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Abstract

Background: Cardiorespiratory fitness (CRF), an important index of physical fitness, is the ability to inhale and provide oxygen
to the exercising muscle. However, despite its importance, the current gold standard for measuring CRF is impractical, requiring
maximal exercise from the participants.

Objective: This study aimed to develop a convenient and practical estimation model for CRF using data collected from daily
life with a wristwatch-type device.

Methods: A total of 191 subjects, aged 20 to 65 years, participated in this study. Maximal oxygen uptake (VO2 max), a standard
measure of CRF, was measured with a maximal exercise test. Heart rate (HR) and physical activity data were collected using a
commercial wristwatch-type fitness tracker (Fitbit; Fitbit Charge; Fitbit) for 3 consecutive days. Maximal activity energy
expenditure (aEEmax) and slope between HR and physical activity were calculated using a linear regression. A VO2 max estimation
model was built using multiple linear regression with data on age, sex, height, percent body fat, aEEmax, and the slope. The result
was validated with 2 different cross-validation methods.

Results: aEEmax showed a moderate correlation with VO2 max (r=0.50). The correlation coefficient for the multiple linear
regression model was 0.81, and the SE of estimate (SEE) was 3.518 mL/kg/min. The regression model was cross-validated through
the predicted residual error sum of square (PRESS). The PRESS correlation coefficient was 0.79, and the PRESS SEE was 3.667
mL/kg/min. The model was further validated by dividing it into different subgroups and calculating the constant error (CE) where
a low CE showed that the model does not significantly overestimate or underestimate VO2 max.

Conclusions: This study proposes a CRF estimation method using data collected by a wristwatch-type fitness tracker without
any specific protocol for a wide range of the population.

(JMIR Mhealth Uhealth 2019;7(6):e13327) doi: 10.2196/13327
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Introduction

Cardiorespiratory fitness (CRF) is an important component of
physical fitness, representing the body’s ability to take oxygen
in and deliver this oxygen to muscle cells throughout the body
during physical activity. Previous studies have emphasized the
importance of CRF, providing convincing evidence that CRF
is closely related to all-cause mortality [1,2]. In addition, CRF
is known to be correlated with various physiological factors,
such as body composition and blood pressure, and psychological
factors, such as depression [1-4]. Erikssen et al [5] have reported
that a change in physical fitness is a strong predictor of
mortality. They found that a small improvement in physical
fitness can significantly lower the risk of death.

Maximal oxygen uptake (VO2 max) is regarded as a
representative feature of CRF. The current gold standard for
measuring VO2 max is a metabolic gas analysis during a
maximal graded exercise test (GXT) on a treadmill or other
equipment, such as cycle ergometer. Even though the maximal
exercise test provides an accurate measurement of VO2 max,
there are several limitations. The maximal exercise requires a
high level of motivation from the subject and should be
performed under medical supervision for older or high-risk
subjects who need this test the most [6]. Furthermore, the gas
analysis requires expensive equipment and a trained technician
to operate the process [7]. In addition, because of the high cost
and inconvenience, it is impractical to repeat the maximal
exercise test to regularly monitor VO2 max.

Several estimation models have been developed to estimate
VO2 max. Some of these models have developed a submaximal
exercise protocol in an attempt to overcome the limitation of
the maximal test [8-10]. Submaximal models obtain
exercise-related data through a specified exercise protocol, such
as shuttle run, and build estimation models along with other
anthropometric features. Although submaximal models have
overcome some of the limitations of the GXT, they still require
trained personnel to conduct the submaximal test, and familiarity
with the exercise protocol could affect the results of the test
[11], making it unsuitable for regular VO2 max monitoring.
There are other estimation models that do not involve an
exercise protocol [12,13]. These models estimate VO2 max by
collecting data from physical activity and heart rate (HR) from
daily life and using the relationship between the collected data

and VO2 max. Although these methods are more suitable for
regular VO2 max measurement, they are time-consuming
(requiring a week of data collection) and use multiple devices,
making it uncomfortable for application in daily life.

In our previous study [14], we developed a nonexercise VO2

max estimation model using a new feature, maximum activity
energy expenditure (aEEmax), which was calculated using
activity energy expenditure and HR. Using aEEmax, we were
able to build an accurate estimation model. However, aEEmax
and our previous model were validated only in homogenous
subjects, young Asian males. Furthermore, the device was worn
on the chest, which might cause discomfort when used in daily
life.

The aim of this study was to overcome the limitations of our
previous study by using a wristwatch-type fitness tracker with
various groups in terms of age and sex. We also sought to
develop a new VO2 max estimation model using aEEmax and
the slope between physical activity and HR as new features,
which could be applied to daily life data collected from a single
convenient device worn on a wrist with a relatively short
estimation time.

Methods

Participants
A total of 240 participants were recruited for this study. All
participants completed the Physical Activity Readiness
Questionnaire and health evaluation, including medical history
related to cardiovascular disease, hypertension, and/or diabetes.
Only participants without such medical history were included
for this study. There were a total of 6 groups, divided according
to age (20 to 35, 36 to 50, and 51 to 65 years) and sex, and there
were 40 subjects for each group. Subjects who failed to achieve
VO2 max were excluded from the study. The achievement of
VO2 max was defined by accomplishing at least 2 of the
following 3 criteria: a respiratory exchange ratio reaching >1.2,
plateau of VO2 despite increasing work load, or self-reported
volitional fatigue [15]. Participants who did not wear the device
for 3 days or participants with data loss were also excluded. A
total of 49 subjects were excluded because of failure to achieve
VO2 max or unappropriated data collection. The characteristics
of the participants are shown in Table 1.
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Table 1. Subject characteristics.

Female, mean (SD)Male, mean (SD)Characteristics

51-65 years
(n=30)

36-50 years
(n=35)

20-35 years
(n=36)

51-65 years
(n=30)

36-50 years
(n=26)

20-35 years
(n=34)

155.3 (4.8)160.0 (5.2)161.9 (5.4)167.1 (4.9)172.6 (6.1)174.3 (5.6)Height (cm)

56.2 (6.1)60.6 (6.1)55.8 (7.3)67.0 (6.1)74.7 (9.7)73.9 (8.0)Weight (kg)

33.8 (5.4)33.9 (4.9)29.4 (6.7)24.2 (5.1)24.8 (4.9)20.4 (5.2)Percent body fat

102.0 (10.3)107.7 (12.1)112.5 (15.8)111.2 (11.0)123.7 (15.1)141.0 (14.6)aEEmaxa (kcal/kg/h)

0.96 (0.13)0.98 (0.14)0.92 (0.17)1.04 (0.12)1.04 (0.13)1.10 (0.14)Slope (kcal/kg/h/bpm)

30.5 (3.9)31.4 (4.1)35.3 (3.5)38.1 (4.6)39.9 (3.5)42.3 (3.6)VO2 maxb (mL/kg/min)

aaEEmax: maximal activity energy expenditure.
bVO2 max: maximal oxygen uptake.

Anthropometrics
Body mass and height were measured using a medical scale
with a stadiometer (BSM330; InBody). Body mass was
measured to the nearest 0.1 kg, and height was measured to the
nearest 0.1 cm. Percent body fat was measured using a
bioimpedance analysis (InBody720; InBody) to the nearest
0.1%.

Measurement of Maximal Oxygen Uptake
The reference VO2 max value was measured using the modified
Bruce protocol. The equipment used in the modified Bruce
protocol includes a respiration gas analyzer (Vmax Encore
System; CareFusion) and an aerobic exercise test system (CASE
v6.61; GE Healthcare). Standard 12-lead electrocardiogram
(ECG), blood oxygen saturation, and blood pressure were
measured throughout the procedure.

Before performing the modified Bruce protocol, the baseline
physiologic measures for all devices used were measured in a
resting state for 5 min and subsequently in a standing position.
The modified Bruce protocol was performed immediately after
the baseline measurement. The treadmill’s velocity and slope
increased at 3-min intervals until the subject reached VO2 max.

Experimental Methods
Participants wore a Fitbit (Fitbit Charge; Fitbit) on the left wrist
for 3 consecutive days. From our previous study, we have shown
that a minimum of 15 hours of physical activity data are required
to acquire aEEmax [14]. In total, 3 consecutive days, regardless
of weekday or weekend days, were shown to be enough to obtain
the data needed based on the study. The Fitbit simultaneously
measured HR and daily physical activity in terms of metabolic

equivalent (kcal/kg/h), which was an expression of energy
expenditure of activities.

The participants removed the sensor during sleep or showering.
Data obtained from the sensor were retrieved after the
experiment via the internet. The Fitbit returned HR and
metabolic equivalent data for every 1 min.

Signal Processing
Moving average filter was applied to both HR and physical
activity data. After filtering the data, only data points at which
both HR and physical activity data increased were selected as
a period of physical activity for further processing. This was
done by differentiating the data and selecting where both
differentiated data were positive.

Figure 1 shows the HR (upper graph) and physical activity
(lower graph) for a representative participant’s filtered data over
time. The shaded area under the physical activity curve
represents the periods of increasing HR and physical activity.
The scatter plot for HR versus physical activity is shown in
Figure 1. A simple linear regression was performed between
HR and physical activity to estimate aEEmax. The part of data
where HR was greater than 120 beats/min was selected to
remove the data in which the relationship between HR and
physical activity was nonlinear [16]. The maximal HR was
calculated as 200–age×0.67 for women and 216–age×0.93 for
men [17]. The physical activity value of the point of intersection
between the maximum HR and the regression line was defined
as the aEEmax. The slope of the regression line was also used
as a feature to estimate VO2 max; hereafter, it will be referred
as the slope. After the calculation of aEEmax and the slope, a
multiple linear regression model was developed with aEEmax
and anthropometric values to estimate VO2 max.
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Figure 1. (A) HR and aEE data from Fitbit. The shaded area indicates the period of data where both HR and aEE are increasing. (B) Scatter plot between
selected periods of aEE versus HR of a representative subject. Data where HR was less than 120 bpm were removed to select the data where HR and
aEE had a linear relationship. aEEmax is defined as the intersection between the interoperation line and HRmax, and the slope is the slope of the
interpolation line. aEE: activity energy expenditure; aEEmax: maximal activity energy expenditure; BPM: beat per minute; HR: heart rate; HRmax:
maximum heart rate.

Statistical Analysis
Pearson correlation coefficient was calculated between the
independent variables (age, percent body fat, height, gender,
aEEmax, and slope) and the measured VO2 max. The regression
model for estimating VO2 max was evaluated with the

coefficients of determination (adjusted R2) and absolute SE of
the estimate (SEE). The predicted residual error sum of squares
(PRESS) statistic method was selected for cross-validation of
the model [18]. The PRESS statistic is a cross-validation method
calculating the error for each case by excluding a case each time
from generating the estimation model and applying the model

to the excluded case. The PRESS adjusted R2 (R2p) and the
PRESS SEE (SEEp) were calculated as 1 – (PRESS/SS) and .
The model was further validated by dividing it into different
subgroups and calculating the constant error (CE) for each
group. The standard for recruiting participants was to retain
diversity. However, we wanted to observe CE based on age,
sex, and VO2max level. The median value for age and VO2max
was chosen to divide the groups. All signal processing,
cross-validation, and statistical analyses were performed using
MATLAB (MATLAB2017a; MathWorks).

Ethics Statement
This study protocol was reviewed and approved by the
Institutional Review Board of the Seoul National University
Hospital (IRB No. 1505-022-669). Written informed consent
was submitted by all subjects when they were enrolled. This
study followed the Helsinki Declaration.

Results

The general characteristics of all subjects are summarized in
Table 1. The average value for age, weight, height, and percent
body fat for excluded male subjects were 42.0, 72.8 kg, 171.0
cm, and 25.0% respectively. For excluded female subjects, the
average values were 41.7, 56.5 kg, 158.4 cm, and 31.6%,
respectively. A student t test was performed to compare the P

value for age, weight, height, and percent body fat between
included and excluded subjects. For male subjects, the P values
were .646, .937, .883, and .026, respectively. For female
subjects, the P values were .936, .415, .663, and .497
respectively.

The Pearson correlations between VO2 max and selected features
are shown in Table 2. The Pearson correlations between selected
features are also summarized. The correlations between VO2

max and independent variables were all statistically significant
(P<.001 for all). The independent variable that showed the
highest correlation was sex, with a correlation of .675. The
lowest correlation for the model was the slope, with a correlation
of .237.

The multiple linear regression analysis for the model is shown
in Table 3. The scatter plot for measured VO2 max versus

predicted VO2 max is shown in Figure 1. The R2 for the model
was 0.651, and the SEE was 3.518 mL/kg/min. As shown in

Table 3, the decrease in R2 and the increase in SEE were small

for the cross-validation result of the PRESS method. R2

decreased by 0.032 and SEE increased by 0.148 mL/kg/min.
The scatter plot of the multiple linear regression for the model
is shown in Figure 2.

The model was further validated by dividing the groups into
various subgroups and calculating the CE and SD. Each
subgroup was divided into 2 groups according to age, sex, and
measured VO2 max. The results are shown in Table 4. The CEs
were positive for the younger group and negative for the older
groups. The CE for the younger group was 0.024 mL/kg/min.
The CE for the older group was −0.021 mL/kg/min. The CEs
were all positive for the subgroups divided according to sex.
The CE was positive for individuals with high VO2 max and
negative for individuals with low VO2 max. However, as shown
in Table 4, CE values were low for all subgroups, indicating
that our model does not overestimate or underestimate VO2

max.
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Table 2. Correlation matrix between VO2 max and independent variables.

aEEmaxbPercent fatSexHeightAgeVO2 maxa
Independent variables

—————−0.372cAge (years)

————−0.3290.372cHeight

———0.517−0.0150.675cSex

——−0.620−0.4230.202−0.652cPercent fat

—−0.3400.4960.397−0.4730.503caEEmax

0.830−0.1300.3690.193−0.0160.237cSlope

aVO2 max: maximal oxygen uptake.
baEEmax: maximal activity energy expenditure.
cP<.001.

Table 3. A multiple regression nonexercise model for estimating VO2 max (maximal oxygen uptake; mL/kg/min).

Fitbit modelIndependent variables

BetaaCoefficient

—b63.262Constant

.0820.027aEEmaxc (kcal/kg/h)

−.045−1.776Slope (kcal/kg/h/bpm)

−.296−0.242Percent body fat

−.321−0.150Age (years)

.5483.264Sex

−.166−0.09Height (cm)

—0.807R d

—3.518SEEe (mL/kg/min)

—0.787R P
f

—3.667SEEP
f (mL/kg/min)

aBeta is the normalized coefficient of the model.
b—: not applicable.
caEEmax: maximal activity energy expenditure.
dR is the Pearson correlation.
eSEE: SE of estimate.
fRP and SEEP are the cross-validated results of the model.
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Figure 2. The correlation between estimated and measured VO2max value for all subjects (N=191). The red solid line is the identity line of the measured
and estimated VO2max. VO2max: maximal oxygen uptake.

Table 4. Constant error and SD for each subgroup. Subjects aged older than 40 years are considered the old group, and subjects with a VO2 max higher
than 36 mL/kg/min are considered as the high VO2 max group.

SDCEan (%)Group

4.341−4.397e-15101 (52.9)Female

4.4843.000e-1590 (47.1)Male

5.587−0.021101 (52.9)Old

5.1800.02490 (47.1)Young

3.5651.53577 (40.3)High VO2 maxb

3.232−1.488114 (59.7)Low VO2 max

aCE: constant error.
bVO2 max: maximal oxygen uptake.

Discussion

In this study, we developed VO2 max estimation models with
data collected from the commercially available device, Fitbit,
which could estimate VO2 max conveniently from daily life.
The commercial device used in this study provided data on
physical activity, along with its physiological response (HR).
Even though some previous studies have reported that Fitbit
does not always generate accurate data [19,20], our method for
estimating VO2 max does not depend on the absolute value of
each data point. It rather depends on the trend of a large set of
data points and would balance the inaccuracy of a single data
point. Even though Fitbit data were biased under certain
conditions, a large number of data collected from daily life
would minimize this bias. This characteristic of our 2 novel
features would only need calibration to be applied with other
hardware and processing methods. Previous studies reported
that lower HR was not linearly correlated with physical activity
[16]. It is also known that heterogeneous recovery of HR after

physical exercise does not have a clear correlation with VO2

max [21]. Therefore, in an attempt to select the data during
physical activity, we have selected periods of data where HR
is greater than 120 beats/min and where both HR and physical
activity increased at the same time to calculate aEEmax and the
slope. By calculating 2 features from the linear relationship
between HR and energy expenditure, our model would estimate
VO2max accurately without any protocol or training.

In our previous study [14], aEEmax and our estimation model
were validated with a homogenous group of young healthy
Asian males using aEEmax and BMI (VO2max=0.192 x
aEEmax – 0.708 x BMI). In this study, we have validated
aEEmax and the model with a large pool of subjects, including
both men and women aged from 20 to 65 years. The validation
of the model was performed by cross-validation with the PRESS
method and by calculating the CE of the subgroups. The
cross-validated result shows that the validation sample fitted
well with the model with little error. Furthermore, the CE for
the model shows that our methodology did not significantly
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overestimate nor underestimate VO2 max for all subgroups,
whereas other studies [12,22] have reported significant
overestimation and underestimation with both highly and poorly
fitted individuals.

To the best of our knowledge, this study is the first to provide
a VO2 max estimation model with a commercially available
device on a wrist without any specific protocol. Tönis et al used
a submaximal exercise protocol to estimate VO2 max [23]. Polar
Electro Oy Inc developed a nonexercise protocol, Polar Fitness
Test, and devices to estimate VO2 max. However, Esco et al
[24] reported that the Polar Fitness Test had low accuracy for
estimating VO2 max when it was tested with one of its own
products. Altini et al [25] developed a nonexercise estimation
model for VO2 max with data collected from daily life; however,
they used an ECG necklace with a wet electrode attached to the
chest and stomach, which could cause an inconvenience when
used in daily life. Our method allows individuals to measure
their VO2 max on a wrist without the requirement for any
electrode attachment. In addition, although other smartwatches,
including Fitbit, require a specific protocol, such as running for
at least 10 min on flat terrain, our protocol does not require any
protocol and allows for easy monitoring of physical fitness.

Instead of using the absolute value of HR or physical activity
data, we developed 2 new features to portray physical fitness.
The change in HR for a given physical activity differs depending
on the physical fitness of a subject [8]. Thus, the slope between
HR and physical activity would be smaller and aEEmax would
be larger for a subject with higher VO2 max. As shown in Table
2, aEEmax has a moderate correlation with VO2 max, supporting
our hypothesis. Features based on physical activity can easily
fluctuate depending on change in the short-term lifestyle of the
subject during the period of data collection. Those features
would be vulnerable to a sudden increase or decrease in the
amount of physical activity. On the contrary, aEEmax and the
slope represent the relationship between physical activity and
HR and thus would be less affected by a sudden short-term
change in physical activity. In addition, aEEmax and slope have
been shown to be applicable to a wide range of subject ages and
different genders. Other studies [26-28] have been validated

with a relatively homogenous group compared with this study.
The percent body fat used in this study was obtained using a
professional bioimpedance analyzer. However, we have used
general percent body fat which did not necessarily require a
professional analyzer. There are products available, such as an
AURA device, and ongoing studies about measuring body fat
percentage from the wrist [29]. These efforts will make the
measurement of percent body fat more accessible to the public.

There are limitations to this study. First, our methodology needs
to be validated with more devices worn on a wrist. There are
many commercially available devices that provide physical
activity and HR data. To provide a more generalized VO2 max
estimation method, it is important to prove device independency
of our method. In addition, this study was conducted with
healthy subjects who were not taking any medication that might
affect the HR. Another limitation of this study was error with
maximal HR calculated from a basic population-derived
formula. A more accurate method for calculating maximal HR
could increase the accuracy of our model. A future study could
include subjects who are on cardiac-related medication.
Additionally, in our previous study, we have shown that 900
min of data were enough to calculate aEEmax; however, it
would be worthwhile to observe change in the correlation
coefficient of aEEmax for a longer period of time.

In summary, we have developed a new estimation model for
VO2 max using novel features, aEEmax and the slope between
physical activity and HR, along with other anthropometric
variables. The new features represent the relationship between
physical activity and its physiological response. The high
correlation between VO2 max and aEEmax is in agreement with
our previous study and supports our hypothesis. Our model
requires data from only 3 days of daily life, without any specific
exercise protocol. This hypothesis was validated with a diverse
and large number of participants based on age and sex.
Furthermore, all material required for our study is available in
the conventional market as fully built products. The result of
this study allows individuals to measure their VO2 max
conveniently in their daily life without any burden of an exercise
protocol and allows them to easily monitor physical fitness.
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