:
atrial fibrillation; CL: confidence level; ECG: electrocardiogram; PPG: photoplethysmography; SR: sinus rhythm.

Table 2. The diagnostic performance of various algorithms for classifying photoplethysmography samples of atrial fibrillation and sinus rhythm after
electrically cardioverted patients.

False CLTrue
mean con-
fidence
level (%)

95% CIAUCaMean nega-
tive predic-
tive value
(%)

Mean posi-
tive predic-
tive value
(%)

Mean speci-
ficity (%)

Mean sensi-
tivity (%)

AccuracyAlgorithms

78.7598.56(0.995-
1.000)

0.99899.3095.9895.8599.3297.581-Dimensional convolutional
neural network

82.5798.37(0.993-
0.998)

0.99698.2496.1296.0498.2797.15Recurrent neural network

——c(0.854-
0.881)

0.86888.6385.1684.5089.1386.82Support vector machine, root-
mean square of the successive
differences of RR intervals +

ShEb

——(0.972-
0.982)

0.97793.0289.9489.6093.2691.43SVM, autocorrelationd

——(0.970-
0.981)

0.97689.0792.5392.8788.5790.72SVM, ensemblee

aAUC: mean area under the receiver operating characteristic curves. The standard errors by binomial exact test were all <0.01 except SVM with ensemble
(0.01).
bSVM using RMSSD and ShE as a feature.
cNot applicable.
dSVM using autocorrelation method.
eSVM using RMSSD, ShE and autocorrelation.
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Figure 3. The receiver operating characteristic (ROC) curves of 2 deep learning classifiers (1-dimensional convolutional neural network, 1D-CNN and
recurrent neural network, RNN) compared with other previous high-end atrial fibrillation (AF) detectors. (A) A Comparison of several ROC curves by
different AF-detection algorithms. (B) The area under the curve and corresponding 95% CI by different algorithms. Both 1D-CNN and RNN methods
showed significantly better diagnostic performance than previous detectors. 1D-CNN: 1-dimensional convolutional neural network; RMSSD: root-mean
square of the successive differences of RR intervals; RNN: recurrent neural network; ShE: Shannon entropy; SVM: support vector machine.

Performance of the Deep Learning Classifier and
Burden of Premature Atrial Complexes
Figure 4 shows the results with Scenario A and B. The burden
of PACs was calculated for each 30-second PPG sample as the
ratio of the number of PAC beats to the number of normal beats.
The Sample N in Figure 4 shows the PAC burden distributions
of the entire (both training and testing) dataset. In Scenario A,
all the algorithms showed a decreasing tendency in specificity
as the burden of PACs increased. Among the previous
algorithms, the SVM with autocorrelation or ensemble
maintained a higher specificity than with RMSSD+ShE.
However, both 1D-CNN and RNN had a significantly higher
specificity than the SVM with autocorrelation or ensemble

(1D-CNN versus SVM with autocorrelation or ensemble,
P<.001; RNN versus SVM with autocorrelation or ensemble,
P<.001; all P values were calculated using a Student t test).
Interestingly, the 1D-CNN maintained a significantly higher
specificity than RNN in Scenario A (1D-CNN versus RNN,
P=.02). In Scenario B, both DL classifiers improved
significantly in specificity compared with Scenario A. The DL
classifier could maintain 91.1% (1D-CNN) and 91.5% (RNN)
specificity even for samples with a PAC burden ≥20%.
Therefore, if the DL classifiers were trained with a sufficiently
large dataset, they would maintain higher specificity even with
a high PAC burden of and would outperform previous AF
detectors.

Figure 4. Comparison of performances of deep learning classifiers and previous state-of-the-art atrial fibrillation detectors by premature atrial complexes
(PACs) burden. The performance of classifying photoplethysmography samples during post- direct-current cardioversion period as sinus rhythm by
each algorithm was measured by specificity. (A) Scenario A was obtained by the 5-fold cross-validation with random assignment of patients. In this
case, each algorithm faced new patient’s data during testing. (B) Scenario B was obtained by the 5-fold cross-validation with random assignment of
samples. This approach assumed that the training distribution could emulate the test distribution. Regardless of the method, both 1-dimensional
convolutional neural network and recurrent neural network maintained higher specificity over burden of PACs. Both DL classifiers showed higher
specificity in Scenario B than Scenario A. 1D-CNN: 1-dimensional convolutional neural network; PAC: premature atrial complex; PPG:
photoplethysmography; RNN: recurrent neural network root-mean square of successive difference of RR intervals.
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Confidence Level of the Deep Learning Classifier
Table 2 also shows true and false CLs of the 2 DL classifiers.
The mean true and false CLs of the 1D-CNN classifier were
98.56% and 78.75%, respectively. With the RNN classifier, the
true and false CLs were 98.37% and 82.57%, respectively.
Therefore, significantly low CL values could indicate potential
misdiagnoses. A further evaluation of the distribution of CLs
is presented in Figure 5. For the 1D-CNN, the median values
of true or false CL were 99.98% and 81.04%, respectively.
Similarly, the median values for RNN were 99.81% and 87.74%,
respectively. Comparison of the distribution of true or false CLs
showed there were no significant differences in either the
1D-CNN or RNN methods (P<.001, calculated using a Student
t test). If we set the cut-off level of CL to be 95%, the diagnostic
accuracies were 99.58% (130,138/130,688) for 1D-CNN and

99.21% (129,053/130,082) for RNN. Therefore, a diagnosis
with a CL ≥95% may be regarded as confident.

Even though DL classifiers were able to output a helpful metric,
the classifier would become useless if most of the CL output
were lower than 95%. However, 91.40% (130,688/142,980) of
the tested samples had a CL >95% and the probability of a
misdiagnosis for such sample was only 0.42% (550/130,688)
for 1D-CNN. For RNN, likewise, 90.98% (130,082/142,980)
of the tested samples had a CL >95% and the probability was
0.79% (1029/130,082). Therefore, most of the diagnosis made
by the DL classifiers were confident. The differences in the
probability of false diagnoses according to CL were not
significantly different for both 1D-CNN and RNN (P=.98,
calculated using a Student t test).

Figure 5. The characteristics of confidence level (CL) calculated by deep learning (DL) classifiers. Data were obtained by repeating the 5-fold
cross-validation test over 10 times. (A) Comparison of true and false CLs of 1-dimensional convolutional neural network (1D-CNN) and recurrent
neural network (RNN) methods by Box-and-Whiskers plot. True CLs indicate the cases where the diagnosis of a DL classifier was correct. Conversely,
false CLs indicate cases where a DL classifier was incorrect. In the both 1D-CNN and RNN methods, the distributions of true or false CLs were
significantly different (P<.001) for both 1D-CNN and RNN methods. If cut-off level of CL is to be 95% (dashed line), the diagnostic accuracy was
99.6% in 1D-CNN and 99.2% in RNN. Therefore, a diagnosis with a CL ≥95% can be regarded as certain. (B) The association between the probability
of misdiagnosis and sample proportions and the respective CLs. Because 91% of the tested samples showed CL ≥95%, most diagnoses made by DL
classifiers were valid. The probability of false diagnoses decreases from 50% to 0% as the CL increases from 50% to 100%. Comparing 1D-CNN and
RNN, there was no significant difference in CLs (P=.98). *P<.001, calculated by Student t test. **P=.98, calculated by Student t test. 1D-CNN:
1-dimensional convolutional neural network; RNN: recurrent neural network.

Discussion

In this study, we developed a DL-based algorithm to diagnose
AF using PPG data with better performance than previous
algorithms. We found that (1) both 1D-CNN and RNN showed
high diagnostic performance (AUC=0.998 and 0.996 for
1D-CNN and RNN, respectively); (2) both DL-based algorithms
showed a better diagnostic performance than previous
well-known AF detection algorithms, even under a high PAC
burden, and had the potential to improve as more samples were
allowed to be trained; and (3) most diagnoses by the DL
classifiers were confident and the respective calculated CLs
provided an easily interpreted reliability of the diagnosis.

Previous Photoplethysmographic Signals–Based Atrial
Fibrillation Detectors
Before the development of DL, several well-performing
PPG-based AF detectors with algorithms, such as RMSSD+ShE
with Poincaré plots [16], SVM with autocorrelation or with
RMSSD+ShE [11,15] had been described that could detect the
irregularity of intervals between each PPG pulse by utilizing
explicit rules or features. A recent study showed that, among
the selected non-DL algorithms, SVM performed better than
any others including Poincaré plots [27]. However, most of
these previous algorithms were based on explicit features
regarding peak-to-peak intervals but not the information such
as amplitudes or waveforms. This loss of information during
feature extraction steps was a limitation of these algorithms. In
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this study, DL-based algorithms utilized the entire training data
without any loss of information.

In contrast to the P-wave in ECG, the PPG has no markers for
atrial contraction and this hinders the interpretation of cardiac
rhythm from PPG alone. As a result, most previously developed
algorithms for detecting AF from PPG relied heavily on the
irregularity of peak-to-peak intervals. However, in the real-world
setting, PACs are frequently observed in cardioverted AF
patients and can simulate AF recurrence in these patients.
Therefore, the diagnostic accuracy of PPG for detecting AF
could be underpowered if the algorithm is predefined using a
handcrafted approach. Therefore, more sophisticated methods
to detect AF from PPG are needed.

Novelty of Deep Learning Classifiers for Detection of
Atrial Fibrillation
With regard to the outperformance of DL compared with
traditional machine learning (ML), the following explanations
should be considered. To solve a classification problem, as in
our AF detection method, traditional approaches mainly rely
on algorithms that are rule-based or handcrafted ML-based.
However, discriminating AF from SR using PPG becomes much
more challenging under the presence of high burden of PACs,
as there are no P-waves in the PPG. Furthermore, the complexity
increases as the frequency of the PACs grows, which often holds
in practice. Although previous ML approaches rely on
handcrafted features, which are extracted mainly based on
human intuition, the DL analyzes all the characteristics of the
trained data, which is not limited only to peak-to-peak intervals,
but also contains waveform characteristics such as amplitude,
frequency, and wave morphology, and then automatically and
implicitly quantifies their significance. The DL is composed of
multiple layers of NNs and their smart connections have proven
to be a powerful and efficient tool to handle complicated
problems via automatic feature extraction of data and an in-depth
understanding of their correlations. The 1D-CNN and RNN are
the NN architectures specialized in handling the sequential data.
The 1D-CNN network is a set of learnable kernels to extract
the specific features or patterns in the sequential data. The
kernels are convolved across the time axis of the input sequence
to compute more compressed output sequence. Multiple layers
of 1D-CNN are stacked to get the fully compressed features
from the input sequence. The RNN compresses the input
sequence by performing the same feedforward operation for
every input token with the output being dependent on previous
operations. The information abstracted from the previous
feedforwards is accumulated to the last operation so that the
last output contains the fully compressed features. Unlike the
1D-CNN, we used only a single layer of RNN. This would
explain how DL outperforms previously described algorithms.
In addition to the higher detection accuracy achieved by DL, it
is also able to provide an output of the Softmax probability for
each decision, which is used to quantify the probability of a
correct decision, that is, of the CL. These advantages of DL for
higher detection accuracy and provision of the CL were
significant for detecting AF using PPG as a dataset.

Comparing Deep Learning Classifiers to Previous
Algorithms
Recently, Poh et al reported that SVM showed the best
performance among several non-DL algorithms and the deep
convolutional NN was superior to SVM [27]. In our study, we
compared 2 DL classifiers (1D-CNN and RNN) to previous
well-known non-DL AF detection algorithms. The result showed
that both DL classifiers had significantly better ROCs than
previous methods including SVM and there were no significant
differences between the ROCs of the 2 DL classifiers (Figure
3).

It should be noted that compared with previous studies, our
results of both DL and non-DL algorithms showed fewer
performances than expected. One may argue that our study
should have had better results because we used a medical-grade
pulse oximeter whereas some of the previous literature used
sensors from smartphones, which would have a poorer
signal-to-noise ratio [10,11,13,15,16]. However, such
paradoxically lower results in our study may be explained by
much higher PAC burdens in our samples (29.8%). Unlike other
studies, we were able to graphically describe how diagnostic
performances of various AF detectors degraded by PAC burdens
(Figure 4). This implies any AF detector would give poorer
results with more difficult samples, that is, the samples with
more PAC burdens.

For DL classifiers, Poh et al reported better performance of
CNN compared with this study (100.0% sensitivity and 99.6%
specificity in the study of Poh et al but 99.3% and 95.9%,
respectively, in our analysis) [27]. However, this can be
explained by the different datasets used for training and testing.
Our dataset was obtained from AF patients who underwent
DCC. This scenario defines post-DCC rhythms with much more
frequent PACs. Subsequently, the proportion of non-AF
arrhythmia in the study sample was 6.4% in the study of Poh
et al and 29.8% in our analysis. In other words, our training and
testing dataset may be considered to be much more challenging
in terms of AF or SR classification than those used in Poh’s
study. Non-DL classifiers in our study also had lower
performances than previous reports, but this may be again
because of a much higher burden of PAC in our study. For
example, with an SVM-based approach, Chan reported 92.9%
sensitivity and 97.7% specificity for diagnosing AF from SR.
However, the proportion of samples with PAC to those with
non-AF was only 2.8% [11]. Therefore, the testing results of
any algorithm heavily depend on the characteristics of the
sample dataset. Nevertheless, as one can observe from Figure
4, the coherent superiority of the DL classifier’s performance
over other algorithms for any PAC burden supports the
advantages of using DL approaches to detect AF using PPG
rather than previous non-DL algorithms.

Finally, there were other attempts to diagnose PAC from a
normal SR or AF [16,28]. By incorporating RMSSD, ShE, and
Poincaré plots, PACs were successfully diagnosed with 100%
sensitivity and 97.8% specificity, yet information on how those
results vary according to PAC burdens is lacking [28]. Similarly,
such diagnoses would be performed by DL classifiers, provided
that an investigator additionally labels the samples with PAC.
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Future research is needed to observe how DL classifiers are
different from other algorithms when diagnosing not only AF
but also PACs.

Probability of Atrial Fibrillation Diagnosis
Besides the superior performance, the CL derived from DL
classifiers was a useful metric to distinguish potentially mistaken
decisions from correct decisions (Figure 5 and Multimedia
Appendix 4). Multimedia Appendix 4 shows 2 exemplary cases
where DL falsely diagnosed an AF but managed to generate
low CLs (ie, 63.6% and 78.2%). However, according to Figure
5, such low CLs can be interpreted as the diagnosis would
possibly be incorrect because the values are outliers to the lower
25th percentile of the distribution of true CLs. Thus, the
possibility that the diagnosis in the examples would be correct
would be approximately 35% to 45%. In such circumstances,
the physician may attempt to confirm the cardiac rhythm using
12-lead ECG to validate the DL’s diagnosis. More simply, one
may only accept the diagnosis by DL classifiers when the CL
is ≥95%. We have described above how a diagnosis having such
a high CL may be regarded as confident with an extremely low
probability of misdiagnosis. An easy interpretation using the
CL may be that X% of CL has an X% chance of true diagnosis
by DL classifiers by observing the linearly decreasing
probability of false diagnosis according to the CL (Figure 5).

In summary, our new DL classifiers showed not only better
diagnostic performance of detecting AF compared with previous
algorithms especially under the high burden of PACs, but were
also helpful to physicians by suggesting the reliability of the
diagnosis through CLs.

Usefulness of Photoplethysmographic Signals for Atrial
Fibrillation Detection
Most AF detectors rely on the ECG rather than on PPG because
the interpretation of arrhythmia is more accurate and easier
given the existence of the P-wave. However, in the clinical
setting, monitoring the PPG rather than the ECG is easier and
simpler. Furthermore, the emergence of wearable devices and
mobile technologies enable clinicians to monitor the PPGs of
a patient over long-term periods. Thus, the combination of AF
detectors using PPG and wearable technology has the synergistic
potential to screen AF recurrence and potentially to help prevent
stroke in patients with AF. Though much effort has been made
to utilize PPG to detect AF from SR, the presence of intermittent
disruptions of regularity by frequent PACs hinder the application
of PPG-monitoring for AF patients in real-life clinical situations.
Future studies are needed to demonstrate that wearable devices
sensing PPG to detect AF have clinical benefits in the prevention
of stroke.

Limitations
First, we did not diagnose other arrhythmias such as ventricular
premature complex, atrial tachycardia, and sinus arrhythmia,
but focused specifically only on PAC. As a result, DL classifiers
designed in our study may not be applied to patients with other
arrhythmias. However, this can be justified as most electrically
cardioverted AF patients have more frequent PACs than other
arrhythmias. Also, PACs have importance as a high burden is
associated with AF recurrence [29]. Second, the training and
testing datasets of this study consisted of PPG data from 75
patients. The total number of samples generated by data
augmentation was 14,298, which was sufficient to train DL.
Despite this number, 75 patients may be insufficient to capture
AFs presenting different characteristics and PACs’ burden.
Applying these trained DL classifiers to data from new patients
may result in poorer performance. However, our analysis
comparing scenario A and B (Figure 4) suggested that a
sufficient number of samples from additional patients may result
in improved performance. Finally, motion artifacts can arise
during the measurement and cause performance degradation in
a wearable device. To reduce the influence of motion artifact
on the recording, we performed the signal in the supine position
with minimal movement in our study. DL classifiers showed
satisfactory performances without correction or removal of
samples because of motion artifacts. However, we could not
guarantee the performance of the developed deep learning
algorithm in ambulatory patients would be as satisfactory as
our results. Future works are needed to develop an algorithm
that covers deleterious effects from motion artifacts.

Conclusions
In this study, we developed DL classifiers to detect AF from
SR under the presence of PACs using 30-second PPG samples
during pre- and post-DCC periods from patients with AF. The
diagnostic performances of 1D-CNN and RNN models were
significantly superior to other previously well-known AF
detectors. The diagnostic performance of this model was still
better than previous algorithms even under frequent PACs, and
we observed the potential for further improvement in
performance when sufficiently larger samples could be trained.
As a metric representing the reliability of diagnosis, the CLs
can be calculated using DL classifiers and a diagnosis with a
CL ≥95% may be considered as confident. Besides, most
diagnoses determined by DL classifiers were found to be
confident. Taken together, these advantages indicate that
implementing DL classifiers to wearable devices sensing PPG
signals can be useful for AF screening among patients with AF.
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Multimedia Appendix 1
Detailed description of dataset manipulation, deep learning framework, and confidence level.
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Multimedia Appendix 2
Exemplary comparison between single-lead electrocardiogram (ECG; upper panel) and simultaneous photoplethysmography
(PPG; lower panel). Premature atrial complexes (PACs) in PPG found by PAC indicator (red dots) were well corresponded to
true PACs observed in ECG. The green dots were normal peaks of PPG pulse calculated by the indicator.

[PPTX File, 1MB-Multimedia Appendix 2]

Multimedia Appendix 3
The distribution of the post- direct-current cardioversion (DCC) photoplethysmography (PPG) samples used in the study subdivided
by premature atrial complex (PAC) burden inspected by the PAC indicator devised in the study. Overall, 2132 out of total 7157
post-DCC PPG samples (29.79%) presented a PACs burden.

[PPTX File, 213KB-Multimedia Appendix 3]

Multimedia Appendix 4
Exceptional examples of both photoplethysmography (PPG) and corresponding to synchronized electrocardiogram samples with
frequent premature atrial complexes (PACs) mimicking atrial fibrillation (AF) and 1-dimensional convolutional neural network
(1D-CNN) misdiagnosed as AF but able to generate low confidence level (CL) values. All samples were obtained during the
post- direct-current cardioversion period. Asterisks denote PACs. (A) The case in which frequent PACs occurred and the CL was
determined as 63.6%. (B) The presence of frequent PACs resulting in a couplet and with a CL of 78.2%.
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AF: atrial fibrillation
AUC: area under the curve
CL: confidence level
DCC: direct-current cardioversion
DL: deep learning
ECG: electrocardiogram
ML: machine learning
NN: neural network
PAC: premature atrial complex
PPG: photoplethysmography
RMSSD: root-mean square of successive difference of RR intervals
RNN: recurrent neural network
ROC: receiver operating characteristic
ShE: Shannon entropy
SR: sinus rhythm
SVM: support vector machine
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