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Abstract

Background: It has become possible for the new generation of consumer wristbands to classify sleep stages based on multisensory
data. Several studies have validated the accuracy of one of the latest models, that is, Fitbit Charge 2, in measuring polysomnographic
parameters, including total sleep time, wake time, sleep efficiency (SE), and the ratio of each sleep stage. Nevertheless, its accuracy
in measuring sleep stage transitions remains unknown.

Objective: This study aimed to examine the accuracy of Fitbit Charge 2 in measuring transition probabilities among wake, light
sleep, deep sleep, and rapid eye movement (REM) sleep under free-living conditions. The secondary goal was to investigate the
effect of user-specific factors, including demographic information and sleep pattern on measurement accuracy.

Methods: A Fitbit Charge 2 and a medical device were used concurrently to measure a whole night’s sleep in participants’
homes. Sleep stage transition probabilities were derived from sleep hypnograms. Measurement errors were obtained by comparing
the data obtained by Fitbit with those obtained by the medical device. Paired 2-tailed t test and Bland-Altman plots were used to
examine the agreement of Fitbit to the medical device. Wilcoxon signed–rank test was performed to investigate the effect of
user-specific factors.

Results: Sleep data were collected from 23 participants. Sleep stage transition probabilities measured by Fitbit Charge 2
significantly deviated from those measured by the medical device, except for the transition probability from deep sleep to wake,
from light sleep to REM sleep, and the probability of staying in REM sleep. Bland-Altman plots demonstrated that systematic
bias ranged from 0% to 60%. Fitbit had the tendency of overestimating the probability of staying in a sleep stage while
underestimating the probability of transiting to another stage. SE>90% (P=.047) was associated with significant increase in
measurement error. Pittsburgh sleep quality index (PSQI)<5 and wake after sleep onset (WASO)<30 min could be associated to
significantly decreased or increased errors, depending on the outcome sleep metrics.

Conclusions: Our analysis shows that Fitbit Charge 2 underestimated sleep stage transition dynamics compared with the medical
device. Device accuracy may be significantly affected by perceived sleep quality (PSQI), WASO, and SE.

(JMIR Mhealth Uhealth 2019;7(6):e13384) doi: 10.2196/13384
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Introduction

Importance of Consumer Sleep Tracking Devices
Having enough restorative sleep is essential for physical and
mental health [1]. In recent years, consumer sleep-monitoring
wristbands and associated mobile phone apps have created an
effective way for individuals to understand personal sleep
patterns or improve sleep quality in daily settings [2]. These
devices are relatively affordable, easy to use, and ready to
purchase in the consumer market. Most of the consumer
wristbands rely on a similar mechanism of clinical actigraphy
that infers wake and sleep cycles from limb movement [2].
Newly launched models also incorporate other streams of
biosignals, such as heart rate to measure sleep stages. Users can
visualize a whole night’s sleep hypnogram (the temporal
sequence of sleep stages) and the aggregated sleep parameters,
such as total sleep time (TST) and the ratio of each sleep stage
on a dashboard [3]. There is increasing evidence that consumer
sleep-monitoring wristbands raise awareness of sleep health
and have a positive impact on personal sleep hygiene [4-6],
though the long-term impact of these technologies has not been
elucidated [7]. In the meantime, researchers and clinicians are
increasingly adopting consumer wristbands, such as Fitbit
devices, as outcome measurement tools in research studies
[6,8-14]. Compared with traditional polysomnography (PSG),
Fitbit devices significantly reduce the time and monetary cost
for longitudinal sleep data collection, and they could provide
rich information that was not possible to collect outside sleep
laboratories or clinics in the past. Participants can use the
devices under free-living conditions, without the need of
constant technical support. The new generation of Fitbit devices
could also possibly outperform clinical actigraphy, as they
leverage multiple streams of biosignals for sleep staging,
whereas actigraphy is only able to detect wake and sleep on the
basis of limb movement [15].

Accuracy of Consumer Sleep Tracking Devices
As consumer sleep-monitoring wristbands continue to gain
popularity, their limitation in measurement accuracy raised wide
concerns on the quality of data collected using these devices
[7,16,17]. Data of low quality may mislead users to arrive at
wrong conclusions of their sleep. In addition, data quality is of
top priority for researchers who intend to use these devices in
scientific studies. Therefore, understanding the validity of
consumer sleep trackers has practical benefit for both individual
users and for the research community. In response to this need,
many studies have examined the accuracy of popular sleep
trackers compared with medical devices in terms of aggregated
sleep metrics, including TST, wake after sleep onset (WASO),
sleep efficiency (SE), and sleep stages, that is, light sleep, deep
sleep, and rapid eye movement (REM) sleep [18-24]. These
studies show that the previous models of consumer wristbands
have a common problem of overestimating sleep and
underestimating wake [18-20]. Recent models, such as Fitbit

Charge 2, that rely on multistreams of biosignals have satisfying
performance in measuring TST and SE but fail to produce
accurate results in classifying sleep stages [21,24].

Although the main body of validation studies has been
dominantly focused on polysomnographic metrics (eg, TST,
WASO, sensitivity, and specificity) [2,13,24-27], the
performance of consumer wristbands in measuring sleep stage
transitions remains unknown. Sleep research has shown that
sleep stage transition probabilities comprise rich information
of sleep patterns, which have been considered more effective
than polysomnographic parameters in characterizing sleep
stability [28-37]. Sleep stage transition abnormality is an
important indicator of sleep disorders [28,32,33,38-43]. Some
studies also relied on sleep stage transition probabilities to assess
the effect of treatment [44]. The clinical significance of sleep
stage transition dynamics suggests the necessity of including
relevant metrics (sleep stage transition probabilities) as outcome
sleep parameters in validation studies. In Figure 1, a
visualization of sleep stage transition dynamics is presented.
The total transition probability from a single state to other states
(including staying in the same state) is always 1. The sX→Y

represents the transition probability from sleep stage X to Y.
The { X, Y } are derived from { W, L, D, R }, which are
abbreviations for wake, light sleep, deep sleep, and REM sleep.
For example, sW→R denotes the transition probability from wake
to REM sleep, and sW→W denotes the probability of staying in
wake.

Significance of This Study
This study aimed to examine whether it would accurately
measure sleep stage transitions (the transition probabilities
among waking, light, deep, and REM sleep) using Fitbit Charge
2. Despite the abundant validation studies, the accuracy of
consumer wristbands in measuring sleep stage transition has
not been investigated. We also examined the factors that are
associated with the measurement errors on sleep stage transition
probabilities. Previous validation studies on other types of
wearable devices found that device accuracy could vary as a
function of the underlying sleep patterns, the population studied,
and even how the measurand was defined [45-48]. Along the
same line, we selected a set of independent variables (possible
predictors), including demographic characteristics of
participants, subjective sleep quality measured by Pittsburgh
Sleep Quality Index (PSQI) [49], and objective sleep quality
derived from medical data. The dependent variables were the
absolute percent errors of Fitbit Charge 2 on sleep stage
transition probabilities compared with the medical device. The
outcomes of this study complement previous validation studies
and contribute to the establishment of a holistic view of the
capacity of consumer wristbands in measuring sleep structure
under free-living conditions. This study also establishes a
preliminary reference for researchers who intend to use Fitbit
to measure sleep stage transitions and for individual users who
rely on Fitbit sleep data to make health decisions.
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Figure 1. Sleep stage transition dynamics. The W, L, D, R in the subscripts denotes the abbreviation of wake, light sleep, deep sleep, and rapid eye
movement sleep.

Methods

Recruitment
We recruited participants by distributing posters around the
campus of The University of Tokyo. In total, 38 people
registered interest through a Web-based form, of whom 28
(74%) were eligible to participate in the study. The inclusion
criteria required that the participants were adults (age>18 years),
were free of diagnosed chronic conditions, and were able to
attend a briefing before the data collection phase. This research
was approved by the ethical committee of the University of
Tokyo. All participants provided informed consent.

Study Procedures
A face-to-face briefing was held with each participant
individually before the data collection phase. In this meeting,
we installed the Fitbit app on participants’ mobile phones and
provided verbal instructions on how to use the devices and how
to synchronize the Fitbit device with its mobile phone app.
Participants were provided with the following items for data
collection: a Fitbit Charge 2, a medical device named Sleep
Scope, electrodes, chargers, and manuals. At the end of the
briefing, participants were asked to fill in a PSQI questionnaire
[49] to measure their perceived sleep quality. The PSQI is a
widely used instrument for assessing subjective sleep quality
averaged over the past 1 month, and a PSQI≥5 is indicative of
perceived poor sleep. We collected the PSQI, as it may associate
to the measurement accuracy of Fitbit. More details on potential
association factors of measurement accuracy will be provided
in the next section.

After the briefing, participants measured their sleep using both
devices for 3 consecutive nights in their homes to ensure that
Fitbit Charge 2 was evaluated in an ecologically valid setting.
They were asked to wear the Fitbit on the nondominant wrist

during data collection. All participants received a monetary
reward when they returned the devices after data collection.

Data Collection
In this study, we collected sleep data concurrently using Fitbit
Charge 2 and a medical device. Fitbit Charge 2 (Fitbit Inc) is a
wearable activity wristband with an embedded triaxial
accelerometer. It estimates sleep stages for each 30 second
period by integrating a user’s movement and heart rate data.
With advances in software and hardware, Fitbit Charge 2 has
overcome some problems of previous models, and it is able to
measure TST and SE with good accuracy [21,24]. A medical
sleep monitor named Sleep Scope (Sleep Well Co) was used to
obtain the ground truth on sleep hypnograms. Sleep Scope is a
clinical-grade single-channel electroencephalogram (Japanese
Medical Device Certification 225ADBZX00020000), which
was validated against PSG (agreement=86.9%, average Cohen
Kappa value =0.75) [50,51]. Sleep Scope was chosen over PSG
as it enabled data collection in participants’ homes rather than
in a sleep laboratory. This ensures that Fitbit Charge 2 was
evaluated in an ecologically valid setting; this also ensures
minimalizing the possible disruption of sleep by unfamiliar
environment.

In the data collection phase, participants tracked their sleep for
3 consecutive nights in their homes. Following the common
practice in sleep science, we analyzed the second night for each
participant to remove the first night effect [52,53]. If the data
of the second night were not valid, then the data of the third
night were analyzed. The data of the first night were only
selected when neither the second night nor the third night was
valid.

Fitbit sleep data were retrieved through the application program
interface (API) of Fitbit. Fitbit Charge 2 provides sleep data at
2 levels through public API. The stage level data comprise sleep
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stage levels, including wake, light sleep, deep sleep, and REM
sleep. These data are aggregated at 30-second granularity, which
complies with the standard sleep staging in the clinical setting.
If the stage level data are not available, the classic level data
will be provided as an alternative. Classic level data comprise
sleep pattern levels, including asleep, restless, and awake, and
they are aggregated at a coarser granularity of 60 seconds. In
this study, we were interested in the stage level sleep data, and
the classic level data were discarded, as they contained no
information on deep sleep, light sleep, and REM sleep.

The data of the medical device were analyzed by the Sleep Well
Company, using proprietary automatic scoring algorithms,
followed by epoch-by-epoch visual inspection by specialists on
the basis of established standards [54], and corrections were
added if needed. Fitbit data and medical data were synchronized
to make sure that the start time was aligned.

To examine the effect of user-specific factors on measurement
accuracy, we also collected data on the factors listed in Table
1. Age and sex were based on self-report, and PSQI was
measured by the PSQI questionnaire [49]. Sleep quality metrics
were all derived from the medical data.

Table 1. A full list of user-specific factors.

Cut-off thresholdData collection methodData typeFactors

25Self-reportedOrdinalAge (years)

Female or maleSelf-reportedNominalSex

5PSQI questionnaireOrdinalPSQIa

360Sleep scope (medical device)ContinuousTSTb (min)

30Sleep scopeContinuousWASOc (min)

30Sleep scopeContinuousSOLd (min)

90.0Sleep scopeContinuousSEe, %

65.0Sleep scopeContinuousLight sleep, %

20.0Sleep scopeContinuousSWSf, %

20.0Sleep scopeContinuousREMg, %

90Sleep scopeContinuousTavg
h (min)

aPSQI: Pittsburgh Sleep Quality Index.
bTST: total sleep time.
cWASO: wake after sleep onset.
dSOL: sleep onset latency.
eSE: sleep efficiency.
fSWS: slow wave sleep.
gREM: rapid eye movement sleep.
hTavg: average sleep cycle.

Statistical Analysis
The overall goal of the analysis was two-fold. We aimed to
examine the accuracy of Fitbit Charge 2 in measuring sleep
stage transitions compared with a medical device. We were also
interested in the associations of user-specific factors with the
measurement accuracy of Fitbit Charge 2. All statistical
significance levels reported were 2 sided, and statistical analysis
was performed using R statistical software version 3.5.3 (The
R Foundation)[55].

First, descriptive statics of sleep parameters were derived from
the medical data. Paired 2-tailed t test was used to probe if there
were statistically significant differences on sleep patterns
between men and women, as well as between participants below
25 years of age and above 25 years of age. Second, sleep stage

transition probabilities were calculated by dividing the number
of transitions from a specific sleep state to a specific sleep state
by the total number of transitions from that specific state to all
sleep states (including staying in the same state). As shown in
Figure 2, { X, Y, and B } are derived from { W, L, D, and R }
and nX→Y is the number of transitions from sleep stage X to Y
during a whole night’s sleep. The W, L, D, and R are the
abbreviations for wake, light sleep, deep sleep, and REM sleep.
Sleep stage transition probabilities were calculated from Fitbit
data and medical data for each participant and then averaged
over the whole cohort to obtain the average sleep stage transition
probabilities. Systematic difference between the 2 devices was
assessed by applying paired t test on the sleep stage transition
probabilities. A P value below .05 was considered statistically
significant. The level of agreement between 2 devices was
examined using the Bland-Altman plots [56].
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Figure 2. The calculation of sleep stage transition probabilities.

Figure 3. The calculation of absolute percent error.

The absolute percent error eX→Y was calculated using the
equation in Figure 3, where { X, Y, and B } are derived from {

W, L, D, and R }, sF
X→Y and sM

X→Y are the transition probability
from sleep stage X to Y, derived from Fitbit data and medical
data.

To examine the effect of user-specific factors on absolute
percent error, the dataset was divided into 2 subsets according
to the cut-off threshold values listed in Table 1. Wilcoxon
signed–rank test was conducted to examine if there were
significant differences between the 2 subsets in terms of the
outcome sleep metrics (sleep stage transition probabilities). The
selection of cut-off threshold values was in line with literature
in sleep science [49,57].

Results

Descriptive Statistics
A total of 28 young adults without chronic diseases participated
in the study. A total of 5 participants were excluded from
analysis because of failure to obtain stage level sleep data with
Fitbit. That is, only classic level sleep data were obtained from
these participants; the data had no information on light, deep,
and REM sleep. Therefore, it was not possible to calculate sleep
stage transition probabilities for these participants. The final
dataset thus comprises sleep data from 23 participants
(men:women=14:9). This number of participants is comparable
with other validation studies [20,27,58-61]. All the participants
were university students between 21 to 30 years old (mean 24.3,
SD 2.7). A total of 8 out of the 23 participants had a PSQI higher
than 5, which was indicative of unsatisfied sleep quality.
Statistically significant differences were found between men

and women in terms of wake time (women: 9.7 min; men: 22.8
min; P=.02) and the ratio of sleep stage 1 (women: 7.7(%); men:
14.3(%); P=.02). We also compared the sleep patterns between
participants below and above 25 years. Statistically significant
differences were found in terms of TST (below 25 years: 308.7
min; above 25 years: 396.8 min; P=.03), transition probability
from deep sleep to light sleep (below 25 years: 5.5%; above 25
years: 1.5%; P=.02), and the probability of staying in light sleep
(below 25 years: 85.3(%); above 25 years: 94.8(%); P=.008).

Systematic Differences
Table 2 presents the estimated sleep stage transition probabilities
derived from medical data and Fitbit data, as well as the results
of paired t test. We calculated sleep stage transition probabilities
individually for each participant and then averaged results across
the whole cohort. It is shown that the following transitions rarely
occurred: deep sleep to REM sleep and wake, light sleep to
REM sleep, REM sleep to deep sleep, and REM sleep to light
sleep. The t test results indicated that there were significant
differences between the sleep stage transition probabilities
measured by Fitbit and those measured by the medical device.
Fitbit deviated from the medical device on all the transition
probabilities except for the transition probability from light

sleep to REM sleep (sF
L→R = 0.9%; sM

L→R =1.7%), the transition

probability from deep sleep to wake (sF
D→W = sM

D→W =0.2%),

and the probability of staying in REM sleep stage (sF
R→R =

sM
R→R =96.9%). In general, Fitbit underestimated sleep stage

transition dynamics. The probabilities of staying in a specific
sleep stage were significantly overestimated, whereas the
probabilities of transitions from a specific stage to a different
stage were mostly underestimated.
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Table 2. Average sleep stage transition probabilities (%) and results of paired t test. Data are displayed as mean and ±95% CI.

REMaDeepLightWakeSleep stage

Wake

2.6 (1.5-3.7)0.2 (0.0-0.4)43.6 (33.8-53.4)53.7 (44.0-63.3)Medical

0.2 (0.0-0.5)0.2 (0.0-0.5)5.5 (4.3-6.7)89.8 (81.2-98.3)Fitbit

<.001.83<.001<.001P value

Light

0.8 (0.7-0.9)3.9 (2.1-5.8)92.6 (90.9-94.4)2.6 (2.0-3.3)Medical

0.5 (0.3-0.7)1.1 (0.9-1.3)97.8 (97.6-98.1)0.5 (0.3, 0.6)Fitbit

.02.005<.001<.001P value

Deep

0.0 (0.0-0.0)35.5 (22.6-48.4)57.7 (43.8-71.6)2.5 (0.7-4.3)Medical

1.1 (0.4-1.8)94.9 (93.4-96.4)3.8 (2.9-4.6)0.2 (0-1.8)Fitbit

.002<.001<.001.02P value

REM

96.9 (96.5-97.5)0.0 (0.0-0.0)0.9 (0.7-1.2)2.0 (1.6-2.4)Medical

96.9 (96.0-98.0)1.2 (0.3-2.2)1.7 (0.7-2.6)0.1 (0.0-0.2)Fitbit

>.99.01.14<.001P value

aREM: rapid eye movement.

Level of Agreement and Correlations
Figures 4-6 show the Bland-Altman plots comparing Fitbit
Charge 2 with the medical device. Device discrepancies for
sleep outcomes are plotted as a function of the medical outcomes
for each individual. The mean bias ranged from 0% (sR→R and
sD→W) to approximately 60% (sL→D). No more than 2
participants were situated outside the lower limit of agreement
or the upper limit of agreement.

In line with previous studies [62,63], we defined the acceptable
error range as ei ≤5%, as this approximates a widely acceptable
standard for statistical significance in literature [64]. On the

basis of this criterion, no systematic bias was found between
Fitbit and the medical device in measuring sW→L, sW→R, sL→R,
sD→W, sR→L, sR→D, and sR→R.

Figure 4 shows that no trend was found between the difference
and the mean of sR→L, sL→R and sR→R. In contrast, Figure 5 and
Figure 6 show clear trends that the measurement differences
were greater for lower sL→L, sD→D, and sW→W, and the
differences were greater for higher sW→L,sW→R, sW→D, sL→W,
sL→D, sD→W, sD→L, sD→R, sR→W, and sR→D. These findings
suggest that the accuracy of Fitbit Charge 2 in measuring sleep
stage transitions could be deteriorated as sleep became more
dynamic (more transitions between different sleep stages).
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Figure 4. Bland-Altman plots assessing the level and limits of agreement between Fitbit Charge 2 and medical device on the transition probabilities
from rapid eye movement (REM) sleep to light sleep, from light sleep to REM sleep, and the probability of staying in REM sleep. The dashed line in
the middle represents the mean difference, whereas the upper and lower dashed lines represent the upper limit of agreement and the lower limit of
agreement.

Figure 5. Bland-Altman plots assessing the level and limits of agreement between Fitbit Charge 2 and medical device on the probability of staying in
light sleep, in deep sleep, and in wake.
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Figure 6. Bland-Altman plots assessing the level and limits of agreement between Fitbit Charge 2 and medical device on the transition probabilities
from wake to light sleep, from wake to rapid eye movement (REM) sleep, from wake to deep sleep, from light sleep to wake, from light sleep to deep
sleep, from deep sleep to wake, from deep sleep to light sleep, from deep sleep to REM sleep, from REM sleep to wake, and from REM sleep to deep
sleep.

Effect of User-Specific Factors
The results of Wilcoxon signed–rank test showed that good
subjective sleep quality indicated by PSQI as lower than 5 was
associated with decreased errors in the probability of staying
in deep sleep stage (PSQI<5, 132.1±173.1%; PSQI≥5,
346.8±250.0%; P=.04), but it was associated with increased

errors in transition probability from waking to REM sleep
(PSQI<5, 100.0±0.0%; PSQI≥5, 85.1±25.5%; P=.02).

Wake time longer than 30 min was associated with increased
errors in transition probability from light sleep to REM sleep
(WASO≥30, 265.8±176.5; WASO<30, 103.9±49.1%; P=.02),
but it was associated with decreased errors in transition
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probability from light sleep to wake (WASO≥30, 78.6±10.2%;
WASO<30, 86.7±8.6%; P=.049), as well as the probability of
staying in wake (WASO≥30, 117.3±269.5%; WASO<30,
125.2±103.6%; P=.006).

SE above 90% was associated with increased measurement
errors in transition probability from REM sleep to light sleep
(SE>90, 107.1±53.2%; SE≤90%, 55.9±40.4%; P=.047).

In addition, age below 25 years (age<25, 7.9±5.4%; age≥25,
3.1±2.3%; P=.01), sleep onset latency (SOL) shorter than 30
min (SOL<30, 8.6±5.8%; SOL≥30, 4.1±3.4%; P=.02), and deep
sleep ratio above 20% (slow wave sleep; SWS<20%, 3.9±3.5%;
SWS≥20, 9.5±5.2; P=.007) were associated with slight increased
measurement error in the probability of staying in light sleep
stage. Nevertheless, the average errors were no more than 10%
in all the corresponding cases.

No significant associations were found between measurement
errors of Fitbit and other factors, including sex, TST, SOL, light
sleep ratio, REM sleep ratio, and Tavg.

Discussion

Principal Findings
We have demonstrated a numerical comparison on sleep stage
transition probabilities between Fitbit Charge 2 and the medical
device. The level and limits of agreement between the 2 types
of devices were illustrated using Bland-Altman plots. The results
of Wilcoxon signed–rank test were presented to demonstrate
the associations between user-specific factors and measurement
errors. This study generated 2 main findings. First, we found
that Fitbit Charge 2 underestimated sleep stage transition
dynamics compared with the medical device. Second, device
accuracy was mainly associated with 3 user-specific factors:
subjective sleep quality measured by PSQI, WASO, and SE.

Sleep stage transition analysis has been used to characterize
sleep continuity and the temporal stability of non-REM and
REM bouts in sleep science [28-30,32,40,44]. In this study, the
sleep stage transition probabilities derived from the medical
data demonstrated interesting patterns. As expected, the
probability for any sleep stage to stay in the same stage was
constantly higher than that for this stage to change to a different
stage. Direct transition between deep sleep and REM sleep
rarely happened. The probability of transitions from wake to
deep sleep or from wake to REM sleep was low. Similarly, the
probability of transition from deep sleep to wake was also low.
These characteristics were consistent with findings reported in
previous sleep studies on sleep stage transition patterns in
healthy people [31,44].

Sleep stage transition is the result of complex interactions among
many brain regions. Not being able to detect markers in
brainwaves, such as k-complexes [54], consumer wristbands
have limited performance in classifying sleep stages. Previous
studies show that Fitbit Charge 2 devices significantly
overestimated light sleep and underestimated deep sleep when
validated in lab settings [21], whereas they underestimated deep
sleep and overestimated light and REM sleep when validated
under free-living conditions [24]. This study complements

previous findings and contributes new insights into Fitbit’s
capacity in capturing sleep stage transitions. Overall, we
observed that Fitbit Charge 2 significantly deviated from the
medical device in measuring sleep stage transition dynamics.
Notably, the average probabilities of staying in wake stage and
deep stage measured by Fitbit were significantly higher than
those measured by the medical device. In contrast, Fitbit
underestimated the probabilities of stage transitions from light
sleep to wake and from light sleep to deep sleep. This is
probably because of the misclassification of wake and deep
sleep epochs to light sleep [21]. Systematic bias (between 40%
and 60%) was illustrated in the Bland-Altman plots on these
sleep stage transition probabilities. On the other hand, no
systematic bias and mean difference were observed in measuring
the probability of staying in REM sleep stage. This result
provides complementary evidence to the finding in the study
by De Zambotti et al [21] that Fitbit Charge 2 agreed well to
medical devices in detecting REM sleep.

A unique aspect of this study is that we also examined the effect
of user-specific factors and found multiple associations. Our
analysis showed that subjective sleep quality measured by PSQI,
wake after WASO, and SE were significantly strong predictors
of measurement errors in sleep stage transition probabilities.
Age, SOL, and deep sleep ratio were significant but weak
predictors, whereas sex, TST, light sleep ratio, REM sleep ratio,
and average sleep cycle were not associated with the
measurement errors of Fitbit.

Despite the finding from previous validation studies that poor
sleep quality is associated with deteriorated performance of
sleep monitoring devices in measuring polysomnographic sleep
metrics [21,25,65], this study reveals that the relationship is
more complicated between sleep quality and device accuracy
in measuring sleep stage transitions. Indeed, we found that good
subjective sleep quality (PSQI<5) was associated with decreased
measurement error in the probability of staying in deep sleep
stage, and less fragmented sleep (WASO<30 min) was
associated with decreased errors in transition probability from
light sleep to REM sleep. Nevertheless, it is also found that
good sleep characterized by quick sleep onset (SOL<30 min),
high ratio of deep sleep (SWS>20%), good subjective feeling
(PSQI<5), short awakenings (WASO<30 min), and high SE
(SE>90%) were associated with increased measurement errors
in different outcome transition probabilities. This result
contradicts previous findings on actigraphy that deteriorated
sleep (eg, long WASO and SOL) increased measurement errors
[21,25,65]. This disparity suggests that findings related to
clinical actigraphy should not be generalized to consumer
wristbands without further validation.

In addition, age was found to be a significant but weak predictor
of measurement errors. Participants in the age range of 25 to
30 had decreased measurement errors in the probability of
staying in light sleep stage compared with those younger than
the age of 25. As age has been widely recognized as a significant
factor that alters sleep patterns [43,57], the effect of age may
also be traced back to the difference in underlying sleep patterns.
The medical sleep data showed that younger participants
generally had shorter sleep and higher sleep stage transition
dynamics (transition from deep sleep to light sleep), which may
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account for the increase in measurement errors. Nevertheless,
this finding should not be generalized to a wide range of age
groups because of the restricted sampling of age in this study.
Further studies are needed to systematically examine the effect
of age on device accuracy.

Our findings complement those of previous validation studies
on consumer wristbands for sleep tracking in general. Fitbit
Charge 2 has demonstrated satisfying performance in measuring
TST and SE, but it remains incapable of classifying sleep stages
with good accuracy [21,24]. Our findings show that Fitbit
Charge 2 may also underestimate sleep transition dynamics,
and it should thus be used with caution. This study establishes
a preliminary reference for researchers who intend to use the
Fitbit device to measure sleep stage transitions in scientific
studies, and this study suggests that both perceived and objective
sleep patterns may need to be considered when choosing sleep
monitoring tools.

Limitations
This study is subject to the following limitations. First, the
participants represent a young healthy population that was free
of sleep disorders or chronic diseases. Therefore, the results
cannot be generalized to older or clinical populations. Second,

the data collection phase was not longitudinal in nature, and
only 1 night of sleep from each participant was analyzed. Thus,
the results may fail to count intrapersonal variations. Third, the
list of potential affecting factors investigated in this study was
not exhaustive, and it may be affected by restricted sampling.
Further research should address these limitations by including
a diverse population, extending data collection duration, and
examining the effect of other potential predictors of device
accuracy.

Conclusions
We have demonstrated that Fitbit Charge 2 significantly
underestimated sleep stage transition dynamics compared with
the medical device and that measurement accuracy could be
mainly affected by perceived sleep quality, sleep continuity,
and SE. Despite the positive trend of enhanced accuracy for the
latest consumer wearable sleep trackers, the limitation of these
devices in detecting sleep stage transition dynamics needs to
be recognized. As an outcome measurement tool, Fitbit Charge
2 may not be suited for research studies related to sleep stage
transitions or for health care decision making. Further research
should focus on enhancing the accuracy of these consumer
wristbands in measuring not only polysomnographic parameters
but also sleep stage transition dynamics.
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SOL: sleep onset latency
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