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Abstract

Background: Greater adoption of wearable deviceswith multiple sensors may enhance personalized health monitoring, facilitate
early detection of some diseases, and further scale up population health screening. However, few studies have explored the utility
of datafrom wearable fitness trackers in cardiovascular and metabolic disease risk prediction.

Objective: This study aimed to investigate the associations between a range of activity metrics derived from a wearable
consumer-grade fitness tracker and major modifiable biomarkers of cardiometabolic disease in a working-age popul ation.

Methods: Thiswas across-sectional study of 83 working adults. Participants wore Fitbit Charge 2 for 21 consecutive days and
went through a health assessment, including fasting blood tests. The following clinical biomarkers were collected: BMI, waist
circumference, waist-to-hip ratio, blood pressure, triglycerides (TGs), high-density lipoprotein (HDL) and low-density lipoprotein
cholesterol, and blood glucose. We used arange of wearabl e-derived metrics based on steps, heart rate (HR), and energy expenditure,
including measures of stahility of circadian activity rhythms, sedentary time, and time spent at various intensities of physical
activity. Spearman rank correlation was used for preliminary analysis. Multiple linear regression adjusted for potential confounders
was used to determine the extent to which each metric of activity was associated with continuous clinical biomarkers. In addition,
pairwise multiple regression was used to investigate the significance and mutual dependence of activity metrics when two or
more of them had significant association with the same outcome from the previous step of the analysis.

Results: The participants were predominantly middle aged (mean age 44.3 years, SD 12), Chinese (62/83, 75%), and male
(64/83, 77%). Blood biomarkers of cardiometabolic disease (HDL cholesterol and TGs) were significantly associated with
steps-based activity metricsindependent of age, gender, ethnicity, education, and shift work, whereas body composition biomarkers
(BMI, waist circumference, and waist-to-hip ratio) were significantly associated with energy expenditure—based and HR-based
metrics when adjusted for the same confounders. Steps-based interdaily stability of circadian activity rhythm was strongly
associated with HDL (beta=5.4 per 10% change; 95% CI 1.8t0 9.0; P=.005) and TG (beta=—27.7 per 10% change; 95% Cl —-48.4
to —7.0; P=.01). Average daily steps were negatively associated with TG (beta=—6.8 per 1000 steps; 95% CI -13.0 to -0.6;
P=.04). The difference between average HR and resting HR was significantly associated with BMI (beta=-.5; 95% CI -1.0 to
-0.1; P=.01) and waist circumference (beta=-1.3; 95% Cl -2.4 to -0.2; P=.03).
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Conclusions: Wearable consumer-grade fitness trackers can provide acceptably accurate and meaningful information, which
might be used in the risk prediction of cardiometabolic disease. Our results showed the beneficial effects of stable daily patterns
of locomotor activity for cardiometabolic health. Study findings should be further replicated with larger population studies.

(JMIR Mhealth Uhealth 2020;8(1):€16409) doi: 10.2196/16409
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Introduction

Background

Wearable consumer-grade fitness trackers are becoming more
widespread every year. The market and number of wearables
are expected to more than doubl e from an estimated 527 million
devicesworldwidein 2017 to morethan 1.1 billion in 2022 [1],
achieving a market size of US $27 billion by 2022 [2]. These
wearables are equipped with multiple sensors and can monitor
and record biometric and locomotor activity data, including
steps, heart rate (HR), blood volume pulse, electrodermal
activity, skin and body temperature, respiration rate, oxygen
saturation, electrocardiography, and sleep patterns. Apart from
providing direct information about an individua’s physica
health status (eg, body temperature), some of these physiol ogical
and behavioral characteristics can be considered asrisk factors
or markersrelated to different diseases. For example, increased
resting HR (RHR) isan important risk marker of cardiovascular
disease [3,4], and insufficient physical activity (PA) is arisk
factor of major noncommunicable diseases [5,6]. At the same
time, activity metrics have potential value in risk prediction of
other health conditions, including mental disorders [7,8] and
neuropsychiatric illness [9]. As greater adoption of wearables
can enhance personalized health monitoring, scale up population
health screening, and facilitate early detection of some diseases,
research should explore associations between metrics derived
from consumer-grade wearables and clinical and biological
health markers. Multisensor and continuous data availablefrom
fitness trackers at second-by-second or minute-by-minute
resolution allow theretrieval of various metrics and exploration
of their clinical significance. In this work, we focused on the
association between wearable data and biomarkers of
cardiovascular and metabolic diseases, which are the leading
causes of mortality and disability worldwide [10].

Related Work

Therisk of sedentary behavior and the beneficial effects of PA
for cardiometabolic disease have been extensively studied in
different populations [11-22]. Large cross-sectional studies
demonstrated reliable evidence that sedentary time and PA
measured objectively with wearable accel erometers are strongly
related to most cardiometabolic biomarkers, including waist
circumference, BMI, high-density lipoprotein (HDL) cholesterol,
triglycerides (TGs), fasting blood glucose (BG) level,
high-sensitivity C-reactive protein (CRP), and blood pressure
independently from major confounders. M ost studies measured
average daily duration of sedentary behavior and PA in minutes
with research-grade actigraphs; however, the observation period
in these studies did not exceed 7 consecutive days. Key
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differencesin findings concern the significance of light-intensity
PA and moderate-to-vigorous PA (MVPA) as protective factors
for cardiometabolic disease independent of sedentary time.
Different levels of PA were found to vary in significance in
specific population groups. For example, light-intensity PA was
found to be beneficia for cardiometabolic health in American
Hispanic adults with type 2 diabetes [17], although it did not
appear to have abeneficial effect in older adults without known
diabetes [22]. However, the overall beneficial role of PA has
not been questioned.

Several studies explored the association between rest/activity
rhythms measured by wearables and indicators of
cardiometabolic disease [23-28]. Continuous activity tracking
permitsthe assessment of circadian patterns, revealing possible
irregularities and disruptions. To our knowledge, there are only
afew studiesthat haveinvestigated the associations of regularity
in activity rhythms, measured as interdaily stability (1S), with
cardiometabolic risk or related biomarkers. Paudel et a [23]
studied rest/activity rhythmsin 2968 community-dwelling older
men and found that lower regularity in circadian activity was
associated with an increased risk of peripheral vascular disease
events (such as acute arterial occlusion, rupture, or dissection)
independent of age, race, smoking status, walking for exercise,
history of cardiovascular events, and even a number of
cardiovascular risk factors, including diabetes, blood pressure,
total cholesterol, and HDL cholesterol. Sohail et al [24] studied
actigraphic data from 1137 older adults and found that |S was
related to several key components of the metabolic syndrome.
In particular, higher IS was associated with lower blood
pressure, higher HDL cholesterol, lower risk of being obese
(defined with BMI), or having diabetes (according to medical
history) independent of total daily PA and other confounders.
Another study did not find significant associations between 1S
and blood pressure and cholesterol level (including HDL) in
patients with diabetes [25]. One more study reported the
negative relationship between 1S and systolic blood pressure
(SBP) and diastolic blood pressure (DBP) [26]. In addition, two
studies tested the association of |Swith BMI, which was found
to be significant in one study [27] and nonsignificant in the
other [28].

Most research on consumer-grade fitness trackerswith multiple
sensors are intervention studies focused on their value in
promoting PA in different populations [29-31] or monitoring
studies of patients with different health conditions [32,33].
Despite great enthusiasm for fitness trackers, the current
evidence does not consistently indicate significant or long-term
effects of using wearables for the promotion of greater PA and
habitual behavior change [34-38]. However, fewer studies have
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explored the associations between multidimensional datafrom
fitnesstrackersand clinical and biological markers. Li et al [39]
analyzed data collected with Intel Basis smartwatches from 43
individuals over the course of 152 days on average. Initialy,
the authors demonstrated that elevated HR and skin temperature
were strongly associated with elevated CRP, a biomarker of
inflammatory response. To identify transitions between healthy
and ill states, they used fraction of outlying values of HR and
skin temperature, which were cal culated with the peak detection
method. Second, the authors found that both daytime HR
(DayHR) and difference between DayHR and nighttime HR
(NightHR) were positively correlated with steady-state plasma
glucose level, indicating differences between insulin-sensitive
and insulin-resistant individuals. Price et a [40] analyzed
comprehensive health dataof 108 individuals, including activity
tracking with Fitbit wearables. However, along with modest
compliance of using wearables (only 64% of the participants
met the criterion of a minimum of 40 days of observation),
authorsdid not find any significant correl ations between average
energy expenditure (calories) and biomarkers. Lim et al [41]
analyzed data from 233 volunteers, combining activity tracker
data of 3 complete days and multiple cardiovascular and
metabolic disease clinical markers. They found that higher RHR
was significantly associated with most clinical markers,
including higher BMI, waist circumference, DBP and SBP, TG
and BG levels, and lower HDL cholesterol, whereas a higher
step count was significantly associated only with lower BMI,
waist circumference, and TG.

Objectives

Wider adoption of consumer-grade fitness trackers compared
with research-grade wearables stimulates the exploration and
testing of activity metrics, which might be used for risk
prediction of cardiometabolic disease. Compared with previous
research, we, first, focused on working-age popul ation; second,
harnessed activity tracking for a longer period to analyze
regularity of circadian activity rhythms; and, third, used fasting
blood samplesto get cardiometabolic biomarkers. Thisallowed
usto go beyond standard metrics available from consumer-grade
fitness trackers. Thus, the objective of this study was to
investigate the associations between different activity metrics
retrievable from a consumer-grade fitness tracker and major
modifiable biomarkers of cardiometabolic disease, relying on
prolonged activity monitoring.

Methods

Study Design and Participants

The data used in this paper were obtained from a workplace
cohort study conducted in Singapore by the Nanyang
Technological University (NTU) [42]. In tota, four
organizations agreed to join the study: two from the transport
industry, a cooling plant, and a university. Healthy volunteers
from these organizationswereinvited to participatein the study
via meetings, workplace posters, and emails (for more details
on the recruitment process, refer to the study by Dunleavy et al
[42]). The NTU ingtitutional review board approved the study
protocol and informed consent form (IRB application reference:
2015/2601).

http://mhealth.jmir.org/2020/1/e16409/
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M easur ements

Health Outcomes; Cardiometabolic Disease Risk
Biomarkers

In accordance with the American Heart Association guidelines
[43,44], cardiometabolic syndrome is determined by an
abnormal condition of the following characteristics. waist
circumference (or waist-to-hipratio), blood pressure, TG, HDL
cholesteral, and BG. Hence, we considered thefollowing clinical
biomarkersin thisstudy: BMI, waist circumference, waist-to-hip
ratio, SBP, DBP, fasting levels of total cholesterol, HDL and
low-density lipoprotein (LDL) cholesterol, TG, and BG.

Standardized self-report questionnaires were used to collect
sociodemographic and health behavior characteristics. Trained
staff performed clinical measurements, such as height, weight,
and waist and hip circumferences, according to a standard
protocol using standardized tools [15]. Height was measured
using astadiometer (Seca217) to the nearest 0.1 cm, and weight
was measured in light clothing using a digital scale (Seca 874)
to the nearest 0.1 kg. Waist and hip circumferences were
measured using a stretch-resistance tape (Seca 201). Waist
circumferencewas measured at the midpoint between the lower
margin of the last palpablerib and the top of theiliac crest (hip
bone). Hip circumference was measured at the maximum
circumference over the buttocks. BMI was cal culated asweight
in kilograms divided by the sguare of height in meters.
Wai st-to-hip ratio was cal culated as theratio between waist and
hip circumferences. Blood pressure, in accordance with the
National Health and Nutrition Examination Survey protocol
[45], was measured over the right arm using an appropriate cuff
sizewith an automatic digital blood pressure monitor (Dinamap
Pro100V2; Criticon). The average value of the 3 readings taken
with 2-min interval s was used.

Venous blood samples were collected from participants in a
fasting state (at least 8 hours) by trained phlebotomists. A
maximum of approximately 11 mL of blood was drawn into 2
tubes—8 mL in plain and 3 mL in fluoride tubes. Blood samples
were transported immediately, in cooler boxes (4°C), to an
internationally accredited laboratory for analysis. Blood samples
were processed using the hexokinase method for plasmaglucose
and enzymatic methods for serum lipids on a COBAS 6000
analyzer, using kits supplied by Roche Diagnostics. LDL
cholesterol was estimated using the Friedewald equation for
thosewith TGs< 4.52 mmol/L [46], whereasfor therest, values
estimated by the direct method were used. Serum
25-hydroxyvitamin D concentrations were measured using the
chemiluminescence immunoassay method on a Cobas e 411
analyzer with kits supplied by Roche Diagnostics.

Explanatory Variables: Activity Tracker—Based Metrics

Fitbit Charge 2 devices (aconsumer-grade fitnesstracker) were
used in the study to collect activity data. The accuracy of Fitbit
devices in collecting activity data has been tested in multiple
studies[47-51]. According to a systematic review [49], studies
have indicated that Fitbit wearables were likely to provide
comparatively accurate (ie, similar to research-grade monitors)
measures of step counts and sleep duration in free-living
conditions. However, Fitbit wearables |ess accurately measure
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energy expenditure, underestimating sedentary time and
overestimating time spent in MV PA [49,51].

Participants wore Fitbit devices on their wrists for a period of
23 days. As the first and the last days of wearing the fitness
tracker were partial days, the total observation period was 21
days (3 weeks) of continuous tracking. Participants were
instructed to wear the Fitbit tracker all day and to remove only
when taking a shower or to charge it. In addition, participants
were instructed to open the Fitbit mobile app and allow it to
synchronize with the tracker once every mealtime and to not
change any settingsin the Fitbit app for the period of the study.
To check the completeness of the activity tracking, we counted
the number of hours per day with recorded HR data. Participants
with a minimum of 14 days with greater than or equal to 18
valid hours each (maximum of 6 missing hours per day) were
included for further analysis.

The fitness tracker records the data to the participant’s own
Fitbit account through the official Fitbit mobile app on the
participant’s mobile phone. The data were saved on Fithit's
own server, and participants gave consent for Fitbit to send their
data to our data collection server, after which the data were
automatically retrieved and saved by the server. Our data
collection server was situated within NTU’s network on a
password-protected computer located within the Culture Science
Ingtitute’s Bio-Cognitive Laboratory. The server maintained a
list of registered Fithit accounts and sent daily requeststhrough
the Web application program interface to retrieve data from
Fitbit's own server database. Fitbit Charge 2 algorithmically
derives and records the following variables from raw sensor
data: steps, distance, elevation, calories, HR, and a number of
deep characteristics. Steps, distance, elevation, and calorie data
areavailable at anintraday level in minute-by-minute intervals.
Intraday HR data are available at 5- or 10-second intervals.

Rykov et d

Thefollowing wearable-derived activity metricswere considered
in the study: daily average steps, daily average HR, RHR,
DayHR, NightHR, delta of RHR (dRHR), circadian delta of
HR (cdHR), IS of locomotor activity, interdaily variation (1V)
of locomotor activity, daily average sedentary time, and daily
minutes of light-, moderate-, and vigorous-intensity PA.

To determine RHR, DayHR, and NightHR from the fitness
trackers, we followed the approach proposed by Lim et al [41].
RHR wascalculated asthe average HR of 15-minintervalswith
less than or equa to 100 steps. DayHR was obtained by
averaging HR values between 2 pm and 4 pm, whereas NightHR
sampled time points between 2 am and 4 am. dRHR is the
difference between average HR and RHR. cdHR is the
difference between DayHR and NightHR.

We followed the common conception of sedentary behavior
and defined sedentary time as “any waking behavior
characterized by an energy expenditure <1.5 metabolic
equivalents (METSs), while in a sitting, reclining, or lying
posture” [52]. Hence, to determine sedentary time, we excluded
all sleep intervals and calculated a daily mean of total minutes
with less than or equal to 1.5 METSs.

IS is a nonparametric measure that evaluates the
stability/similarity of activity patterns across aseries of 24-hour
cycles, that is, the extent to which an individual consistently
follows some regular activity pattern from day to day. IS was
calculated as the variance of the average steps-based 24-hour
daily profile divided by the total variance of all days 24-hour
profiles [53]. Higher 1S indicates that an individual has amore
stable circadian pattern over the course of observation period
regardless of the overall level of activity, and lower | Sindicates
less stability in circadian activity distribution (see Figure 1).

Figure 1. Stepstracking charts. Individuals with relatively high (A) and low (B) interdaily stability but similar total daily steps. x-axis: time in days.

y-axis: steps count. IS: interdaily stability of locomotor activity rhythm.
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To calculate 1V of locomotor activity, we obtained a steps-based
daily profile of coefficients of variation for each hour in a
24-hour cycle and took an average of these coefficients. Thus,
IV indicatesthe average hour-by-hour variation of daily activity
across the observation period regardless of the overall level of
activity. We proposed this metric as aternative to 1S, which
aims to assess the same phenomena with a different approach.

The daily duration of light-intensity PA and MVPA was
determined according to the PA guidelines of US Department
of Health and Human Services [54], where moderate-intensity
PA corresponds to energy expenditure from 3.0 to 6.0 METS,
vigorous-intensity PA is above 6.0 METSs, and light-intensity
PA is below 3.0 METs. We sampled minutes within these
intervals separately and took an average of the daily sum of
these minutes.

Data Analysis

We clustered participants according to their normalized average
24-hour profiles of steps using k-means cluster analysis (k=3)
to identify groups of participants with similar activity patterns.
Normalization of data alowed us to ignore individua
differences in the absolute daily number of steps and focus on
the temporal pattern of activity distribution. We used steps data
for cluster analysis because step counts are probably the most
accurate Fitbit metric [49].

An additional analysis was done to determine whether alonger
period of tracking provides more stable estimates of RHR than
estimates of RHR sampled from 3-day windows. For this
analysis, we used the Kolmogorov-Smirnov test to comparethe
distribution of RHR values from a full period with the
distribution of RHR values sampled from ten 3-day windows
for each participant. Then the fraction of failed tests (with P<.05,
meaning that distributions are significantly different) was
calculated for each participant and on the study sample level.

Spearman rank correlation was used to explore preliminary
associations between continuous activity metrics and continuous
biomarker metrics. A correlation network based on Spearman
coefficients [40] was plotted to display significant associations
between activity metrics and clinical biomarkers.

Multiple linear regression analysis was used to determine the
extent to which each metric of locomotor activity is associated
with clinical biomarkers. For all models, adjustments were made
for age, gender, ethnicity (3 categories. Chinese, Maay, or
Indian), education, and shift work (shift worker or not). Thus,
each regression model includes one explanatory variable
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(activity tracker—based metric) and af orementioned covariates.
In addition, pairwise multiple linear regression analysis was
used to investigate the significance and mutual dependence of
activity metrics when two or more of them were found to be
significant predictors of the same outcome from the previous
step of the analysis. Pairwise multiple regression was used
instead of including all predictors at once because the sample
size limits the number of predictors that can be included in a
regression model according to the one in ten rule of thumb
(minimum 10 cases per predictor). Linear model (Im) function
in R was used to execute computation (see Multimedia A ppendix
1 for the R code used for data processing and analysis).

Results

Characteristics of Participants

A total of 464 full-time employees (aged =21 years) were
recruited and enrolled in the study (Figure 2). Of these, 334
participants were followed up at 12 months, and blood samples
were collected from 214 of them. Three months later, 87
volunteers were i ssued with consumer-grade fitness trackers to
continuously record their biometric and locomotor activity data.
These participants were randomly selected among those who
confirmed they were going to be at work for 3 weeks (ie, not
planning to be on vacation or on a business trip). In total, 87
participants were tracked for 21 days. Three participants were
excluded because of incomplete activity data(see Table 1). One
participant was excluded from the sampl e because of extremely
high daily locomotor activity (average daily steps above 24,000)
compared with others. Thus, we had 83 participantswith activity
data digible for further analysis. In addition, there was 1
participant with missed wai st circumference and blood pressure
measurements. One outlier was excluded in the regression
models of TG, BG, and LDL. The fina sample for body
composition measureswas 83 (or 82 for some outcomes because
of missing data), and 70 for blood test analysis (or 69 without
the outlier).

Table 2 summarizesthe characteristics of participants. The mean
age of participants was 44.3 years (range 22-65 years), and the
majority of them were male (64/83, 77%). The average step
count was 10,865 steps per day (median 10479.4), and HR and
RHR were 76 (median 75) and 70 (median 69), respectively
(see Multimedia Appendix 2 for the differences in
activity-tracker-based metrics between shift and nonshift
workers).
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Figure2. Participantsflow diagram. BG: blood glucose; DBP: diastolic blood pressure; HDL: high-density lipoprotein; LDL: low-density lipoprotein;
SBP: systolic blood pressure; TG: triglyceride; WC: waist circumference; WHR: waist-to-hip ratio.
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Table 1. The distribution of the number of valid days (1702 days in total) among participants (N=84).
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Table 2. Summary statistics of participants.

Rykov et d

Variable Values
Sociodemographic characteristics
Age (years, n=83), mean (SD) 44.3 (11.9)
Gender, n (%)
Male 64 (77)
Female 19 (23)
Ethnicity, n (%)
Chinese 62 (75)
Indian 13 (16)
Malay 8(9
Education, n (%)
Below university degree 54 (65)
University degree 29 (35)
Shift worker, n (%)
No 42 (51)
Yes 41 (49)
Health outcomes. cardiometabolic disease biomarkers, mean (SD)
BMI (kg/m% n=83) 24.6 (4.4)
Waist circumference (cm; n=82) 82.9 (13.2)
Waist-to-hip ratio (n=82) 0.86 (0.08)
Systolic blood pressure (mm Hg; n=82) 119.9 (13.6)
Diastolic blood pressure (mm Hg; n=82) 71.8 (10.7)
Total cholesterol (mg/dL; n=70) 215.7 (34.6)
High-density lipoprotein (mg/dL ; n=70) 57.5(15.7)
L ow-density lipoprotein (mg/dL ; n=69) 129.1 (27.5)
Triglyceride (mg/dL; n=69) 133.4 (77.4)
Blood glucose (mg/dL; n=69) 96.6 (14.6)
Explanatory variables. activity tracker—based metrics (n=83), mean (SD)
Steps (per day) 10,865 (2775)
Interdaily stability of locomotor activity rhythm 0.28 (0.12)
Interdaily variation of locomotor activity 1.31(0.23)
Heart rate (bpm) 76.3 (7.6)
Resting heart rate (bpm) 70.6 (8.1)
Delta of resting heart rate (bpm) 5.7(1.9)
Daytime heart rate (bpm) 81.5(9.1)
Nighttime heart rate (bpm) 64.1(8.1)
Circadian delta of heart rate (bpm) 17.4(5.7)
Sedentary time (min/d) 787.9 (99.3)
Light-intensity PA? (min/d) 1202.9(60.2)
Moderate-intensity PA (min/d) 205.4 (55.1)
Vigorous-intensity PA (min/d) 31.6 (16.1)
Moderate-to-vigorous PA (min/d) 237.1(60.2)
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3PA: physical activity.

We obtained 3 groups of sizes—35, 34, and 14 individuals,
respectively—using k-means cluster analysis. Visualization of
normalized 24-hour activity profiles (Figure 3) showed that
clusters differ in the number of activity pesks, having 3
(morning, lunch, and evening), 2 (morning and evening), or O
clear peaksthroughout aday. The absence of clear peaksin the
average activity profiles from the B cluster might be the result
of both stable and evenly distributed activity or irregularity and
inconsistency in the daily activity of the participants from this
cluster. As data clustering indicated a meaningful division of

Rykov et d

participants, cluster membership was also used as a single
categorical predictor of cardiometabolic disease biomarkersin
further analysis.

Finally, an additional analysisof stability of RHR indicated that
RHR estimated within 3-day windows is different from RHR
estimated from the full period (3 weeks) in half of the cases.
The sample level fraction of failed Kolmogorov-Smirnov tests
was 0.49 (P values of all Kolmogorov-Smirnov tests are
presented in Multimedia Appendix 3). Therefore, we used RHR
estimated from the full period in further analysis.

Figure 3. Visualization of normalized average 24-hour activity profiles by clusters. A: first cluster (N=35); B: second cluster (N=34); C: third cluster
(N=14). Each line represents an individual within a cluster. x-axis: hoursin adaily cycle. y-axis: average number of steps normalized by an individual

sum of steps in average 24-hour profile.
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Associations Between Activity Tracker Metricsand
Cardiometabolic Disease Biomarkers

Exploratory correlation analysis (Figure 4) showed there were
anumber of significant monaotonic associ ations (absolute values
of Spearman rank correlation coefficients varied from 0.22 to
0.38) between activity metrics and continuous biomarker values.
Only 6 of 10 cardiometabolic biomarkers were significantly
associated with activity tracker—based metrics: BMI, waist
circumference, waist-to-hip ratio, SBP, HDL, and TG. Almost
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all activity metrics were associated with some biomarkers,
except for moderate-intensity PA and cdHR. Sedentary time,
NightHR, dRHR, and IS had the greatest number of significant
associations with biomarkers.

Further regression analysis showed that a number of activity
metrics were significantly associated with BMI, waist
circumference, waist-to-hip ratio, HDL , and TG, although there
were no significant associations for LDL, BG, blood pressure,
and total cholesterol (Table 3).
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Figure4. Correlation network of cardiometabolic disease biomarkers and activity tracker metrics. Only associations significant at P<.05 were displayed.
Width of linesis proportional to absolute value of Spearman coefficients that vary between 0.22 and 0.38. BG: blood glucose; DayHR: daytime heart
rate; DBP: diastolic blood pressure; dRHR: delta of resting heart rate; HDL : high-density lipoprotein; HR: heart rate; | S: interdaily stability of locomotor
activity rhythm; IV: interdaily variation of locomotor activity; LDL: low-density lipoprotein; MV PA: moderate-to-vigorous physical activity; NightHR:
nighttime heart rate; PA: physical Activity; RHR: resting heart rate; SBP: systolic blood pressure; TG: triglyceride; WC: waist circumference; WHR:

waist-to-hip ratio.

Blood biomarkers of cardiometabolic disease were significantly
associated with steps-based metrics only. The number of daily
steps was negatively associated with TG (beta=—6.8 per 1000
steps; 95% Cl —13.0to —0.6; P=.04), so participants with more
daily stepshad lower levelsof TG. ISwasnegatively associated
with TG (beta=—27.7 per 10% change; 95% Cl -48.4 to -7.0;
P=.01) and positively associated with HDL (beta=5.4 per 10%
change; 95% ClI 1.8t09.0; P=.005), so participantswith higher
IS had higher levels of HDL and lower levels of TG. Note that
the significant associations between IS and blood biomarkers
were independent of al confounders, including shift work.
Patterns of circadian activity were also significantly associated
with blood biomarkers of cardiometabolic disease independent
of al confounders, including shift work. Participants from
cluster B, whose daily activity was distributed more evenly
without clear peaks, had worse indicators of cardiometabolic
health, lower HDL (beta=-9.7; 95% CI -17.4 to —2.0; P=.02)
and higher TG (beta=66.0; 95% CI 24.1 to 107.9; P=.003),
compared with participants from clusters A and C with clear 2-
or 3-peak patterns. Subsequent pairwise multiple analysis for
HDL showed that IS remained a significant predictor when
additionally adjusted for cluster membership, whereas cluster
membership became nonsignificant (see Multimedia A ppendix
5). Pairwise multiple regression analysis for TG indicated that
IS remained a significant predictor after adjustment for steps
and cluster membership; steps remained significant after
adjustment for cluster membership, but it lost significance after
adjusting for I'S; and cluster membership remained asignificant
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predictor after adjusting for IS and steps (see Multimedia
Appendix 5).

Body composition biomarkers of cardiometabolic disease were
significantly associated with metrics based on energy
expenditure and HR-based metrics. Sedentary time was
positively associated with BMI (beta=.1; 95% Cl 0.003t0 0.2;
P=.047), so participants with more sedentary time had a higher
BMI. However, this association had borderline significance.
Vigorous-intensity PA was positively associated with BMI
(beta=.7; 95% CI 0.2 to 1.1; P=.01) and waist circumference
(beta=1.9; 95% Cl 0.6 to 3.2; P=.005), so participantswith more
time spent in vigorous-intensity PA had a higher BMI and a
higher waist circumference. RHR was positively associated
only with waist-to-hip ratio (beta=.02; 95% CI 0.001 to 0.03;
P=.04), whereasdRHR (the difference between overall average
HR and RHR) was negatively associated with BM|I (beta=—0.5;
95% Cl -1.0 to -0.1; P=.01) and waist circumference
(beta=-1.3; 95% Cl -2.4 to -0.2; P=.03). Lower RHR in
relation to overall HR was associated with lower BMI and wai st
circumference values. Subsequent pairwise multiple analysis
for BMI indicated that sedentary time together with
vigorous-intensity PA remained significant predictors, as well
asvigorous-intensity PA together with dRHR, whereas sedentary
time paired with dRHR became nonsignificant (see Multimedia
Appendix 5). Pairwise multiple analysisfor waist circumference
demonstrated that vigorous-intensity PA together with dRHR
remained significant predictors after mutual adjustment (see
Multimedia Appendix 5).
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Table 3. Associations between wearable-based metrics of physical activity and common cardiometabolic disease risk markers.

Activity tracker-based met-  Blood biomarkers

Body composition

rics?
High-density lipoprotein  Triglyceride BMI Waist circumference  Waist-to-hip ratio
Beta(95% Pvaue Beta(95% Pvaue Beta Pvalue Beta Pvalue Beta(95% P vaue
Cl) Cl) (95% CI) (95% CI) Cl)
Steps (x1000) _b — -6.8 .04 — — — — — —
(-13.0to
-0.6)
Interdaily stability of loco- 5.4 (1.8t0 .005 -27.7 .01 — — — — — —
motor activity rhythm (x0.1) 9.0) (-48.41t0
-7.0)
Cluster B -9.7(-174 .02 66.0 (24.1 .003 — — — — — —
to-2.0) to 107.9)
Sedentary time, minutes — — — — 0.1 .047 — — — —
(x10) (0.003to
0.2)
Vigorous-intensity physical — — — — 0.7(02 .01 19(06 .005 — —
activity, minutes (x10) to1.1) t03.2)
Resting heart rate, bpm — — — — — — — — 0.02(0.001 .04
(x10) t0 0.03)
Deltaof resting heart rate, — — — — -0.5 .01 -1.3 .03 — —
bpm (-1.0to (-24to
-0.1) -0.2)

#The table shows unstandardized coefficients (beta), 95% Cl, and exact P values of activity metrics as predictors of cardiometabolic disease biomarkers
in multiple linear regression models. For each predictor, adjustments were made for age, gender, ethnicity, education level, and shift work. Only
significant coefficients reported. Coefficients of adjusted covariates are omitted. The full results are provided in Multimedia Appendix 4. For steps, the
effect isfor each additional 1000 steps; for IS, the effect isfor each 0.1 change in score; for sedentary time and vigorous-intensity physical activity, the
effects are for each additional 10 min of time spent in respective activity; for RHR, the effect is for each additional 10 bpm.

PNonsi gnificant coefficients are omitted. The full results are provided in Multimedia Appendix 4.

Light-intensity PA, moderate-intensity PA, MVPA, average
HR, DayHR, NightHR, cdHR, and IV did not indicate any
significant associations with cardiometabolic  disease
biomarkers.

Discussion

Principal Findings

We explored the relationships between metrics of locomotor
activity and regularity in circadian rhythms derived from a
consumer-grade fitness tracker and risk biomarkers of
cardiometabolic dise