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Abstract

Background: Health care, in recent years, has made great leaps in integrating wireless technology into traditional models of
care. The availability of ubiquitous devices such as wearable sensors has enabled researchers to collect voluminous datasets and
harness them in a wide range of health care topics. One of the goals of using on-body wearable sensors has been to study and
analyze human activity and functional patterns, thereby predicting harmful outcomes such as falls. It can also be used to track
precise individual movements to form personalized behavioral patterns, to standardize the concept of frailty,
well-being/independence, etc. Most wearable devices such as activity trackers and smartwatches are equipped with low-cost
embedded sensors that can provide users with health statistics. In addition to wearable devices, Bluetooth low-energy sensors
known as BLE beacons have gained traction among researchers in ambient intelligence domain. The low cost and durability of
newer versions have made BLE beacons feasible gadgets to yield indoor localization data, an adjunct feature in human activity
recognition. In the studies by Moatamed et al and the patent application by Ramezani et al, we introduced a generic framework
(Sensing At-Risk Population) that draws on the classification of human movements using a 3-axial accelerometer and extracting
indoor localization using BLE beacons, in concert.

Objective: The study aimed to examine the ability of combination of physical activity and indoor location features, extracted
at baseline, on a cohort of 154 rehabilitation-dwelling patients to discriminate between subacute care patients who are re-admitted
to the hospital versus the patients who are able to stay in a community setting.

Methods: We analyzed physical activity sensor features to assess activity time and intensity. We also analyzed activities with
regard to indoor localization. Chi-square and Kruskal-Wallis tests were used to compare demographic variables and sensor feature
variables in outcome groups. Random forests were used to build predictive models based on the most significant features.

Results: Standing time percentage (P<.001, d=1.51), laying down time percentage (P<.001, d=1.35), resident room energy
intensity (P<.001, d=1.25), resident bed energy intensity (P<.001, d=1.23), and energy percentage of active state (P=.001, d=1.24)
are the 5 most statistically significant features in distinguishing outcome groups at baseline. The energy intensity of the resident

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 7 | e14090 | p. 1http://mhealth.jmir.org/2019/7/e14090/
(page number not for citation purposes)

Ramezani et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

mailto:raminr@ucla.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


room (P<.001, d=1.25) was achieved by capturing indoor localization information. Random forests revealed that the energy
intensity of the resident room, as a standalone attribute, is the most sensitive parameter in the identification of outcome groups
(area under the curve=0.84).

Conclusions: This study demonstrates that a combination of indoor localization and physical activity tracking produces a series
of features at baseline, a subset of which can better distinguish between at-risk patients that can gain independence versus the
patients that are rehospitalized.

(JMIR Mhealth Uhealth 2019;7(7):e14090) doi: 10.2196/14090
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Introduction

Background
According to the most recent census statistics, by 2050, the
population aged 65 years and older is projected to double in
size to 83.7 million in the United States [1]. With the increase
of this geriatric population, health care utilization will increase
dramatically, with a concomitant demand for rehabilitation and
in-home care after hospitalization [2]. Finding the best way to
support patients during rehabilitation, both at facilities and in
home, without compromising patient safety is considered to be
a significant challenge. The importance of patient safety and
rehabilitation has highlighted the need for constant vigilance
and fostered methodologies by which patients can be remotely
monitored [2-8].

Numerous studies have investigated the effectiveness of remote
patient health monitoring, some suggesting the potential for
such technologies to reduce the overall re-admission cost [9].
With the advent of wearable devices in recent years, remote
health monitoring has evolved and drawn attention, mainly by
utilizing physical activity trackers. It is widely assumed that a
physical activity regimen implies behavioral patterns that can
affect health outcomes. Hence, tracking these patterns and
leveraging them may allow the prediction of harmful outcomes,
such as falls, in a timely manner. Moreover, tracking
individuals’ personalized behavioral patterns may allow for the
creation of actionable messages to patients and caregivers to
improve patient health and outcomes [10]. The purpose of this
study was to investigate the physical activity and indoor
localization features obtained from our remote patient
monitoring system, Sensing At-Risk Population (SARP)
[2,11-14]. This study reports on SARP sensor–based markers
for rehabilitation screening within a geriatric population,
exploring if SARP can be used to prospectively distinguish
between at-risk patients in a subacute rehabilitation environment.

Sensing At-Risk Population System Overview
Details of the system architecture with proximity-based sensors
(beacons) and a Bluetooth-enabled smartwatch as its main
components can be found in the study by Moatamed et al [2]
and the patent application by Ramezani et al [14]. Building

models for physical activity tracking and indoor localization
was based on data collected using (1) commercially available
Sony SmartWatch 3 with built-in EM7180 ± 2 g triaxial
accelerometer, 420 mA battery, and BCM43340 Bluetooth
module and (2) proximity beacons (MCU ARM Cortex-M4
32-bit processor with floating-point unit). To build the activity
tracking and indoor localization models of SARP system,
patients were consented on admission to a subacute care
rehabilitation center in Los Angeles.

Bluetooth Low Energy Beacons and Indoor
Localization
Beacons broadcast their presence to Bluetooth-enabled devices.
Utilizing the beacons’Received Signal Strength Indicator (RSSI)
values using smartwatches, the SARP system calculates the
proximity of the watch to each beacon, thereby inferring the
indoor location of the patient wearing that watch. BLE beacons
(bluetooth low-energy sensors) have become popular in
gathering contextual awareness because of durability and low
cost. When used in health care, however, validating reliability
and accuracy of their location information is paramount.
Beacons are highly susceptible to diffraction, multipath
propagation, angle-of-arrival, lack of line-of-sight, and
absorption by the human body. In this project, because locations
of interest were within close proximity, we considered RSSI
values ranged between −50 dBm to −100 dBm. The average
RSSI within the line-of-sight, measured by the watch at 1 feet
distance, was −66 dBm. To achieve the best accuracy with
respect to locations of interest, shown in Figure 1, considering
beacons hardware specification was crucial. Beacon’s antenna
configuration and the proximity of locations heavily influence
the accuracy of indoor localization. Hence, to achieve a high
indoor localization accuracy, it was essential to refine beacon
placements iteratively. Moreover, in the rehabilitation facility
shown in Figure 1, we empirically learned to set the transmission
power to −12 dBm and the transmission interval to 250 ms. In
studies by Bouchard et al [11-13], we proposed a few methods
and considerations that can help enhance the indoor localization
accuracies. A summary of the ground truth testing executed at
the rehabilitation facility shown in Figure 1, with an overall
accuracy >80%, can be found in a study by Moatamed et al [2].
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Figure 1. Subacute rehabilitation facility map: resident room on top and therapy room at the bottom with locations of mounted beacons shown in red.

Accelerometer Data Processing and Physical Activity
Parameters
To infer physical activity of patients in this study, 3-axis raw
acceleration signal sampled at 16 Hz was extracted, and the
signal magnitude (SM) was initially calculated according to
Figure 2, equation 1, where acc indicates acceleration force

around each axis in g units including gravity (1 g=9.81 m/s2).
The range of the acquired signal is ± 2g. Batches of 160 samples
(window size of 10 seconds) were fed to a fifth order
Butterworth band-pass filter with cut-off frequencies of 0.5 and
8 Hz. The filtering limited the signal to highlight the frequencies
that are most representative of human motion while eliminating
the direct current component. Various window sizes ranging
from 4 to 12.8 seconds with different overlapping
implementations have been used in different studies [15]. These
characteristics are normally chosen empirically based on feature
extraction, activity labeling, and other annotation factors. In
this study, a window size of 10 seconds was used with a
1-second overlap [2]. After preprocessing the accelerometer
data, the next step was to infer human activity (positioning) and
to later translate the positioning into a quantifiable metric.
However, quantifying the physical activity can be deemed
challenging and will be discussed after a brief description of
physical activity classification.

A decade has passed since the advent of commercially available
low-cost, light-weight accelerometers. The enthusiasm about
their potential in extracting physical patterns to usually, but not

exclusively, improve health outcomes has led researchers to
master the techniques of activity recognition [15,16]. Some
researchers have even tried to infer activity intensities and
predict energy consumption by comparing accelerometer
patterns with measured metabolic equivalents [17-19]. Despite
significant and impressive outcomes, the triumph is mostly
based on analyzing small cohorts, or often a homogeneous group
of people, with similar age or health conditions. Training and
testing datasets in most studies are normally collated from
people following a certain protocol, whereas in real life, human
movements are intertwined, that is, the sequence of movements
does not always form a same pattern. As such, the performance
of various activity recognition algorithms/approaches applied
to real-world scenarios should be taken with a grain of salt
[15,16,18-20]. The following factors are influential in any
human activity tracking algorithm: (1) diversity of human
movement habits; (2) variety of human disabilities needing
different assistive devices, yielding distinct movement patterns;
(3) deficiencies of machine learning algorithms in building
one-size-fits-all model; and (4) limitations to distinguish
particular motions due to accelerometer placement, for instance,
classifying sitting still and laying down with sensor on wrist
versus waist [15,20]. To reduce the negative effect of the
mentioned factors, this study uses a combination of
classifications in 3 steps according to algorithm shown in Figure
3. Time and frequency domain characteristics of the signal
(main, median, variance, skewness, kurtosis, peak frequency,
and peak power) were used as features. SARP initially
categorizes activities broadly into walking and stationary.
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Figure 2. Equations. MAD: mean absolute deviation.

Figure 3. Hierarchical Activity Recognition Pseudo Code.
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Walking embodies active status, and when stationary, the
classifier separates brisk (active) and idle (nonactive)
movements and later classifies postures into sedentary, standing,
and laying down. Both Tables 1 and 2 depict the summary of
physical activity (positioning) classifiers’ 10-fold
cross-validation results built on 50 patients over approximately
22 hours of collated data at subacute care rehabilitation center
in Los Angeles. The algorithms were later validated and refined
over the course of 6 months of ground truth testing at the same
skilled nursing facility.

Step Counts Versus Raw Accelerometer Assessment
The next stage was to find a way to quantify the difference
between different activity status. Step counting is a common
way that has long been used to quantify the ambulatory physical
activity. However, similar to activity recognition approaches
explained earlier, the accuracy of step counters is often the
subject of debate among researchers. Comprehensive studies
with contradictory results on the accuracy of pedometers and
wearable accelerometers can be found in the studies by Crouter
et al [21], Mammen et al [22], and Case et al [23]. What is rather
clear in using step counters/pedometers is their efficacy in
quantifying ambulatory activities and not stationary. For step
counters to be more accurate, a user is required to satisfy a
minimum walking speed that is often mentioned in the literature
as 67 m/min or even higher [24-26]. Therefore, step counters
are less likely to produce accurate assessment for less mobile
geriatric population. Besides, they are deemed even less
effective in quantifying activities in stationary positions. Most
studies assess the accuracy of step counters by asking users to
walk on a treadmill, which neglects scenarios in which users
are stationary, yet pedometers accumulate step counts because
of movements in hand. To account for any movements
(stationary and ambulatory), this study calculates mean absolute
deviation (MAD) of accelerometer magnitude signal using
equation 2, Figure 2. MAD calculates the statistical dispersion
of acceleration from the mean and its unit is meter per second
squared,

where xi is the SM in each 10-second window, and the xave is
the average of accelerometer magnitude for 160 samples

(10-second epoch×16 Hz). MAD of accelerometer magnitude
represents the average magnitude of acceleration within an
interval (in this case, 10 seconds) and is proportionate to force
applied to the watch by patient since f=ma. This value multiplied
into displacement will produce relative work and energy. Take
into account that calculating displacement from acceleration,
however, is not very accurate because it is the result of
accelerometer’s double integration, that is, any acceleration
jitter accumulates and yields big drifts in displacement.
Calculating force, however, is accurate and proportionate to
energy; hence, the term energy has been used in this study to
quantify human activity movements.

Another way of quantifying activity is to integrate each

acceleration channel to produce kinetic energy using e=1/2m.v2.
This way, however, requires more calculations compared with
MAD; for the actual speed, each channel should be considered
separately so that the direction of acceleration and deceleration
that are removed in SM will be taken into account.

It is worth highlighting that by using a smartwatch
accelerometer, it is only possible to calculate the force,
proportionate to energy, that is spent on the watch. Hence, if a
patient is carrying a weight on the watch-worn hand, the energy
expenditure of the patient will not change with regard to the
watch.

Active/nonactive is determined in this study using an empirical

threshold of 0.02 m/s2 (2 cm/s2) over the MAD value. As
explained earlier, calculating displacement from the
accelerometer is not highly reliable. However, for illustrative
purposes, assume the initial speed of hand movement in each
window of 10 seconds is zero. Using equation 3 shown in Figure
2, the value 0.02 indicates that a patient’s hand displacement
has been 1 m in 10 seconds. In case of equal or greater shifts,
the patient is considered active, otherwise, idle (nonactive).

Figure 4 shows 10-second examples of acceleration SM of a
person. It illustrates the difference in walking, active and
nonactive stationary positions.

Table 1. Online watch classifier.

ROCc areaF-measureRecallPrecisionFPb rateTPa rateClass

0.9540.9840.9920.9770.0150.992Stationary

0.9920.9900.9850.9950.0080.985Walking

0.9290.9740.9880.9880.0110.988Weighted average

aTP: true positive.
bFP: false positive.
cROC: receiver operating characteristic.
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Table 2. Activity recognition: positioning.

F-measureRecallPrecisionAccuracyPosition

0.920.910.9491Stand

0.900.930.8793.7Sit

0.940.900.9790.8Lay

0.940.950.9295.1Walk

Figure 4. Magnitude of accelerometer signal after filtering (direct current component removed before filtering).

Methods

Overview
From June 2016 to November 2017, we recruited patients after
admission to a subacute rehabilitation center in Los Angeles.
We performed a cross-sectional baseline study of this cohort to
better understand data features collected by the SARP system.
We investigated the prevalence of physical activity tracking
features and indoor localization features at baseline for both
outcome groups (hospital vs long-term care). Moreover, we
assessed their efficacy in determining the outcome (hospital vs
long-term care).

Participants
Participants aged older than 60 years were recruited from a
subacute rehabilitation facility in Los Angeles. The study cohort
contains patients who had been admitted to a subacute
rehabilitation center for 21 days. After this period, patients were
either re-admitted to hospital (H) or stayed in community (C;
either at home or long-term care). The inclusion criteria were
broad, allowing any patient to participate as long as they were
aged older than 60 years, English speaking, and able to consent
with the exclusion criteria including movement disorders or
paralysis of the upper or lower extremity. The diversity of cohort

included patients who were a postsurgical, poststroke, and
postclinical decompensation because of medical illnesses.
Eligible participants signed a consent form approved by the
University of California, Los Angeles, Institutional Review
Board.

Study Design
Patients were given a smartwatch by a clinical coordinator every
morning at 9 am. Patients were asked to wear their watches at
all times until the coordinator collected the watch at around 6
pm every day. Watch batteries were expected to last longer than
the protocol period (>9 hours). Patients normally stayed in the
resident room (bedroom) and were scheduled for an hour of
daily exercise and activity in the therapy room. Beacons were
mounted at locations of interest (Table 3), shown with color
dots in Figure 1 within bedroom and therapy room. Take into
account that despite imposing an identical protocol for all
patients, daily collected data from each individual may differ.
This is primarily because of patients not complying with the
protocol at all times, losing interest during the day, feeling
uncomfortable, and getting concerned about their privacy.
Therefore, to provide a situation in which a fair comparison
among patients can be enforced, we determined analysis
inclusion criteria.

Table 3. Locations of interest. For sensor-based feature assessment throughout the paper, shower, toilet, and sink are considered as bathroom; walls
1, 2, and 3 as wall; beds 1 to 4 inside the therapy room and beds 1 and 2 inside the resident room as beds.

SublocationsLocation

Bed, chair, shower, toiletResident room

Bed, resband, bike, endorphine, strip, table, small table, hallway, seats, wall, hallway doors, sink, bathTherapy room
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Analysis Inclusion Criteria
For this baseline analysis, we included study participants who
satisfied the following constraints: (1) patients with 4 hours or
more of watch wear time data in at least 1 day within the first
3 days of admission (defined as baseline); and (2) having 15
min or more of therapy room wear time in that particular
baseline day. In case both inclusion criteria were satisfied on
more than 1 day, the earliest day was selected as baseline. The
reason for choosing 4 hours or more wear time was to set a
standard minimum; given the health of this population whom
mostly recently discharged from the hospital, we anticipated
variability in watch usage. To have a minimum standard, we
agreed that patients needed to wear the watch more than 50%
of the available hours per day (in this study, 8 hours).

The hours when the watch was not worn were excluded from
the study; therefore, baseline hours may not be consecutive.

Measures

Demographic and Clinical Characteristics
We collected the demographic characteristics of patients such
as age, race, gender, and ethnicity. We also translated the clinical
coordinator’s assessments including usage of assistive devices
and their type, measures of activity of daily living (ADL), pain
(yes/no), and number of active diagnosis (more or less than 10).
We investigated the significance of such characteristics in
distinguishing the outcome (community vs hospital).

Sensor-Based Parameters
Sensor-based features are combination of 3 groups of parameters
that are achieved by harnessing smartwatch and BLE beacons.
The features are based on (1) activity recognition such as sitting
time and standing time; (2) indoor localization, for example,
time in bed, time in bathroom, or therapy room; and (3) row
acceleration quantification, MAD (energy; see section Sensing
At-Risk Population System Overview). By combining these
attributes, we achieved features such as sitting time in bed or
energy spent in walking or in bed.

To perform a fair comparison among patients with different
watch wear time, we normalized features: time spent (minutes)
in a certain physical activity or location was divided by uptime
(the total watch wear time in a day in minutes) to yield
normalized time features. Uptime is an essential factor in
providing fair comparison

We investigated the significance of sensor-based features with
respect to the outcomes: hospital versus community. All
measurements are at baseline, that is, the day that satisfies
inclusion criteria from 9 am to 6 pm. We calculated “time spent
in percentage,” “energy intensity (E),” and “energy spent in
percentages,” as shown in equations 4, 5, and 6 in Figure 2.

To recap, for each individual, time-related features such as
sitting time were divided by uptime. Energy-related features
such as walking were divided by: (1) the uptime, yielding energy

intensity and (2) their total daily value, producing the energy
percentage.

Statistical Analysis
We explored the capability of baseline sensor-based and
demographic features to distinguish between subacute
rehabilitation patients based on their outcomes (ie, re-admitted
to hospital (H) vs staying in the community (C) either long-term
care or home). Chi-squared tests were used to compare
categorical demographic variables between outcome groups.
We compared quantitative demographic variables and
sensor-based metrics (physical activity derived from watch
accelerometer and indoor localization inferred from BLE
beacons RSSI) between groups using the Kruskal-Wallis test.
Cohen d was used to summarize the effect size and illustrate
the discriminatory power of each feature. Commonly, 0.2, 0.5,
and 0.8 are Cohen d cut-off values indicating small, medium,
and large effect size, respectively. Spearman rho was used to
measure correlations between physical activity and
location-based features.

Predictive Models of Outcome
We investigated the capability of features at baseline to triage
and predict patients who were re-admitted to the hospital or
who stayed in community. We built random forest models
(maximum depth=2, random state=40, and
class_weight=balanced), with hospital patients as positive group.
We used single or combination of features with highest statistical
significance in distinguishing outcomes according to
Kruskal-Wallis tests. Model generation and evaluating
performance characteristics (3-fold cross-validation) including
sensitivity, specificity, accuracy, and area under the curve
(AUC) estimation were performed using Python Programming
Language libraries Pandas (version 0.21.0) and Numpy (version
1.14.5), Scipy (version 1.0.0), and Scikit-learn (version 0.19.1)
[27-30].

Results

Demographic and Clinical Characteristics
From 184 consented subjects, 30 were excluded because of not
satisfying the analysis inclusion criteria. A total of 154 patients
were included in this study in which 145 (94.2%) of subjects
discharged home/community (C), and 9 (5.8%) re-admitted to
hospital (H) at the end of their rehabilitation process. Table 4
presents detailed sociodemographic and clinical characteristics
of this cohort, such as age, gender, race-ethnicity, presence of
pain, number of active diagnoses, usage of assistive devices,
and ADL. Table 4 indicates the mean (SD) and number of
patients included for every particular parameter. Among the
clinical assessments, Table 4 shows that ADL Toilet is
significant in determining the outcome (P=.007) with 65% of
the cohort in need of extensive assistance and 35% limited
assistance.
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Table 4. Sociodemographic and clinical characteristics of the cohort of 154 patients.

Community vs hospital
(P value)

HospitalCommunityParameter

—a9 (5.8)145 (94.2)Subjects, n (%)

.2484.22 (13.87)82.16 (9.55)Age (years), mean (SD)

.56Gender, n (%)

4 (44.4)104 (71.7)Female

5 (55.6)41 (28.3)Male

>.99Race/ethnicity, n (%)

0 (0.0)5 (3.4)Asian

0 (0.0)14 (9.7)Black/African American

0 (0.0)4 (2.7)Hispanic/Latino

0 (0.0)3 (2.1)Native/Hawaiian Pacific Islander

9 (100)119 (82.1)White

.92Pain present, n (%)

1 (14.3)44 (31.7)No

6 (85.7)95 (68.3)Yes

>.99Active diagnoses, n (%)

1 (11.1)22 (15.2)<10

8 (88.9)123 (84.8)≥10

.77ADLb transfer , n (%)

2 (22.2)65 (45.1)Limited assistance

7 (77.8)79 (54.9)Extensive assistance

.96ADL dress, n (%)

1 (11.1)32 (22.2)Limited assistance

8 (88.9)112 (77.8)Extensive assistance

.91ADL eat, n (%)

7 (77.8)128 (88.9)Independent

0 (0.0)4 (2.8)Supervision

1 (11.1)9 (6.2)Limited assistance

1 (11.1)3 (2.1)Extensive assistance

.007ADL toilet, n (%)c

1 (11.1)50 (34.7)Limited assistance

7 (77.8)94 (65.3)Extensive assistance

1 (11.1)0 (0.0)Total dependence

.73ADL walk room , n (%)

2 (22.2)73 (50.7)Limited assistance

5 (55.6)59 (41.0)Extensive assistance

2 (22.2)12 (8.3)Activity did not occur

.88ADL walk hall, n (%)

2 (22.2)73 (50.7)Limited assistance

6 (66.7)64 (44.4)Extensive assistance

0 (0.0)2 (1.4)Activity occurred only once or twice

1 (11.1)5 (3.5)Activity did not occur
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Community vs hospital
(P value)

HospitalCommunityParameter

.85ADL walk on unit, n (%)

0 (0.0)1 (0.7)Supervision

2 (22.2)71 (49.3)Limited assistance

7 (77.8)72 (50.0)Extensive assistance

.84ADL hygiene, n (%)

0 (0.0)2 (1.4)Supervision

2 (22.2)71 (49.3)Limited assistance

7 (77.8)71 (49.3)Extensive assistance

.61ADL bed, n (%)

0 (0.0)1 (0.7)Supervision

2 (22.2)83 (57.6)Limited assistance

7 (77.8)60 (41.7)Extensive assistance

.09Urinary continence, n (%)

4 (44.4)117 (81.2)Always continent

0 (0.0)4 (2.8)Occasionally incontinent

2 (22.2)8 (5.6)Frequently incontinent

3 (33.3)7 (4.8)Always incontinent

0 (0.0)8 (5.6)Not rated

.08Bowel continence, n (%)

5 (55.6)128 (88.9)Always continent

0 (0.0)3 (2.1)Occasionally incontinent

1 (11.1)7 (4.8)Frequently incontinent

3 (33.3)6 (4.2)Always incontinent

.97Assistive devices, n (%)

0 (0.0)1 (0.7)Walker

1 (14.3)5 (4.0)Wheelchair

6 (85.7)123 (94.6)Walker and wheelchair

0 (0.0)1 (0.7)Cane and wheelchair

aNot applicable.
bADL: activity daily living.
cParameters with P<.05.

Energy Intensity Features Assessment
Amongst sensory-based features shown in Figure 2, equations
(4-6), energy intensity features are the ratio of the total energy
spent in a particular activity or location to their corresponding
time spent. Taking into account, indoor localization capability
of SARP system enabled us to calculate the energy spent at each
location of interest, sum of which was broadly categorized into
(1) energy intensity in resident room and (2) energy intensity
in therapy room. According to Table 5, energy features that best

discriminated community and hospital patients were energy
intensity in resident room (P<.001, d=1.21), resident_bed
(P<.001, d=1.23), resident_bath (P=.004, d=1.18), and total
energy intensity (P=.003, d=0.87). Features such as energy
intensity of laying down (P=.02), and therapy_bathroom
(P=.02), despite statistical significance, have low effect sizes
(d=0.418 and d=0.17, respectively). Moreover, with P<.001
and d=1.25, energy intensity in resident room has high
discriminatory power with respect to outcome.
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Table 5. Sensor-based (activity and indoor localization) features: assessment according to outcomes.

Frequency (n)Effect sizeaP valueHospital, mean (SD)Community, mean (SD)Feature

HospitalCommunity

Energy % parameters

91451.24.0011.00 (1.29)2.37 (3.84)Activeb

91450.50.081.00 (1.29)2.37 (3.84)Walking

91451.24.00257.92 (6.39)59.70 (8.70)Standingb

91450.86.0213.33 (8.90)17.83 (9.69)Sittingb

91450.54.0427.73 (9.94)20.10 (6.43)Laying downb

Energy intensity parameters

91450.87.00335.85 (16.53)52.61 (18.23)Total energyb

91450.42.306.05 (8.02)11.94 (18.27)Active

91450.34.44366.45 (218.66)450.47 (253.08)Walking

91450.11.3282.27 (36.12)85.93 (26.92)Standing

91450.28.31156.19 (104.74)184.33 (97.58)Sitting

91450.418.0219.54 (7.35)26.23 (8.68)Laying downb

Energy intensity—therapy room

91450.04.3668.49 (63.56)70.75 (43.11)Energy therapy room

81140.17.0262.35 (83.54)74.84 (49.02)Bathroomb

2881.43.0613.03 (8.30)57.84 (42.33)Strip

4970.72.2739.09 (7.15)60.22 (40.27)Bed

61000.20.5775.73 (85.49)61.06 (43.10)Resband

2360.43.31120.58 (38.41)91.80 (76.82)Bike

014——c0.0 (0.0)98.39 (55.04)Scifit

03——0.0 (0.0)41.38 (6.74)Endor

3450.22.3865.46 (24.53)56.46 (48.92)Midstrip

3570.71.53148.47 (138.78)61.07 (40.37)Small table

056——0.0 (0.0)93.49 (66.75)Table

3430.32.8732.52 (7.89)42.58 (43.13)Hallway seats

08——0.0 (0.0)133.48 (128.07)Stairs

173—.1725.61 (0.0)57.07 (28.49)Wall

Energy intensity—resident room

91451.25<.00126.99 (6.05)43.32 (17.44)Energy resident roomb

91441.23<.00125.76 (4.37)43.93 (19.01)Bedb

91411.18.00432.50 (9.30)55.89 (27.95)Bathroomb

05——0.0 (0.0)42.45 (20.61)Chair

Time % parameters

91451.10.0016.94 (4.01)12.92 (6.52)Activeb

91450.44.090.15 (0.27)0.35 (0.51)Walking

91451.51<.00132.68 (7.30)44.22 (7.94)Standingb

91450.31.046.16 (7.36)8.60 (8.36)Sittingb
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Frequency (n)Effect sizeaP valueHospital, mean (SD)Community, mean (SD)Feature

HospitalCommunity

91451.35<.00160.99 (11.11)46.83 (9.83)Laying downb

Time spent %—therapy room

81140.27.160.06 (0.08)0.03 (0.04)Bathroom

2880.48.620.005 (0.002)0.01 (0.03)Strip

4970.43.640.55 (0.23)0.62 (0.19)Bed

61000.74.030.05 (0.03)0.02 (0.02)Resbandb

2360.80.510.01 (0.002)0.03 (0.03)Bike

014——0.0 (0.0)0.03 (0.02)Scifit

03——0.0 (0.0)0.009 (0.01)Endor

3450.49.310.02 (0.02)0.02 (0.02)Midstrip

3570.50.040.04 (0.02)0.02 (0.03)Small tableb

056——0.0 (0.0)0.06 (0.05)Table

3430.78.640.01 (0.16)0.006 (0.004)Hallway seats

08——0.0 (0.0)0.02 (0.04)Stairs

173—.980.01 (0.0)0.01 (0.02)Wall

Time spent %—resident room

91440.12.160.55 (0.23)0.62 (0.19)Bed

91410.52.920.25 (0.20)0.21 (0.17)Bathroom

05——0.0 (0.0)0.007 (0.03)Chair

aEffect sizes have been calculated as Cohen d.
bParameters with P<.05.
cNot applicable (the P value or effect size cannot be calculated).

Figure 5 depicts the energy intensity distributions between 2
groups in resident and therapy rooms. It shows that energy
intensity in therapy room in both groups has similar mean value
(line within the box); therefore, a clear distinction cannot be
made within 2 groups based on that feature. However, the mean
value of community group in resident room is clearly higher
than in hospital patients.

Kernel density estimation (KDE) distributions are shown in
Figure 6 (subplots A and D). The figure attests to the distinction
of energy intensity in resident room among community and
hospital patients (subplot A). However, the KDE of energy
intensity in therapy room (subplot D) does not indicate the same
discriminatory power. Figure 6 (subplot B) indicates that energy
intensity of most patients in therapy room is higher compared
with resident room for both outcome groups because most
patients fall below the identity line. Points shown on the identity
line represent patients with same therapy and resident intensities.

According to subplot (C), the center core of the contour plot
(representing most patients) in community group is almost
circular contrary to hospital patients. This indicates that the
ratio of resident to therapy intensity is closer to one (ie, same
activity intensities). On the contrary, more oval shape of the
contour core in hospital group can imply that most patients are
persistently more active during therapy sessions while being
less active in their resident room. The increase in energy levels
can be seen clearly in Figure 7. The figure depicts the ratio of
energy intensity in therapy room to resident room. Most patients
in hospital outcome group, demarcated by red line, fall around
number 2. In other words, therapy room energy intensity is
twice the resident room for most patients in hospital group.
However, 50 patients in community group (blue histogram)
have the ratio close to 1, that is, the same intensity in both
therapy and resident room. A more detailed scenario of both
groups within the therapy room can be found in Figure 8 and
Table 6.
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Figure 5. Energy intensity distribution.

Figure 6. Gauging energy intensity in community versus hospital.
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Figure 7. Distribution of patients spending energy in therapy room compared with resident room. X-axis indicates the ratio of energy in therapy to
resident room.

Figure 8. Time and energy intensity details of therapy room.

Average time spent and energy intensity at each therapy location
stratified by groups are shown in Figure 8. It is clear that hospital
group spent no time at stairs, scifit, table, and endorphine. The
5 most intensive activities were small table, stairs, scifit, table,
and bike. Small table and table are places where patient normally
carried out hand pedaling exercises. Table 6 further highlights
the details of therapy room location/facility usage in each group.
More than 70% of participants from both groups had used bed

and bathroom in therapy room, with bathroom ’s P<.05 (Table
5). However, it is worth mentioning that the effect size of
bathroom energy intensity is small: 0.17 (cut-off regions: 0.2
small, 0.5 medium, and 0.8 large). Furthermore, Figure 8 reveals
that both groups’ intensities at bed and bathroom were less than
60 per min. In a study by Razjouyan et al [8], a cutoff point of
90 is suggested to differentiate between light and
moderate-to-vigorous activities.
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Table 6. Frequency of therapy room location/facility usage by group.

Frequency of facility usageLocation/facility

Hospital, n (%)Community, n (%)

0 (0.0)14 (9.6)Scifit

0 (0.0)3 (2.1)Endor

0 (0.0)56 (38.6)Table

0 (0.0)8 (5.5)Stairs

7 (77.8)118 (81.4)Bed

2 (22.2)36 (24.8)Bike

3 (33.3)45 (31.0)Midstrip

3 (33.3)57 (39.3)Small table

9 (100.0)114 (78.6)Bathrooma

7 (77.8)100 (69.0)Resband

3 (33.3)43 (29.7)Hallway seat

3 (33.3)88 (60.7)Strip

aParameters with P<.05.

Figure 9 illustrates Spearman correlations among features.
According to annotations explained in the Features section, E
indicates energy intensity, E% denotes energy percentage, and
T% shows the percentage of time spent. Circles, contrary to
ovals, correspond to low correlation, whereas lines imply the
highest correlation. Darker spectrum on either side (red or blue)
represents higher correlation; red implies positive, whereas blue
is indicative of negative correlation. It is clear from the figure
that laying down is negatively correlated with the rest of the
features. Bath and bed in resident room are understandably
correlated strongly with energy spent in resident room because
almost all activities happened in those 2 locations, and patients
hardly used the chair. Bed, bath, resband, small table, bike, and
scifit are strongly correlated with energy spent in therapy room.
It is clear that being active is highly correlated with overall
energy intensity. Resident room energy intensity is strongly
correlated with overall energy intensity.

Energy Percentage Features Assessment
Energy percentage feature, as mentioned in Figure 2, is the
percentage of energy spent in walking, sitting, standing, laying,
or energy spent in locations of interest divided by total energy
spent in that day. According to Table 5, community patients are
more active (P=.001, d=1.24) than patients re-admitted to the
hospital. Meanwhile, energy percentage of standing (P=.002,
d=1.24) and sitting (P=.02, d=0.86) of the community group is
higher than those in hospital group. Other than walking, all
energy percentage parameters were shown significant in
distinguishing between both groups. Walking is not significant

in distinguishing the outcome: Energy (%) in walking (P=.08,
d=0.50) and energy intensity during walking (P=.44, d=0.34).

Time Features Assessment
According to Table 5, standing time (%) has the strongest
discriminatory power (P<.001, d=1.51) among all watch-derived
parameters. Community group has higher time percentage in
laying down (P<.001, d=1.35) and active state (P=.001, d=1.24)
compared with hospital group. Despite statistical significance
of sitting time (%), its effect size is between small and medium
(P=.04, d=0.31). Walking time was quite negligible (<1% of
time for both groups with P=.09, d=0.44), whereas overall active
state, which captures walking and stationary active periods, was
highly significant (P=.001, d=1.10). As shown in the table, none
of the time (%) parameters in resident room have the ability to
discriminate between the 2 outcome groups.

Performance of Predictive Models at Baseline
Random forest models were built based on the most statistically
significant features. In reviewing Table 4, the top 3 most
influential features in distinguishing the outcomes were %
standing time (P<.001, d=1.51), % laying down time (P<.001,
d=1.35), and resident room energy intensity (P<.001, d=1.25).
Results of 3-fold cross-validation models with their
corresponding AUC score are presented in Table 7. Take into
account that the sensitivity (recall) presented in the table is not
the weighted average and reflects only recall of minority (H)
group. Specificity indicates the true negative rate when negative
group is comprised most patients returning to community setting
(C) after the rehabilitation period.
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Figure 9. Correlations among sensor-based features. Asterisk indicates parameters with P<.05.

Table 7. Predictive models: 3-fold cross-validation (community, n=48; hospital, n=3).

AUCb, mean (SD)Accuracy, mean (SD)aSpecificity, mean (SD)aSensitivity, mean (SD)aFeatures

0.62 (0.06)71.4 (12.9)74.4 (15.3)22.2 (31.4)Standing time (%)

0.70 (0.10)86.4 (1.5)91.0 (0.9)11.1 (15.7)Standing time (%), laying down time (%)

0.85 (0.09)85.1 (5.5)87.6 (4.3)44.4 (41.6)Standing time (%), laying down time (%),
resident room energy intensity (%)

0.84 (0.10)74.7 (7.3)74.5 (8.5)77.7 (15.7)Resident room energy intensity

aMean (SD) reported for the validation datasets based on a 3-fold cross-validation. Mean and SD are calculated across all 3 folds.
bAUC: area under the curve.

Discussion

To our knowledge, this is the first study that has combined
indoor localization and accelerometer-based physical activity
recognition to assess older patients. A subset of indoor location
and physical activity features were found to be highly correlated
with the outcomes (community vs hospital re-admission) at
baseline. In this section, we discuss the significant highlights
of the result.

Steps Versus Raw Acceleration Signal
Interestingly, walking, a known distinctive parameter in
assessing physical functional performance in certain older

populations [8], did not yield significance in this study. In
populations that are frail, similar to that in subacute
rehabilitation, only a negligible amount of time is spent walking
(<1% of daily activity). This suggests that in these populations,
steps counters may not necessarily be the best way to quantify
active state [24,25]. It would be best to prepare for the stark
reality that geriatric population may not be active enough to
assess their well-being or infer their independence only based
on step counts or by monitoring their walking. A combination
of activity features that includes both wearable sensor and
stationary beacons that provide corresponding indoor
localizations could be a stronger indicator of their general
well-being and/or frailty. Moreover, the use of raw acceleration
signals to quantify energy intensity allows us to capture even
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small movements, the movements that may not trigger step
counters but still indicate some level of activity. Let us consider
an example in which we considered energy spent rather than
steps: compared with community, hospital patients show higher
percentage of energy while laying down (P=.39, d=0.54). They
also spent more overall time (%) in that position (60.99)
compared with 46.83 for community patients. However, energy
intensity of community patients is higher than hospital patients
(26.23 vs 19.54). This indicates that community patients have
been more active while lying down. Being more active while
lying down may be the result of turning in bed; hence, this
feature may denote higher ability to move in community
patients. In this scenario, as discussed earlier, step counters will
not produce reliable results to quantify patients’ activity levels.

Activity With Therapist Versus Resident Time Alone
One interesting aspect of this study was to investigate the
activity while a patient is with a physical therapist versus activity
during the other hours of the day. It did not appear that a clear
distinction could be made between different outcome groups
based on therapy room energy intensity. This could be because
all patients during therapy sessions are engaged by the therapist
in similar physical activities following set protocols. However,
the energy intensity of resident room was distinctive within
outcome groups.

Value of Indoor Localization Data
To assess the value of indoor localization in activity tracking,
it would be best to highlight some of the scenarios: according
to Table 4, among clinical characteristic assessment, ADL toilet
(P=.007) was the most significant feature in determining the
outcome. This feature corresponds to the watch-derived feature
energy intensity in resident bathroom. With P=.004 and effect
size of d=1.18, energy intensity in resident room (achieved from
indoor localization) hence confirms the clinical finding and can
be considered in the absence of ADL evaluations. In other
words, ADL variant, a highly significant clinical feature, can
be replicated using combination of indoor localization and
activity/energy derivations.

Both group energy intensities at bed and bath were less than 60
per min. In the study by Razjouyan et al [8], authors use a cutoff
point of 90 to differentiate between light and
moderate-to-vigorous activities. On the basis of that, given the
intensity in both bathroom and bed for either of the groups, we
can conclude that patients performed light activities in those
locations.

None of the patients in hospital outcome group used therapy
room toilet/bathroom. It is likely that those patients were not
capable enough to perform such exercises or even not advised
by clinicians/nurses to do so to prevent injury. Either way, the
lack of performing an activity, in this case, information extracted
from indoor localization data, could be an early indication of
which group a patient belongs to; it could also potentially be
used to identify adverse outcomes and proactively address to
prevent a negative outcome.

Predictive Analysis: Statistically Significant Features
P value as statistical significance or strength of evidence index
has long been a subject of debate [31,32]. It is very crucial to
know that the P value is not a definite test; increasing more
attributes significantly correlated with the outcome variable in
a predictive model does not necessarily yield higher
predictability. Although statistical significance index and its
effect size provide a standard exploratory data analysis and
perhaps a good informal heuristic for choosing attributes of a
prediction model, machine learning practice has more freedom
from model assumptions. This study shows that the addition of
significant variants did not increase predictive power and the
model with only energy intensity in resident room produced the
highest recall of minority class (hospital outcome) and overall
AUC (0.84).

Considering only the prediction results, we can infer that
location data add value to our system. It is apparent that energy
intensity in resident room is the most decisive feature in
predicting the outcome.

Limitations and Future Research
Activity classification can best be obtained using a series of
motion sensors placed on various parts of the body. Thus, a
wide range of activities can be captured as most body motions
are detected. However, to simplify the activity detection, using
single motion sensors is quite popular. Placing an accelerometer
on the hip has been one of the most popular methods because
it captures almost all human motions; however, it underestimates
the arm ergometry, as it cannot fully extract the arm movements
[33]. Wrist-worn accelerometers are popular because of their
ease of use, water resistance in most brands, and capturing a
comprehensive set of activities. However, interpreting their data
for certain sedentary activities such as sitting, standing, and
laying is rather challenging, in that, hand movements are very
similar in those scenarios. Although ambulation detection is
evident in most cases, error rates of classification increase when
using assistive devices, walking in very low speed, carrying a
weight with the hand that is not wearing the watch, or doing
activities involving hand and feet movement together such as
sweeping [15,33,34].

Patients’ compliance with wearing a smartwatch was the main
challenge of this study, and we expect it to be a generic obstacle
in similar studies that aim to harness wearable technology for
patients. Moreover, if the target population is less familiar with
new forms of technology such as wearable devices, the
compliance issue might become even more crucial. In this study,
we recruited 184 patients, of which 30 patients were excluded
for not satisfying the analysis inclusion criteria (watch wear
time constraint). Our baseline analyses revealed that 50% of
patients removed their watches before the study coordinator
collects them at the end of the 8 hours.

Dealing with medical datasets is rather challenging in that the
datasets predominantly consist of normal cases in addition to
minority abnormal instances that deem to be more interesting
[35]. Many attempts have been made to overcome the obstacle
of the normal and abnormal samples known as imbalanced
datasets. There exist approaches to improve the performance

JMIR Mhealth Uhealth 2019 | vol. 7 | iss. 7 | e14090 | p. 16http://mhealth.jmir.org/2019/7/e14090/
(page number not for citation purposes)

Ramezani et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of predictive models by oversampling and/or undersampling
the dominant and abnormal instances [36-38]. In our study
cohort, the 2 outcome categories are not equally represented,
making the dataset imbalanced. In the future, we aim to further
investigate the use of oversampling and undersampling of our
dataset as methods that perhaps are not very conventional in
the medical field but can possibly improve the predictability of
our models.

Next step would be the longitudinal analysis on the same study
cohort over the 21-day period they were admitted to the same
rehabilitation center. This will allow us to track the trends in
sensor feature values and investigate if their changes mimic the
daily assessment change performed by clinicians. The result
can allow development of models of early frailty detection or
producing intervention alerts.

Conclusions
Despite the evolution of eHealth and mobile health (mHealth)
and the emerging role of wearable and mobile technology in
new platforms of health care, there are anecdotal claims that
wearable technology may not precisely quantify patients’health
[39]. In this study, we showed that wearable technology,
equipped with refined physical activity tracking algorithms, in
our case, tailored for geriatrics, can result in a better
understanding of patients and hopefully pave the way in
developing intervention alerts and approaches. We discussed
how SARP features provide a clearer storyline of daily activity
patterns by merging indoor localization with physical activities.
The SARP system can be incorporated into mHealth technology
platforms and can provide a more objective assessment of the
frail population.
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