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Abstract

Background: The 6-min walk test (6MWT) is a convenient method for assessing functional capacity in patients with
cardiopulmonary conditions. It is usually performed in the context of a hospital clinic and thus requires the involvement of hospital
staff and facilities, with their associated costs.

Objective: This study aimed to develop a mobile phone–based system that allows patients to perform the 6MWT in the
community.

Methods: We developed 2 algorithms to compute the distance walked during a 6MWT using sensors embedded in a mobile
phone. One algorithm makes use of the global positioning system to track the location of the phone when outdoors and hence
computes the distance travelled. The other algorithm is meant to be used indoors and exploits the inertial sensors built into the
phone to detect U-turns when patients walk back and forth along a corridor of fixed length. We included these algorithms in a
mobile phone app, integrated with wireless pulse oximeters and a back-end server. We performed Bland-Altman analysis of the
difference between the distances estimated by the phone and by a reference trundle wheel on 49 indoor tests and 30 outdoor tests,
with 11 different mobile phones (both Apple iOS and Google Android operating systems). We also assessed usability aspects
related to the app in a discussion group with patients and clinicians using a technology acceptance model to guide discussion.

Results: The mean difference between the mobile phone-estimated distances and the reference values was −2.013 m (SD 7.84
m) for the indoor algorithm and −0.80 m (SD 18.56 m) for the outdoor algorithm. The absolute maximum difference was, in both
cases, below the clinically significant threshold. A total of 2 pulmonary hypertension patients, 1 cardiologist, 2 physiologists,
and 1 nurse took part in the discussion group, where issues arising from the use of the 6MWT in hospital were identified. The
app was demonstrated to be usable, and the 2 patients were keen to use it in the long term.

Conclusions: The system described in this paper allows patients to perform the 6MWT at a place of their convenience. In
addition, the use of pulse oximetry allows more information to be generated about the patient’s health status and, possibly, be
more relevant to the real-life impact of their condition. Preliminary assessment has shown that the developed 6MWT app is highly
accurate and well accepted by its users. Further tests are needed to assess its clinical value.

(JMIR Mhealth Uhealth 2020;8(1):e13756) doi: 10.2196/13756
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Introduction

Background
The 6-min walk test (6MWT) is a common clinical instrument
for assessing patients’ functional capacity. It consists of
instructing patients to walk as far as they can during 6 min,
usually in a corridor [1], under the observation of a doctor or a
physiologist. The primary measurement of the test is the total
distance walked, computed as the total number of lengths or
laps walked plus the excess distance measured with a trundle
wheel, a measuring tape, or with marks along the corridor.
Secondary measures can include fatigue and dyspnea, measured
with a modified Borg or analogue scale and peripheral arterial
oxygen saturation via pulse oximetry. The 6MWT is self-paced,
and patients are unlikely to push themselves beyond their
endurance or through musculoskeletal pain. The test is easy to
administer, well tolerated, and reflects activities of daily living
better than other walk tests [2].

The walked distance reflects exercise capacity determined by
maximal cardiopulmonary exercise testing in patients with
cardiopulmonary conditions and has a strong association with
mortality in primary pulmonary hypertension [3], heart failure
[4], and chronic obstructive pulmonary disease (COPD) [5].
The test is also used for assessing the effect of therapies such
as pulmonary rehabilitation, oxygen therapy, long‐term use
of inhaled corticosteroids, and lung volume reduction surgery
[6]. In the interpretation of the results, a change in walking
distance of more than 50 m is usually considered clinically
significant in most disease states [6].

Although the test is easy to perform, it involves costs and some
practical limitations. To start with, it requires a dedicated
corridor in the hospital, of length between 30 m and 50 m and
no shorter than 15 m [7]. It also requires a physiologist to
observe the test and to note down the measurements. Patients
need to get to the hospital clinic where the test is performed,
sometimes from a long distance, with associated costs of
transport and the accompanying stress for the patient. Owing
to these limitations, the 6MWT cannot be performed very often.
For example, pulmonary hypertension patients are invited to
perform a test every 3 to 6 months only [8].

With the advent of affordable digital devices and mobile phones,
it becomes possible to perform the test in (or near) the patient’s
home, using sensors such as accelerometers or the global
positioning system (GPS) to estimate the distance walked.

Objectives
In this paper, we present a mobile phone app which enables
patients to perform the 6MWT on their own, at their convenience
or in the hospital setting, while augmenting the information
collected during the test using off-the-shelf portable pulse
oximeters.

Related Work
The walked distance can be obtained using satellite positioning
systems when outdoors and with inertial sensors when indoor.

Positioning systems like GPS are already widely used for
estimating distance in the automotive sector. Modern GPS

receivers provide a signal which is the result of heavy processing
and is usually improved and smoothed with well-known
techniques [9]. When used with human beings, these systems
are known to introduce some error because of the inherent noise
that exists in the GPS system and the lower distances travelled
[10-12]. Nonetheless, the error is such that it has been
considered negligible in previous work when GPS has been
applied to estimate distance walked in the 6MWT [13]. As most
algorithms used by GPS devices are proprietary, there is a lack
of the literature describing how to derive the distance from the
raw positions, except for the obvious computation of the distance
between the first and the last received positions [12].

With regard to the indoor scenario, there is rich literature related
to gait analysis with accelerometers [14-17]. From gait analysis,
it is possible to compute the number of steps, which, once
multiplied by the length of the step, would provide the distance
walked.

In a study by Schimpl et al [18], 12 different algorithms for
extracting human speed (and thus distance walked) from
accelerometer data were explored. Some proposed algorithms
make use of the step length as an input, whereas others rely
purely on the accelerometry. From a validation against data
recordings obtained from 17 subjects walking at different speeds,
the authors found that the best performing algorithm was a
support vector regression algorithm that was previously trained
on an independent dataset recorded from 15 subjects who
participated in 3 outdoor data collection activities. A similar
approach was also followed in a study by Cheng et al [19] but
using a mobile phone instead of a dedicated sensor. Data were
processed in both the time and frequency domains, and 8 gait
parameters were extracted as the inputs to a support vector
regression model to estimate gait speed. The approach was
validated with 6 COPD patients and 6 healthy subjects
performing a 6MWT. These machine learning approaches,
although accurate, rely heavily on the training data, and may
be biased toward the walking style adopted during the data
acquisition or the actual devices used.

Gait analysis–based approaches have also been used for the
6MWT. For example, in a study by Schulte et al [20], a
telemonitoring system for 6MWT based on body-worn
accelerometers was proposed. A simple step-detection algorithm
was employed and combined with patient height data to estimate
the distance walked. A more sophisticated approach was taken
by Capela et al [21,22]; they used a mobile phone app to count
steps and identify when the user turns while walking back and
forth along a corridor. As the distance walked between U-turns
is fixed, it is possible to estimate the step length and, thus, the
residual distance walked after the last U-turn by multiplying
the number of steps by the stride length. The algorithm uses the
azimuth signal provided by Blackberry phones, which is, in
turn, estimated from the gyroscope and the magnetometer
sensors. Some corrections are introduced to this signal to smooth
sudden variations, for example, detecting a turn if the signal
changes by more than 100° in 3 seconds. The approach was
validated with 15 volunteers and led to less than 1 m average
error.
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In addition to research papers, it is also worth mentioning the
Apple Research Kit, an open-source software framework that
allows developers to build mobile health (mHealth) apps with
a set of already implemented use-cases. One of these use-cases
is the timed walk, which can be used to implement the 6MWT.
The timed walk activity estimation has already been used in a
few studies [23,24], even though the accuracy of the algorithm
used to estimate the distance, based on the Core Motion
framework, is not publicly disclosed. In a recent study [25],
after having used Core Motion for 6MWT with peripheral artery
disease (PAD) patients, authors concluded that “the iPhone’s
built-in distance algorithm is unable to accurately measure
distance, suggesting that custom algorithms are necessary for
using iPhones as a platform for monitoring distance walked in
PAD patients.”

Methods

System Design
Our system was co-designed by a team of engineers,
cardiologists, physiologists, and patients in a set of discussion
groups [26], which were part of our Patient and Public
Involvement in research strategy [27]. The team focused mainly
on patients with pulmonary hypertension, especially because
they are treated with pulmonary vasodilator therapies, which
are expensive, and uptitration of these depends partly on the
results of the 6MWT [28]. There are many types of pulmonary
hypertension including idiopathic, chronic thromboembolic,
secondary to congenital heart disease, secondary to respiratory,
or cardiac disease [29], and therefore, the demographics of the
patients can be diverse, for example, patients with congenital
heart disease have different characteristics compared with
patients with interstitial lung disease. The research team decided
to recruit adults, without learning difficulties, who were familiar
with mobile phones. Patients had to be able to walk
independently and were not using oxygen therapy.

It was also decided to make use of patients’own phones, instead
of providing them with dedicated ones. This was because we
hypothesized that users would prefer using the devices with
which they are familiar; however, this meant that both Android
and iPhones had to be supported. This decision also allowed us
to collect information about free-living physical activity, as
gathered by the phone’s sensors or any wearable connected to
it.

Given that these patients can desaturate significantly during
exertion, it was decided to acquire pulse oximetry data during
the 6MWT with a wireless sensor attached to the patient’s finger.
To complement the observations made by the physiologist with
these data, the mobile phone also had to be used during the test
at the hospital. In addition, the clinician responsible for the
patient’s care, in this case the cardiologist, had to be given an
interface to review all the patient’s data collected by the system.

To summarize these requirements, the following use-cases were
identified:

1. A patient performs the 6MWT in the hospital, while being
monitored by a mobile phone app.

2. A physiologist supervising the 6MWT enters the observed
outcomes on a tablet computer.

3. A patient performs the 6MWT outdoors, in a place of their
choice.

4. A patient sends their physical activity data, as measured by
passive monitors and activity trackers over the duration of
a week.

5. A clinician reviews patient’s data on a website.

To support the abovementioned use-cases, we designed the
client-server architecture shown in Figure 1.

The server includes a database and a website to collect patient
data to be subsequently reviewed by clinicians. Physiologists
can use a tablet computer with an app that allows them to review
patients’ information and report the results of the 6MWT. The
app also allows connection to a wireless pulse oximeter to
retrieve peripheral arterial oxygen saturation (SpO2) and heart
rate values, while the patient is performing the test.

Patients are provided with a mobile phone app, downloaded
onto their phones, which allows both indoor and outdoor 6MWT.
The indoor test is performed on a walkway of a known length,
for example, in a hospital clinic. The outdoor test can be
performed in any place where there is a GPS signal of sufficient
strength. At the end of each test, the data are sent to the server
to be reviewed by clinicians. Patients can also send data about
passive activity monitoring using HealthKit for iOS and Google
Fit for Android. These can compute steps and activity through
either mobile phone sensors or other connected apps.

Patient data are protected by means of well-established
techniques, that is, users are authenticated with a username and
password, and data are transmitted over an http encrypted
channel.
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Figure 1. Architecture of the 6-min walk test (6MWT) system. It includes 4 scenarios: (a) 6MWT at home, where patients perform a 6MWT in their
home setting using their mobile phone with the app and a wireless pulse oximeter; (b) 6MWT in the hospital, where patients perform the test while
being observed by a physician and with pulse oximetry data being collected through a tablet app; (c) activity tracking data retrieved by Google Fit or
HealthKit transmitted for subsequent analysis; (d) data review performed by a physician through a Web interface.

Distance Estimation
To compute the distance walked, we developed and tested 2
algorithms: one for the indoor scenario and one for the outdoor
scenario.

The accuracy of the algorithms was estimated by performing a
set of indoor and outdoor 6MWTs, with the app running on a
mobile phone held in one hand and a trundle wheel held in the
other hand. Different types of walking styles (from slow to fast),
path curviness (from straight to U-turns), and hand shakiness
(from still to slightly shaky) were simulated.

Most tests were executed by researchers in lab settings; however,
to fine tune the indoor algorithm in real-life conditions, we also
asked some patients to hold the mobile phone while performing
the 6MWT during a regular clinic visit. Only the distance and
an approximate age range were collected.

Accuracy was calculated using the mean, median, and standard
deviation of the difference between the reference values and
the outputs from our algorithm; the mean, standard deviation,
minimum and maximum of the absolute difference; and the
Pearson correlation between estimated values and the reference
values. In addition, Bland-Altman plots were also generated.

Details about the algorithms are provided as follows.

Indoor Distance Estimation Algorithm
We tried to implement the algorithm described by Capela et al
[22], but, possibly as we employed a different operating system,

or possibly because of the lack of details in the paper, our
implementation was not capable of detecting any U-turn. We
therefore decided to develop a new approach.

The underlying concept is to detect changes of 180° in the
mobile phone azimuth signal (an example of such a signal is
shown is Figure 2). To this end, we made use of the virtual
compass provided by the Android and iOS programming
interfaces, which computes the azimuth by combining the signals
provided by the accelerometer and the magnetometer. The result
of this estimation may lead to some distortions and inaccuracies
but, given that we are only interested in large changes in the
azimuth signal, these are mostly negligible. One exception is
the fact that the maximum amplitude of the signal, on which
the algorithm relies, may be less than 360°. To account for this,
the algorithm requires a simple calibration phase, in which users
are asked to execute a 360° turn with the mobile phone in one
hand, so that the minimum and maximum azimuths are captured.

After calibration, samples of the compass signal are acquired
every 500 ms. If the current sample is more than min_turn_time
milliseconds away from either the start of the test or the latest
detected U-turn, the sample is compared against past samples
collected in a buffer. If the minimum difference between the
angles of any of those samples is less than a predetermined
threshold, then a U-turn is detected.

The parameters to be optimized in this algorithm are
min_turn_time, the length of the buffer, and the threshold, which
is set to be 35% of the difference between the maximum and
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the minimum values observed during the calibration. As for the
min_turn_time, it is given an initial value of 10 seconds, and
then adapted to the actual walking speed of the patient; each
time a U-turn is detected, min_turn_time is updated to be the
minimum observed time needed to complete a lap, minus 20%.
If min_turn_time is such that the speed of the patient would be
more than 2 m/s, it is capped. The length of the buffer is
initialized to contain 4 seconds’ worth of samples. This number
of seconds is then updated, every time a U-turn is detected, to
half of min_turn_time, but capped at 5 seconds.

Once U-turns are detected, the walked distance is computed by
multiplying the number of U-turns by the length of the lap. Any

residual time between the last U-turn and the end of the test is
accounted for by multiplying it by the median of the detected
times between U-turns.

If a step counter is available, it is used to improve the residual
distance estimation. Specifically, instead of using the median
between U-turns completion time, the average step length (ie,
the total distance divided by the total number of steps up to the
last U-turn) is multiplied by the residual number of steps since
the last U-turn.

The source code of the algorithm is provided in the Multimedia
Appendix 1.

Figure 2. Example of mobile phone azimuth signal. The first seconds show the calibration phase, after which U-turns are detected when the difference
between near angles becomes greater than the set threshold within a short time window.

Outdoor Distance Estimation Algorithm
The outdoor algorithm works by using the localization
information provided by the GPS system embedded in the phone
(an example is shown in Figure 3). The principle is based on
down-sampling the positioning signal, calculating the as the
crow flies distance between each sample and summing up the
distances thus obtained. Down-sampling is used as a strategy
to reduce the noise contained in the signal, but instead of simply
taking a sample every x seconds, we adopted a more
sophisticated approach.

As the mobile phone GPS system needs some time to be fully
connected, we let the user wait until a good signal is available.
Both Android and iOS operating systems provide an error
estimation for each positioning sample, based on the number
of visible satellites. We experimentally observed in lab tests
that an error lower than 15 m indicates that the GPS system has
found enough satellites to localize the phone and, likely, the
error would decrease further. If the error does not decrease
below 15 m within 2 min after the start, the test is flagged as
possibly affected by low accuracy.

After this simple signal quality step, positioning samples start
to be collected. Every selection_period seconds, the algorithm
selects the sample with the lowest estimated error within those

available within the last 25% of selection_period. Once a sample
has been selected, the distance between the previous selected
sample and the newly selected one is computed and added to
the total.

The selection_period parameter needs to be optimized. A faster
sampling period will allow more samples to be used and
therefore more noise to be accounted for in the distance
estimation. A longer period is problematic if the path walked
by the user is not straight (in a perfectly straight path, in fact,
just the first and the last sample would suffice). To optimize
this parameter, we computed the mean and maximum distance
estimation error using the tracks acquired during our tests and
varying selection_period from 0 second to 20 seconds with 1-
seconds steps. The value that minimizes both mean and
maximum error is 5 seconds, as shown in Figure 4.

If step counting is available, we use it to exclude samples for
which the number of steps does not increase. For example, a
perfectly still mobile phone will produce positioning samples
with jitter around them because of noise, and the algorithm will
sum up the distances between them. By using the step counter,
it is possible to identify when the user is still, thus not
accumulating those erroneous distances.

The source code of the algorithm is provided in the Multimedia
Appendix 2.
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Figure 3. Example of a positioning trace (in red) retrieved from the mobile phone. The walking man figure indicates the starting point of the test; the
flag indicates its end. Comparing the trace with the underlying picture shows that the position is sometimes affected by an error, for example, near tall
buildings which reflect the signal or because of trees obscuring the global positioning system satellite’s signal.

Figure 4. Maximum and mean error of the distance estimation versus the sampling period of the localization signal selection_period computed on all
available tests. The 5 seconds value minimizes both mean and maximum error.

User Aspects
To understand user aspects such as the usability and technology
acceptance of our system, we organized a discussion group to
collaboratively analyze one of the first prototypes that had been

developed. Different types of stakeholders were invited to the
group including patients, physiologists, physicians, and
engineers. Participants were informed that the outcomes of the
discussion could be used for scientific publications, and patients
were required to sign an informed consent form.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 1 | e13756 | p. 6https://mhealth.jmir.org/2020/1/e13756
(page number not for citation purposes)

Salvi et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


To structure the content of the discussion group, we used the
mHealth technology acceptance model form [30], which
integrates common technology acceptance and health behavior
theories. The model includes 8 constructs: response efficacy,
perceived ease of use, subjective norm, response cost,
self-efficacy, perceived vulnerability, perceived severity, and
intention to adopt. Of these, we selected perceived ease of use,
response cost, self-efficacy, response efficacy, perceived
vulnerability, and intention to adopt as the most appropriate to
our project and stage of development.

The discussion group was led by one researcher, who explained
the system and its capabilities and asked the attendees questions.
The content was split into 5 parts. In the first part, 2 questions
were asked to understand what the current limitations and needs
were in relation to a conventional 6MWT:

• Q1. What are the most annoying things about the 6MWT
as it is done now?

• Q2. How does the test compare with your normal level of
fitness; do the test’s results adequately reflect the way you
feel?

After a discussion of the answers to these 2 questions, a general
presentation of the system was given (part 2), after which, other
questions were asked about the overall concept (part 3):

• Q3. What do you think are the advantages of the system
you have just seen?

• Q4. What are the disadvantages?

The fourth part of the discussion consisted in letting patients
download the app on their phone and use it in a test run, while
the research team recorded difficulties, technical issues, and
general comments.

Finally, in part 5, a further set of questions were asked about
usability and acceptance:

• Q5. Do you find the system easy to use?
• Q6. Would you suggest any changes to it?
• Q7. Do you see yourself performing the test at home?
• Q8. Would you need someone to help you?
• Q9. Would you use the indoor or the outdoor test?
• Q10. How often do you think you will be doing it?
• Q11. Do you see yourself using the app in the long term (2

years or more)?

These questions were mapped to the constructs under analysis
as follows: perceived ease of use: Q5, self-efficacy: Q7 and Q8,
response cost: Q4, response efficacy: Q3, perceived
vulnerability: Q1 and Q2, intention to adopt: Q9, Q10, and Q11.

The discussion was audio-recorded for later analysis.

Results

System Design
We developed 2 apps, 1 for the patient and 1 for the
physiologist, as well as a server for the back-end system.

Having decided to use the patients’ own mobile phones, we
needed to support both Android and iOS operating systems. We
therefore implemented the patients’ app using the Apache
Cordova framework. In addition to Cordova, the app makes use
of the Ionic framework (first version), which uses Angular as
the front-end JavaScript framework.

To retrieve the data about passive monitoring, we connected
the app to Google Fit on Android and HealthKit on iOS. Both
systems provide an aggregator for wearables and fitness apps
and are able to compute steps and basic activity recognition
(still, walking, running, and on a vehicle) relying on the mobile
phone’s sensors.

For ambulatory pulse oximetry, we chose the Nonin WristOx
(only compatible with Android) and Creative Medical PC68B
(compatible with both Android and iOS) because they are
wrist-worn, with a finger probe, and because of their Bluetooth
wireless connectivity.

The outdoor 6MWT use-case is shown in Figure 5: the patient
triggers a new test on the mobile phone’s home screen; the app
shows suggestions on how to perform the test in the best
conditions, then waits for the pulse oximeter to be connected,
and records a baseline measurement of heart rate and oxygen
saturation at rest. The patient is then invited to walk for 6 min,
during which the walked distance estimation and a timer are
shown. The patient is allowed to pause or cancel the test at any
point. At the end of the 6-min period, the patient is again invited
to rest, while recovery heart rate and oxygen saturation are
measured. Finally, the patient answers the Borg scale question
and can add some general comments. During the test, the app
also retrieves the local weather information from a Web-based
service. This is used to explore the relationship between
compliance or exertion levels and weather.

The server system consists of a nonrelational database
(ArangoDB), a REST API developed with Nodejs, and a
front-end website developed with Angular. The Web interface
(Figure 6) allows physiologists and doctors to manage users,
enter the results of a hospital 6MWT, review the data produced
both by the app and hospital tests, and analyze trends for each
patient. The physiologists’ app is a Cordova app that uses the
same front-end code as used for the server with some
modifications to allow the data to be retrieved from wireless
pulse oximeters.
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Figure 5. Screenshots of the patients’ app. (a) Home page, (b) instructions about how to perform the test, (c) connection to the pulse oximeter and
baseline measurements at rest, (d) estimation of the distance during walk, (e) total distance estimation and recovery at rest, (f) Borg scale questionnaire.
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Figure 6. Screenshots of the server Web interface. (a) The form physiologists fill in when observing a 6-min walk test (6MWT), (b) an example of an
outdoor 6MWT results (heart rate and oxygen saturation charts are omitted).

Distance Estimation
A total of 79 indoor and outdoor tests were performed. Lab tests
were undertaken by researchers, all males, aged 30, 33, and 37.
The distance estimated in regular 6MWT clinics was collected
18 times from both male and female volunteers and with an age
span of 15 to 85 years.

The accuracy of the algorithm is reported separately for the
indoor and outdoor scenarios.

Accuracy of the Indoor Algorithm
The accuracy of the indoor algorithm was estimated using results
from 49 tests. The characteristics of the tests are shown in Table
1.

The difference between the algorithm’s estimates and the
measurements taken from the trundle wheel are summarized in
Table 2, with the Bland-Altman plot shown in Figure 7.
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Table 1. Summary characteristics of the indoor tests.

ValueCharacteristics

49Number of tests

11Number of different phones tested

381.79 (103.90)Walked distance measured by trundle wheel (m), mean (SD)

574.10 (146.30)Steps, as estimated by the phone’s pedometer, mean (SD)

Table 2. Accuracy metrics for the indoor algorithm. By difference, we mean the difference between the estimated distance as computed by the app and
the reference distance, as measured by the trundle wheel.

ValueAccuracy metric

−2.01Mean difference (m)

−1.51Median difference (m)

7.84Standard deviation of the difference (m)

0.99Correlation

5.55Mean absolute difference (m)

5.84Standard deviation of the absolute difference (m)

0Minimum absolute difference (m)

23.68Maximum absolute difference (m)

Figure 7. Bland-Altman plot of the difference between the estimated distance walked and the absolute distance. The Shapiro-Wilk test confirms the
normality of the data (0.91).

Accuracy of the Outdoor Algorithm
The characteristics of the outdoor tests are shown in Table 3.

The accuracy metrics are listed in Table 4, with the
Bland-Altman plot shown in Figure 8.

Table 3. Characteristics of the outdoor tests.

ValueCharacteristic

30Number of tests

8Number of different phones tested

437.99 (147.82)Walked distance measured by trundle wheel (m), mean (SD)

696.5 (78.31)Steps, as estimated by the phone’s pedometer, mean (SD)
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Table 4. Accuracy metrics of the outdoor algorithm. By difference, we mean the difference between the estimated distance as computed by the app
and the reference distance, as measured by the trundle wheel.

ValueAccuracy metric

−0.80Mean difference (m)

−0.63Median difference (m)

18.56Standard deviation of the difference (m)

0.99Correlation

13.39Mean absolute difference (m)

12.65Standard deviation of the absolute difference (m)

0Minimum absolute difference (m)

47.27Maximum absolute difference (m)
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Figure 8. Bland-Altman plot of the difference between the estimated distance walked and the ground truth. The Shapiro-Wilk test confirms the normality
of the data (0.97).

User Aspects
The discussion group mentioned in the Methods section was
held shortly after the first version of the app was ready. The
attendees were 2 engineers, 1 cardiologist, 1 nurse, 2
physiologists, and 2 patients with pulmonary hypertension. One
engineer led the discussion, while the other took notes.

From the initial discussion, the main issues with the way that
the 6MWT is currently performed in hospital were identified
as follows:

1. The corridor being used in the hospital was not ideal, as it
was usually busy with other people and patients being

moved on trolleys, both of which may affect the walking
pace.

2. Patients’ performance might depend on their health status
on that particular day and may not reflect their average
status.

3. The test is only performed rarely (once or twice a year),
and episodes of health deterioration may be missed.

4. Younger patients might underperform as opposed to the
older ones who may try harder in the hospital test, which
might not reflect real-life conditions.

5. White coat syndrome may cause anxiety in some patients
and affect their performance.

6. Overall, patients are stressed and rushed in hospital.
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After the app and monitoring system were presented, the
following advantages were identified:

1. The system allows the patient to perform the test in a more
comfortable environment and more often than the hospital
tests.

2. Patients can see for themselves how they are progressing.
3. The system can alert in the case of very low oxygen

saturations.

In terms of disadvantages:

1. When the test is performed outdoors, the weather can affect
the patient’s performance.

2. Changes in altitude, as a result of walking up an incline,
can affect the results of the test.

During the dry-run test of the system with 2 patients, the
following observations were made:

1. The pulse oximeter generates a sound when a low oxygen
saturation value is measured, but this can be disabled.

2. A patient had problems understanding how to wear the
pulse oximeter.

3. Patients were able to install the app correctly and could
understand its structure easily.

4. One patient tried to send their activity tracking data but did
not have Google Fit installed.

5. Patients struggled to log in, because complex passwords
with capital and lower case letters were originally assigned
to them.

6. During a test, the pulse oximeter produced artefactual
values.

7. A physiologist asked to be able to discard the results of a
test if the data recorded did not appear to be accurate enough
to them.

With respect to the usability of the app, the patients’ comments
were as follows:

1. The app is usable and easy to understand.
2. It would be better to show how many seconds are left until

the end of the test, rather than how many seconds have
elapsed since the start.

3. One patient asked for a sound to be generated at the end of
the test to allow them not to have to look at the mobile
phone screen all the time.

Regarding the willingness to use the app, the following points
were noted:

1. Both patients said that they would use the app regularly
and would not need any help to do so.

2. One patient would prefer performing the test indoors during
winter because the cold weather affects their breathing,
whereas the other patient only wanted to use the outdoor
version.

3. As indoor tests require a long passageway, it was suggested
that shopping malls could be used for these tests.

4. One patient would like to place the mobile phone on an
armband or in a pocket during the test.

5. Patients identified scenarios for which they could perform
the test while doing some other activity, for example, taking
children to and from school.

6. Both patients agreed to use the app in the long term.

Discussion

Distance Estimation
The results from our tests show that, in both the indoor and
outdoor scenarios, the difference between the distance estimated
by the app and the ground truth is always below 54 m, when 50
m is considered to be the clinically significant threshold for
detecting changes in disease state [6].

If we compare our accuracy results with those reported in the
literature, for the outdoor scenario, an average error of a few
meters, up to a maximum of 20 m, was reported by Gray et al
[10], which is consistent with our findings, although our
maximum difference was higher. For the indoor scenario, in a
study by Schulte et al [20], an average absolute error of 4% was
reported, as compared with our 0.02%. One difference between
the approach adopted by Capela et al [21] and ours is that the
authors used inertial sensors worn on the body, not the sensors
in a mobile phone. In the studies by Capela et al [21,22], the
reported maximum error in distance estimation was 2 m
compared with our maximum of 23 m. We should point out,
however, that the method described in those papers was only
validated with 1 phone and with 15 tests, as compared with our
11 mobile phones and 49 tests.

As limitations to our approach, we should mention that most of
the accuracy tests were performed by researchers in a lab
environment. Although we tried to simulate worst-case
scenarios, it is possible that the distance estimation algorithm
may perform worse in the wild. For example, the indoor
algorithm is based on the assumption that the azimuth signal is
not very noisy, and it requires the user to hold the phone
relatively still, which may be not always be the case for some
users. The outdoor algorithm is instead based on the assumption
that the path walked by the user is straight or gently curved. To
mitigate these factors, the app displays clear instructions before
each test is initiated. In addition, we are planning to deliver a
leaflet with written instructions and to provide a short training
session before regular use of the app by the patient.

User Aspects
In terms of user aspects, the results from the discussion group
suggest that the way the 6MWT is performed in hospitals has
significant limitations (a perceived vulnerability [30]) that our
system, at least partially, addresses, thus offering response
efficacy in relation to that vulnerability. But a response cost,
that is, limitations to the validity of the measurements in the
case of bad weather or a slope, was also pointed out.

In terms of perceived ease of use, patients were immediately
able to use the app by themselves. This may also be justified
by the fact that they regularly used a mobile phone and, thus,
were also highly self-efficient.

Given the positive answers provided for its associated constructs,
intention to adopt would be expected to be high. Indeed, patients
declared to be willing to try the app. The fact that they tried to
contextualize its use in their life, for example, while shopping
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or taking children to school, may indicate a genuine interest in
this technology.

Although the indications of the discussion group were generally
supportive of the system, there are risks that can affect its actual
use; particularly, the fact that it has to be either used outdoors,
which is limited by the weather, or indoors but in a long
corridor, which is limited by the availability of space. In
addition, the integration with the sensor and external apps makes
the overall user experience more cumbersome, a fact that may
affect some less tech-savvy users.

Conclusions and Future Work
The system described in this paper allows patients to perform
the 6MWT at a place of their convenience, thus allowing more
information to be generated about their general health status,
more frequently, and possibly reflecting their general health

status better. The algorithms implemented to estimate the
distance walked from either the compass or GPS showed good
agreement with the reference trundle wheel measurements, with
errors below the clinically significant threshold. Our preliminary
user validation also indicates that the app is usable and has the
potential to be well accepted among patients.

The system will need to be tested with more patients to assess
its feasibility in a real-world scenario. A clinical trial is currently
being run with 30 pulmonary hypertension patients to understand
the relationship between tests undertaken using the app and
conventional in-hospital tests. Further studies will then be
needed to assess the clinical significance of the tests in the
community and the relationship between passive activity
monitoring, for example, through wearables and in-hospital
6MWT results.
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