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Abstract

Background: Greater adoption of wearable devices with multiple sensors may enhance personalized health monitoring, facilitate
early detection of some diseases, and further scale up population health screening. However, few studies have explored the utility
of data from wearable fitness trackers in cardiovascular and metabolic disease risk prediction.

Objective: This study aimed to investigate the associations between a range of activity metrics derived from a wearable
consumer-grade fitness tracker and major modifiable biomarkers of cardiometabolic disease in a working-age population.

Methods: This was a cross-sectional study of 83 working adults. Participants wore Fitbit Charge 2 for 21 consecutive days and
went through a health assessment, including fasting blood tests. The following clinical biomarkers were collected: BMI, waist
circumference, waist-to-hip ratio, blood pressure, triglycerides (TGs), high-density lipoprotein (HDL) and low-density lipoprotein
cholesterol, and blood glucose. We used a range of wearable-derived metrics based on steps, heart rate (HR), and energy expenditure,
including measures of stability of circadian activity rhythms, sedentary time, and time spent at various intensities of physical
activity. Spearman rank correlation was used for preliminary analysis. Multiple linear regression adjusted for potential confounders
was used to determine the extent to which each metric of activity was associated with continuous clinical biomarkers. In addition,
pairwise multiple regression was used to investigate the significance and mutual dependence of activity metrics when two or
more of them had significant association with the same outcome from the previous step of the analysis.

Results: The participants were predominantly middle aged (mean age 44.3 years, SD 12), Chinese (62/83, 75%), and male
(64/83, 77%). Blood biomarkers of cardiometabolic disease (HDL cholesterol and TGs) were significantly associated with
steps-based activity metrics independent of age, gender, ethnicity, education, and shift work, whereas body composition biomarkers
(BMI, waist circumference, and waist-to-hip ratio) were significantly associated with energy expenditure–based and HR-based
metrics when adjusted for the same confounders. Steps-based interdaily stability of circadian activity rhythm was strongly
associated with HDL (beta=5.4 per 10% change; 95% CI 1.8 to 9.0; P=.005) and TG (beta=−27.7 per 10% change; 95% CI −48.4
to −7.0; P=.01). Average daily steps were negatively associated with TG (beta=−6.8 per 1000 steps; 95% CI −13.0 to −0.6;
P=.04). The difference between average HR and resting HR was significantly associated with BMI (beta=−.5; 95% CI −1.0 to
−0.1; P=.01) and waist circumference (beta=−1.3; 95% CI −2.4 to −0.2; P=.03).
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Conclusions: Wearable consumer-grade fitness trackers can provide acceptably accurate and meaningful information, which
might be used in the risk prediction of cardiometabolic disease. Our results showed the beneficial effects of stable daily patterns
of locomotor activity for cardiometabolic health. Study findings should be further replicated with larger population studies.

(JMIR Mhealth Uhealth 2020;8(1):e16409) doi: 10.2196/16409
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Introduction

Background
Wearable consumer-grade fitness trackers are becoming more
widespread every year. The market and number of wearables
are expected to more than double from an estimated 527 million
devices worldwide in 2017 to more than 1.1 billion in 2022 [1],
achieving a market size of US $27 billion by 2022 [2]. These
wearables are equipped with multiple sensors and can monitor
and record biometric and locomotor activity data, including
steps, heart rate (HR), blood volume pulse, electrodermal
activity, skin and body temperature, respiration rate, oxygen
saturation, electrocardiography, and sleep patterns. Apart from
providing direct information about an individual’s physical
health status (eg, body temperature), some of these physiological
and behavioral characteristics can be considered as risk factors
or markers related to different diseases. For example, increased
resting HR (RHR) is an important risk marker of cardiovascular
disease [3,4], and insufficient physical activity (PA) is a risk
factor of major noncommunicable diseases [5,6]. At the same
time, activity metrics have potential value in risk prediction of
other health conditions, including mental disorders [7,8] and
neuropsychiatric illness [9]. As greater adoption of wearables
can enhance personalized health monitoring, scale up population
health screening, and facilitate early detection of some diseases,
research should explore associations between metrics derived
from consumer-grade wearables and clinical and biological
health markers. Multisensor and continuous data available from
fitness trackers at second-by-second or minute-by-minute
resolution allow the retrieval of various metrics and exploration
of their clinical significance. In this work, we focused on the
association between wearable data and biomarkers of
cardiovascular and metabolic diseases, which are the leading
causes of mortality and disability worldwide [10].

Related Work
The risk of sedentary behavior and the beneficial effects of PA
for cardiometabolic disease have been extensively studied in
different populations [11-22]. Large cross-sectional studies
demonstrated reliable evidence that sedentary time and PA
measured objectively with wearable accelerometers are strongly
related to most cardiometabolic biomarkers, including waist
circumference, BMI, high-density lipoprotein (HDL) cholesterol,
triglycerides (TGs), fasting blood glucose (BG) level,
high-sensitivity C-reactive protein (CRP), and blood pressure
independently from major confounders. Most studies measured
average daily duration of sedentary behavior and PA in minutes
with research-grade actigraphs; however, the observation period
in these studies did not exceed 7 consecutive days. Key

differences in findings concern the significance of light-intensity
PA and moderate-to-vigorous PA (MVPA) as protective factors
for cardiometabolic disease independent of sedentary time.
Different levels of PA were found to vary in significance in
specific population groups. For example, light-intensity PA was
found to be beneficial for cardiometabolic health in American
Hispanic adults with type 2 diabetes [17], although it did not
appear to have a beneficial effect in older adults without known
diabetes [22]. However, the overall beneficial role of PA has
not been questioned.

Several studies explored the association between rest/activity
rhythms measured by wearables and indicators of
cardiometabolic disease [23-28]. Continuous activity tracking
permits the assessment of circadian patterns, revealing possible
irregularities and disruptions. To our knowledge, there are only
a few studies that have investigated the associations of regularity
in activity rhythms, measured as interdaily stability (IS), with
cardiometabolic risk or related biomarkers. Paudel et al [23]
studied rest/activity rhythms in 2968 community-dwelling older
men and found that lower regularity in circadian activity was
associated with an increased risk of peripheral vascular disease
events (such as acute arterial occlusion, rupture, or dissection)
independent of age, race, smoking status, walking for exercise,
history of cardiovascular events, and even a number of
cardiovascular risk factors, including diabetes, blood pressure,
total cholesterol, and HDL cholesterol. Sohail et al [24] studied
actigraphic data from 1137 older adults and found that IS was
related to several key components of the metabolic syndrome.
In particular, higher IS was associated with lower blood
pressure, higher HDL cholesterol, lower risk of being obese
(defined with BMI), or having diabetes (according to medical
history) independent of total daily PA and other confounders.
Another study did not find significant associations between IS
and blood pressure and cholesterol level (including HDL) in
patients with diabetes [25]. One more study reported the
negative relationship between IS and systolic blood pressure
(SBP) and diastolic blood pressure (DBP) [26]. In addition, two
studies tested the association of IS with BMI, which was found
to be significant in one study [27] and nonsignificant in the
other [28].

Most research on consumer-grade fitness trackers with multiple
sensors are intervention studies focused on their value in
promoting PA in different populations [29-31] or monitoring
studies of patients with different health conditions [32,33].
Despite great enthusiasm for fitness trackers, the current
evidence does not consistently indicate significant or long-term
effects of using wearables for the promotion of greater PA and
habitual behavior change [34-38]. However, fewer studies have
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explored the associations between multidimensional data from
fitness trackers and clinical and biological markers. Li et al [39]
analyzed data collected with Intel Basis smartwatches from 43
individuals over the course of 152 days on average. Initially,
the authors demonstrated that elevated HR and skin temperature
were strongly associated with elevated CRP, a biomarker of
inflammatory response. To identify transitions between healthy
and ill states, they used fraction of outlying values of HR and
skin temperature, which were calculated with the peak detection
method. Second, the authors found that both daytime HR
(DayHR) and difference between DayHR and nighttime HR
(NightHR) were positively correlated with steady-state plasma
glucose level, indicating differences between insulin-sensitive
and insulin-resistant individuals. Price et al [40] analyzed
comprehensive health data of 108 individuals, including activity
tracking with Fitbit wearables. However, along with modest
compliance of using wearables (only 64% of the participants
met the criterion of a minimum of 40 days of observation),
authors did not find any significant correlations between average
energy expenditure (calories) and biomarkers. Lim et al [41]
analyzed data from 233 volunteers, combining activity tracker
data of 3 complete days and multiple cardiovascular and
metabolic disease clinical markers. They found that higher RHR
was significantly associated with most clinical markers,
including higher BMI, waist circumference, DBP and SBP, TG
and BG levels, and lower HDL cholesterol, whereas a higher
step count was significantly associated only with lower BMI,
waist circumference, and TG.

Objectives
Wider adoption of consumer-grade fitness trackers compared
with research-grade wearables stimulates the exploration and
testing of activity metrics, which might be used for risk
prediction of cardiometabolic disease. Compared with previous
research, we, first, focused on working-age population; second,
harnessed activity tracking for a longer period to analyze
regularity of circadian activity rhythms; and, third, used fasting
blood samples to get cardiometabolic biomarkers. This allowed
us to go beyond standard metrics available from consumer-grade
fitness trackers. Thus, the objective of this study was to
investigate the associations between different activity metrics
retrievable from a consumer-grade fitness tracker and major
modifiable biomarkers of cardiometabolic disease, relying on
prolonged activity monitoring.

Methods

Study Design and Participants
The data used in this paper were obtained from a workplace
cohort study conducted in Singapore by the Nanyang
Technological University (NTU) [42]. In total, four
organizations agreed to join the study: two from the transport
industry, a cooling plant, and a university. Healthy volunteers
from these organizations were invited to participate in the study
via meetings, workplace posters, and emails (for more details
on the recruitment process, refer to the study by Dunleavy et al
[42]). The NTU institutional review board approved the study
protocol and informed consent form (IRB application reference:
2015/2601).

Measurements

Health Outcomes: Cardiometabolic Disease Risk
Biomarkers
In accordance with the American Heart Association guidelines
[43,44], cardiometabolic syndrome is determined by an
abnormal condition of the following characteristics: waist
circumference (or waist-to-hip ratio), blood pressure, TG, HDL
cholesterol, and BG. Hence, we considered the following clinical
biomarkers in this study: BMI, waist circumference, waist-to-hip
ratio, SBP, DBP, fasting levels of total cholesterol, HDL and
low-density lipoprotein (LDL) cholesterol, TG, and BG.

Standardized self-report questionnaires were used to collect
sociodemographic and health behavior characteristics. Trained
staff performed clinical measurements, such as height, weight,
and waist and hip circumferences, according to a standard
protocol using standardized tools [15]. Height was measured
using a stadiometer (Seca 217) to the nearest 0.1 cm, and weight
was measured in light clothing using a digital scale (Seca 874)
to the nearest 0.1 kg. Waist and hip circumferences were
measured using a stretch-resistance tape (Seca 201). Waist
circumference was measured at the midpoint between the lower
margin of the last palpable rib and the top of the iliac crest (hip
bone). Hip circumference was measured at the maximum
circumference over the buttocks. BMI was calculated as weight
in kilograms divided by the square of height in meters.
Waist-to-hip ratio was calculated as the ratio between waist and
hip circumferences. Blood pressure, in accordance with the
National Health and Nutrition Examination Survey protocol
[45], was measured over the right arm using an appropriate cuff
size with an automatic digital blood pressure monitor (Dinamap
Pro100V2; Criticon). The average value of the 3 readings taken
with 2-min intervals was used.

Venous blood samples were collected from participants in a
fasting state (at least 8 hours) by trained phlebotomists. A
maximum of approximately 11 mL of blood was drawn into 2
tubes—8 mL in plain and 3 mL in fluoride tubes. Blood samples
were transported immediately, in cooler boxes (4°C), to an
internationally accredited laboratory for analysis. Blood samples
were processed using the hexokinase method for plasma glucose
and enzymatic methods for serum lipids on a COBAS 6000
analyzer, using kits supplied by Roche Diagnostics. LDL
cholesterol was estimated using the Friedewald equation for
those with TGs ≤ 4.52 mmol/L [46], whereas for the rest, values
estimated by the direct method were used. Serum
25-hydroxyvitamin D concentrations were measured using the
chemiluminescence immunoassay method on a Cobas e 411
analyzer with kits supplied by Roche Diagnostics.

Explanatory Variables: Activity Tracker–Based Metrics
Fitbit Charge 2 devices (a consumer-grade fitness tracker) were
used in the study to collect activity data. The accuracy of Fitbit
devices in collecting activity data has been tested in multiple
studies [47-51]. According to a systematic review [49], studies
have indicated that Fitbit wearables were likely to provide
comparatively accurate (ie, similar to research-grade monitors)
measures of step counts and sleep duration in free-living
conditions. However, Fitbit wearables less accurately measure
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energy expenditure, underestimating sedentary time and
overestimating time spent in MVPA [49,51].

Participants wore Fitbit devices on their wrists for a period of
23 days. As the first and the last days of wearing the fitness
tracker were partial days, the total observation period was 21
days (3 weeks) of continuous tracking. Participants were
instructed to wear the Fitbit tracker all day and to remove only
when taking a shower or to charge it. In addition, participants
were instructed to open the Fitbit mobile app and allow it to
synchronize with the tracker once every mealtime and to not
change any settings in the Fitbit app for the period of the study.
To check the completeness of the activity tracking, we counted
the number of hours per day with recorded HR data. Participants
with a minimum of 14 days with greater than or equal to 18
valid hours each (maximum of 6 missing hours per day) were
included for further analysis.

The fitness tracker records the data to the participant’s own
Fitbit account through the official Fitbit mobile app on the
participant’s mobile phone. The data were saved on Fitbit’s
own server, and participants gave consent for Fitbit to send their
data to our data collection server, after which the data were
automatically retrieved and saved by the server. Our data
collection server was situated within NTU’s network on a
password-protected computer located within the Culture Science
Institute’s Bio-Cognitive Laboratory. The server maintained a
list of registered Fitbit accounts and sent daily requests through
the Web application program interface to retrieve data from
Fitbit’s own server database. Fitbit Charge 2 algorithmically
derives and records the following variables from raw sensor
data: steps, distance, elevation, calories, HR, and a number of
sleep characteristics. Steps, distance, elevation, and calorie data
are available at an intraday level in minute-by-minute intervals.
Intraday HR data are available at 5- or 10-second intervals.

The following wearable-derived activity metrics were considered
in the study: daily average steps, daily average HR, RHR,
DayHR, NightHR, delta of RHR (dRHR), circadian delta of
HR (cdHR), IS of locomotor activity, interdaily variation (IV)
of locomotor activity, daily average sedentary time, and daily
minutes of light-, moderate-, and vigorous-intensity PA.

To determine RHR, DayHR, and NightHR from the fitness
trackers, we followed the approach proposed by Lim et al [41].
RHR was calculated as the average HR of 15-min intervals with
less than or equal to 100 steps. DayHR was obtained by
averaging HR values between 2 pm and 4 pm, whereas NightHR
sampled time points between 2 am and 4 am. dRHR is the
difference between average HR and RHR. cdHR is the
difference between DayHR and NightHR.

We followed the common conception of sedentary behavior
and defined sedentary time as “any waking behavior
characterized by an energy expenditure ≤1.5 metabolic
equivalents (METs), while in a sitting, reclining, or lying
posture” [52]. Hence, to determine sedentary time, we excluded
all sleep intervals and calculated a daily mean of total minutes
with less than or equal to 1.5 METs.

IS is a nonparametric measure that evaluates the
stability/similarity of activity patterns across a series of 24-hour
cycles, that is, the extent to which an individual consistently
follows some regular activity pattern from day to day. IS was
calculated as the variance of the average steps-based 24-hour
daily profile divided by the total variance of all days’ 24-hour
profiles [53]. Higher IS indicates that an individual has a more
stable circadian pattern over the course of observation period
regardless of the overall level of activity, and lower IS indicates
less stability in circadian activity distribution (see Figure 1).

Figure 1. Steps tracking charts. Individuals with relatively high (A) and low (B) interdaily stability but similar total daily steps. x-axis: time in days.
y-axis: steps count. IS: interdaily stability of locomotor activity rhythm.
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To calculate IV of locomotor activity, we obtained a steps-based
daily profile of coefficients of variation for each hour in a
24-hour cycle and took an average of these coefficients. Thus,
IV indicates the average hour-by-hour variation of daily activity
across the observation period regardless of the overall level of
activity. We proposed this metric as alternative to IS, which
aims to assess the same phenomena with a different approach.

The daily duration of light-intensity PA and MVPA was
determined according to the PA guidelines of US Department
of Health and Human Services [54], where moderate-intensity
PA corresponds to energy expenditure from 3.0 to 6.0 METs,
vigorous-intensity PA is above 6.0 METs, and light-intensity
PA is below 3.0 METs. We sampled minutes within these
intervals separately and took an average of the daily sum of
these minutes.

Data Analysis
We clustered participants according to their normalized average
24-hour profiles of steps using k-means cluster analysis (k=3)
to identify groups of participants with similar activity patterns.
Normalization of data allowed us to ignore individual
differences in the absolute daily number of steps and focus on
the temporal pattern of activity distribution. We used steps data
for cluster analysis because step counts are probably the most
accurate Fitbit metric [49].

An additional analysis was done to determine whether a longer
period of tracking provides more stable estimates of RHR than
estimates of RHR sampled from 3-day windows. For this
analysis, we used the Kolmogorov-Smirnov test to compare the
distribution of RHR values from a full period with the
distribution of RHR values sampled from ten 3-day windows
for each participant. Then the fraction of failed tests (with P<.05,
meaning that distributions are significantly different) was
calculated for each participant and on the study sample level.

Spearman rank correlation was used to explore preliminary
associations between continuous activity metrics and continuous
biomarker metrics. A correlation network based on Spearman
coefficients [40] was plotted to display significant associations
between activity metrics and clinical biomarkers.

Multiple linear regression analysis was used to determine the
extent to which each metric of locomotor activity is associated
with clinical biomarkers. For all models, adjustments were made
for age, gender, ethnicity (3 categories: Chinese, Malay, or
Indian), education, and shift work (shift worker or not). Thus,
each regression model includes one explanatory variable

(activity tracker–based metric) and aforementioned covariates.
In addition, pairwise multiple linear regression analysis was
used to investigate the significance and mutual dependence of
activity metrics when two or more of them were found to be
significant predictors of the same outcome from the previous
step of the analysis. Pairwise multiple regression was used
instead of including all predictors at once because the sample
size limits the number of predictors that can be included in a
regression model according to the one in ten rule of thumb
(minimum 10 cases per predictor). Linear model (lm) function
in R was used to execute computation (see Multimedia Appendix
1 for the R code used for data processing and analysis).

Results

Characteristics of Participants
A total of 464 full-time employees (aged ≥21 years) were
recruited and enrolled in the study (Figure 2). Of these, 334
participants were followed up at 12 months, and blood samples
were collected from 214 of them. Three months later, 87
volunteers were issued with consumer-grade fitness trackers to
continuously record their biometric and locomotor activity data.
These participants were randomly selected among those who
confirmed they were going to be at work for 3 weeks (ie, not
planning to be on vacation or on a business trip). In total, 87
participants were tracked for 21 days. Three participants were
excluded because of incomplete activity data (see Table 1). One
participant was excluded from the sample because of extremely
high daily locomotor activity (average daily steps above 24,000)
compared with others. Thus, we had 83 participants with activity
data eligible for further analysis. In addition, there was 1
participant with missed waist circumference and blood pressure
measurements. One outlier was excluded in the regression
models of TG, BG, and LDL. The final sample for body
composition measures was 83 (or 82 for some outcomes because
of missing data), and 70 for blood test analysis (or 69 without
the outlier).

Table 2 summarizes the characteristics of participants. The mean
age of participants was 44.3 years (range 22-65 years), and the
majority of them were male (64/83, 77%). The average step
count was 10,865 steps per day (median 10479.4), and HR and
RHR were 76 (median 75) and 70 (median 69), respectively
(see Multimedia Appendix 2 for the differences in
activity-tracker-based metrics between shift and nonshift
workers).
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Figure 2. Participants flow diagram. BG: blood glucose; DBP: diastolic blood pressure; HDL: high-density lipoprotein; LDL: low-density lipoprotein;
SBP: systolic blood pressure; TG: triglyceride; WC: waist circumference; WHR: waist-to-hip ratio.

Table 1. The distribution of the number of valid days (1702 days in total) among participants (N=84).

Number of participantsNumber of valid days

5321

1520

1019

318

116

115

114
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Table 2. Summary statistics of participants.

ValuesVariable

Sociodemographic characteristics

44.3 (11.9)Age (years; n=83), mean (SD)

Gender, n (%)

64 (77)Male

19 (23)Female

Ethnicity, n (%)

62 (75)Chinese

13 (16)Indian

8 (9)Malay

Education, n (%)

54 (65)Below university degree

29 (35)University degree

Shift worker, n (%)

42 (51)No

41 (49)Yes

Health outcomes: cardiometabolic disease biomarkers, mean (SD)

24.6 (4.4)BMI (kg/m2; n=83)

82.9 (13.2)Waist circumference (cm; n=82)

0.86 (0.08)Waist-to-hip ratio (n=82)

119.9 (13.6)Systolic blood pressure (mm Hg; n=82)

71.8 (10.7)Diastolic blood pressure (mm Hg; n=82)

215.7 (34.6)Total cholesterol (mg/dL; n=70)

57.5 (15.7)High-density lipoprotein (mg/dL; n=70)

129.1 (27.5)Low-density lipoprotein (mg/dL; n=69)

133.4 (77.4)Triglyceride (mg/dL; n=69)

96.6 (14.6)Blood glucose (mg/dL; n=69)

Explanatory variables: activity tracker–based metrics (n=83), mean (SD)

10,865 (2775)Steps (per day)

0.28 (0.11)Interdaily stability of locomotor activity rhythm

1.31 (0.23)Interdaily variation of locomotor activity

76.3 (7.6)Heart rate (bpm)

70.6 (8.1)Resting heart rate (bpm)

5.7 (1.9)Delta of resting heart rate (bpm)

81.5 (9.1)Daytime heart rate (bpm)

64.1 (8.1)Nighttime heart rate (bpm)

17.4 (5.7)Circadian delta of heart rate (bpm)

787.9 (99.3)Sedentary time (min/d)

1202.9 (60.2)Light-intensity PAa (min/d)

205.4 (55.1)Moderate-intensity PA (min/d)

31.6 (16.1)Vigorous-intensity PA (min/d)

237.1 (60.2)Moderate-to-vigorous PA (min/d)
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aPA: physical activity.

We obtained 3 groups of sizes—35, 34, and 14 individuals,
respectively—using k-means cluster analysis. Visualization of
normalized 24-hour activity profiles (Figure 3) showed that
clusters differ in the number of activity peaks, having 3
(morning, lunch, and evening), 2 (morning and evening), or 0
clear peaks throughout a day. The absence of clear peaks in the
average activity profiles from the B cluster might be the result
of both stable and evenly distributed activity or irregularity and
inconsistency in the daily activity of the participants from this
cluster. As data clustering indicated a meaningful division of

participants, cluster membership was also used as a single
categorical predictor of cardiometabolic disease biomarkers in
further analysis.

Finally, an additional analysis of stability of RHR indicated that
RHR estimated within 3-day windows is different from RHR
estimated from the full period (3 weeks) in half of the cases.
The sample level fraction of failed Kolmogorov-Smirnov tests
was 0.49 (P values of all Kolmogorov-Smirnov tests are
presented in Multimedia Appendix 3). Therefore, we used RHR
estimated from the full period in further analysis.

Figure 3. Visualization of normalized average 24-hour activity profiles by clusters. A: first cluster (N=35); B: second cluster (N=34); C: third cluster
(N=14). Each line represents an individual within a cluster. x-axis: hours in a daily cycle. y-axis: average number of steps normalized by an individual
sum of steps in average 24-hour profile.

Associations Between Activity Tracker Metrics and
Cardiometabolic Disease Biomarkers
Exploratory correlation analysis (Figure 4) showed there were
a number of significant monotonic associations (absolute values
of Spearman rank correlation coefficients varied from 0.22 to
0.38) between activity metrics and continuous biomarker values.
Only 6 of 10 cardiometabolic biomarkers were significantly
associated with activity tracker–based metrics: BMI, waist
circumference, waist-to-hip ratio, SBP, HDL, and TG. Almost

all activity metrics were associated with some biomarkers,
except for moderate-intensity PA and cdHR. Sedentary time,
NightHR, dRHR, and IS had the greatest number of significant
associations with biomarkers.

Further regression analysis showed that a number of activity
metrics were significantly associated with BMI, waist
circumference, waist-to-hip ratio, HDL, and TG, although there
were no significant associations for LDL, BG, blood pressure,
and total cholesterol (Table 3).
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Figure 4. Correlation network of cardiometabolic disease biomarkers and activity tracker metrics. Only associations significant at P<.05 were displayed.
Width of lines is proportional to absolute value of Spearman coefficients that vary between 0.22 and 0.38. BG: blood glucose; DayHR: daytime heart
rate; DBP: diastolic blood pressure; dRHR: delta of resting heart rate; HDL: high-density lipoprotein; HR: heart rate; IS: interdaily stability of locomotor
activity rhythm; IV: interdaily variation of locomotor activity; LDL: low-density lipoprotein; MVPA: moderate-to-vigorous physical activity; NightHR:
nighttime heart rate; PA: physical Activity; RHR: resting heart rate; SBP: systolic blood pressure; TG: triglyceride; WC: waist circumference; WHR:
waist-to-hip ratio.

Blood biomarkers of cardiometabolic disease were significantly
associated with steps-based metrics only. The number of daily
steps was negatively associated with TG (beta=−6.8 per 1000
steps; 95% CI −13.0 to −0.6; P=.04), so participants with more
daily steps had lower levels of TG. IS was negatively associated
with TG (beta=−27.7 per 10% change; 95% CI −48.4 to −7.0;
P=.01) and positively associated with HDL (beta=5.4 per 10%
change; 95% CI 1.8 to 9.0; P=.005), so participants with higher
IS had higher levels of HDL and lower levels of TG. Note that
the significant associations between IS and blood biomarkers
were independent of all confounders, including shift work.
Patterns of circadian activity were also significantly associated
with blood biomarkers of cardiometabolic disease independent
of all confounders, including shift work. Participants from
cluster B, whose daily activity was distributed more evenly
without clear peaks, had worse indicators of cardiometabolic
health, lower HDL (beta=−9.7; 95% CI −17.4 to −2.0; P=.02)
and higher TG (beta=66.0; 95% CI 24.1 to 107.9; P=.003),
compared with participants from clusters A and C with clear 2-
or 3-peak patterns. Subsequent pairwise multiple analysis for
HDL showed that IS remained a significant predictor when
additionally adjusted for cluster membership, whereas cluster
membership became nonsignificant (see Multimedia Appendix
5). Pairwise multiple regression analysis for TG indicated that
IS remained a significant predictor after adjustment for steps
and cluster membership; steps remained significant after
adjustment for cluster membership, but it lost significance after
adjusting for IS; and cluster membership remained a significant

predictor after adjusting for IS and steps (see Multimedia
Appendix 5).

Body composition biomarkers of cardiometabolic disease were
significantly associated with metrics based on energy
expenditure and HR-based metrics. Sedentary time was
positively associated with BMI (beta=.1; 95% CI 0.003 to 0.2;
P=.047), so participants with more sedentary time had a higher
BMI. However, this association had borderline significance.
Vigorous-intensity PA was positively associated with BMI
(beta=.7; 95% CI 0.2 to 1.1; P=.01) and waist circumference
(beta=1.9; 95% CI 0.6 to 3.2; P=.005), so participants with more
time spent in vigorous-intensity PA had a higher BMI and a
higher waist circumference. RHR was positively associated
only with waist-to-hip ratio (beta=.02; 95% CI 0.001 to 0.03;
P=.04), whereas dRHR (the difference between overall average
HR and RHR) was negatively associated with BMI (beta=−0.5;
95% CI −1.0 to −0.1; P=.01) and waist circumference
(beta=−1.3; 95% CI −2.4 to −0.2; P=.03). Lower RHR in
relation to overall HR was associated with lower BMI and waist
circumference values. Subsequent pairwise multiple analysis
for BMI indicated that sedentary time together with
vigorous-intensity PA remained significant predictors, as well
as vigorous-intensity PA together with dRHR, whereas sedentary
time paired with dRHR became nonsignificant (see Multimedia
Appendix 5). Pairwise multiple analysis for waist circumference
demonstrated that vigorous-intensity PA together with dRHR
remained significant predictors after mutual adjustment (see
Multimedia Appendix 5).

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 1 | e16409 | p. 9http://mhealth.jmir.org/2020/1/e16409/
(page number not for citation purposes)

Rykov et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Associations between wearable-based metrics of physical activity and common cardiometabolic disease risk markers.

Body compositionBlood biomarkersActivity tracker-based met-

ricsa

Waist-to-hip ratioWaist circumferenceBMITriglycerideHigh-density lipoprotein

P valueBeta (95%
CI)

P valueBeta
(95% CI)

P valueBeta
(95% CI)

P valueBeta (95%
CI)

P valueBeta (95%
CI)

——————.04−6.8
(−13.0 to
−0.6)

——bSteps (×1000)

——————.01−27.7
(−48.4 to
−7.0)

.0055.4 (1.8 to
9.0)

Interdaily stability of loco-
motor activity rhythm (×0.1)

——————.00366.0 (24.1
to 107.9)

.02−9.7 (−17.4
to −2.0)

Cluster B

————.0470.1
(0.003 to
0.2)

————Sedentary time, minutes
(×10)

——.0051.9 (0.6
to 3.2)

.010.7 (0.2
to 1.1)

————Vigorous-intensity physical
activity, minutes (×10)

.040.02 (0.001
to 0.03)

————————Resting heart rate, bpm
(×10)

——.03−1.3
(−2.4 to
−0.2)

.01−0.5
(−1.0 to
−0.1)

————Delta of resting heart rate,
bpm

aThe table shows unstandardized coefficients (beta), 95% CI, and exact P values of activity metrics as predictors of cardiometabolic disease biomarkers
in multiple linear regression models. For each predictor, adjustments were made for age, gender, ethnicity, education level, and shift work. Only
significant coefficients reported. Coefficients of adjusted covariates are omitted. The full results are provided in Multimedia Appendix 4. For steps, the
effect is for each additional 1000 steps; for IS, the effect is for each 0.1 change in score; for sedentary time and vigorous-intensity physical activity, the
effects are for each additional 10 min of time spent in respective activity; for RHR, the effect is for each additional 10 bpm.
bNonsignificant coefficients are omitted. The full results are provided in Multimedia Appendix 4.

Light-intensity PA, moderate-intensity PA, MVPA, average
HR, DayHR, NightHR, cdHR, and IV did not indicate any
significant associations with cardiometabolic disease
biomarkers.

Discussion

Principal Findings
We explored the relationships between metrics of locomotor
activity and regularity in circadian rhythms derived from a
consumer-grade fitness tracker and risk biomarkers of
cardiometabolic disease in a multiethnic Asian working
population in Singapore. We found that blood biomarkers of
cardiometabolic disease (HDL cholesterol and TGs) were
significantly associated with steps-based activity metrics (daily
steps, IS, and different patterns of circadian activity), whereas
body composition biomarkers (BMI, waist circumference, and
waist-to-hip ratio) were significantly associated with energy
expenditure–based and HR-based metrics (sedentary time,
vigorous-intensity PA, RHR, and dRHR). These associations
were significant, independent of age, gender, ethnicity,
education, and shift work. One of our principal findings is that
the stability of circadian activity rhythm was significantly
associated with blood biomarkers of cardiometabolic health
independent of shift work, which along with jet lag is considered
the strongest disruptor of normal circadian biorhythms and bears

a higher risk of developing cardiovascular diseases [55,56],
metabolic syndrome, and type 2 diabetes [57,58]. Moreover,
the association between IS of circadian rhythm and HDL
cholesterol and TGs did not depend on the overall activity level
(the number of daily steps), which indicates that a stable activity
rhythm may be beneficial for cardiometabolic health at any
level of activity. Patterns of circadian activity were also strongly
associated with blood biomarkers, which means that some daily
regimes may be more beneficial for cardiometabolic health than
others regardless of the stability of these regimes. Finally, we
found that vigorous-intensity PA was positively associated with
BMI and waist circumference, meaning that participants who
spent more time engaging in vigorous-intensity PA had higher
BMI and waist circumference. Overall, these results contribute
to the sparse but growing evidence on, first, the benefits of
regular and stable locomotor activity for cardiometabolic health,
and, second, the potential public health value of consumer-grade
fitness trackers in population health monitoring and
cardiometabolic disease risk prediction.

Strengths and Limitations
This study has several strengths. First, a reasonably long period
of continuous activity tracking (21 days) was involved, which
enabled a more precise assessment of the stability and regularity
of circadian activity as well as the level of habitual PA and HR
in different states and conditions. Second, we used a wide range
of measures based on different wearable data, which evaluated
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everyday activity in a comprehensive way. Third, we used IS,
a nonparametric measure of the activity rhythm, instead of more
common parametric measures. IS is not based on any
assumptions about the pattern of the rhythm and hence allows
assessment and comparison of the regularity of circadian activity
between individuals with different lifestyles. Fourth, regarding
clinical measurements, we followed standard operating
procedures and collected fasting blood samples, which allowed
us to use TGs and fasting BG as biomarkers. Finally, in the
statistical analysis, we used linear regression models adjusted
for a range of potential confounders, including age, gender,
ethnicity, education, and shift work, which allowed us to
robustly estimate the linear effect of wearable-derived predictors
on continuous measures of biomarkers.

The main limitations of the study are the relatively small sample
size (N=86), time gap (3 months on average) between clinical
measurements and activity tracking period, and the limited
accuracy of Fitbit wearables in measuring energy-expenditure
metrics. As we studied a working population that did not change
their job over the course of the study, it is acceptable to assume
that their behavior and activity patterns were habitual and stable
over time. Although we cannot exclude the influence of other
multiple contextual factors on the locomotor activity of
participants between clinical measurements and activity tracking,
such a time gap is not unusual in cohort studies that include an
activity tracking component [26]. We found that study
participants were highly active in terms of time spent in MVPA,
having on average 237 min per day of MVPA and more than
30 min per day of vigorous-intensity PA, much more than
meeting PA guidelines [54]. These estimates should be
interpreted with caution because Fitbit wearables tend to
progressively overestimate the time spent in higher intensity
activities [49]. Another limitation is the threshold of a minimum
daily wearing time of Fitbit trackers to include a day into the
analysis—set to at least 18 hours per day (75% of daily time).
This threshold may affect the results of the analysis because
missing 6 hours per day is still a significant gap. However, the
use of the less strict time gap compared with, for example, 4
hours that is common in actigraphy research brings our study
closer to real-life conditions and enables us to explore the
potential of consumer-grade wearables in health risk prediction
more realistically. In addition, given that the overall observed
level of activity (steps) is quite high, we assume that most
missing hours did not affect the active phases of the monitored
days. An additional limitation concerns the definitions of
HR-based metrics, which should be appraised with caution
because there is no formal theory-based rationale underpinning
them. For example, sampling HR between 2 pm and 4 pm for
measuring DayHR can be affected by proximity to a postprandial
period or other daily events. Finally, this study has a
cross-sectional design, which limits the possibility of making
causal inferences.

Comparison With Previous Research
The results of our study are mostly consistent with previous
research. First of all, data of fitness tracker–based metrics
obtained in our study, namely daily steps and RHR, were similar
to the data from the recent study in the same population
(Singapore residents) [41].

Second, our findings complement the extant literature on the
effects of objectively measured sedentary time and PA on
cardiovascular and metabolic health. We found that more daily
steps were significantly associated with lower TG after
adjustment for confounders, which is consistent with a previous
study [41]. Furthermore, correlation analysis indicated that
longer daily sedentary time was associated with higher BMI,
higher waist circumference, higher waist-to-hip ratio, higher
TG levels, and lower HDL [11-22]. However, contrary to
previous research, only the association between sedentary time
and BMI remained marginally significant after adjustments for
age, gender, ethnicity, education, and shift work in the regression
models. We hypothesize that this may be because of insufficient
power of our study compared with previous research as well as
because of the lower accuracy in measuring calorie expenditure
by Fitbit wearables compared with research-grade actigraphs.
In addition, we did not find associations between
cardiometabolic disease biomarkers and light-intensity PA,
moderate-intensity PA, or MVPA. Moreover, contrary to
previous findings, our analysis showed that participants spending
more time engaging in vigorous-intensity PA had a higher BMI
and waist circumference. This may potentially be explained by
overweight participants already being concerned with their body
condition and thus spending more time exercising during the
study. Alternatively, this finding may potentially be related to
the limited accuracy of Fitbit wearables in measuring energy
expenditure and the tendency to overestimate the time spent in
higher intensity activities [49], which may have substantial
impact on the result.

Third, we found that RHR metrics were associated with body
composition markers of cardiometabolic disease risk, including
BMI, waist circumference, and waist-to-hip ratio, but not with
blood biomarkers, which partially replicates earlier evidence
[3,41]. Note that RHR was associated only with waist-to-hip
ratio, whereas dRHR was associated with BMI and waist
circumference. A lower number of significant associations might
be explained by the insufficient power of the sample size (86
vs 233 participants) or the time gap between clinical
measurements and activity tracking. However, having a longer
period of activity tracking compared with the study by Lim et
al [41] (21 days over 3 days) suggests that our estimates of RHR
are more stable than their study. RHR sampled and estimated
within a 3-day period is more sensitive to random fluctuations,
for example, because of higher activity on 1 day, and, therefore,
can have more skewed distribution compared with RHR
obtained from a longer period.

Finally, harnessing longer activity tracking, we explored the
effects of regularity in circadian activity rhythms on
cardiometabolic disease biomarkers, going beyond standard
metrics available from consumer-grade fitness trackers.
Nevertheless, our findings are consistent with the previous
studies investigating the clinical value of activity rhythms in
respect of cardiometabolic risk or related biomarkers [23,24].
Our data indicate a strong positive association of IS with HDL
cholesterol and a significant negative association with TG, both
independent of sociodemographic confounding factors and when
adjusted for steps or different activity patterns. Despite a much
smaller sample size, our study has several advantages in contrast
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to previous research. First, both studies were limited by an
elderly population, and one study considered only older men,
whereas we studied working-age population (aged 21-65 years).
Second, both studies used research-grade actigraphs, whereas
we used consumer-grade fitness trackers and obtained similar
results. Consumer-grade wearables are much more affordable
and common among the general population and, therefore, have
a higher potential value for public health, enabling predictive
health monitoring on a population scale. Third, the duration of
activity tracking in both studies did not exceed 7 days, whereas
we collected wearables’ data for 21 days. Longer tracking
enables one to more precisely infer an average profile of daily
activity and estimate the IS. Fourth, only Sohail et al [24]
directly analyzed relationships between IS and cardiometabolic
disease risk markers, but they collected nonfasting blood
samples and so could not investigate associations with TG and
BG. Thus, our study is the first to report a significant association
between steps-based IS and TG, an important blood biomarker
of metabolic syndrome.

Possible Mechanisms
How might rhythms of locomotor activity be related to
cardiometabolic health? Circadian rhythms are cyclic
biochemical processes with a 24-hour period, which play a
crucial role in physiology and metabolism [59]. Circadian
biorhythms are controlled by molecular circadian clocks, which
are present in many cells and synchronize internal biological
functions with environmental conditions [60]. External stimuli,
called Zeitgebers, mainly light and food intake, can change the
phase of a circadian oscillator and entrain circadian clocks.
Hence, the misalignment of Zeitgebers and intrinsic circadian
clocks entail consequences for metabolic processes and health.
Experimental studies in humans demonstrated that circadian
misalignment (shift of active phase from habitual time) imposes
adverse cardiometabolic implications—decreased leptin,
increased glucose, increased arterial pressure [61], and also
disruption in free fatty acids and TGs [62]. Disruption of normal
circadian rhythms because of shift work, chronic jetlag, artificial
light, or poor sleep impacts human health and increases the risk
of many diseases, including obesity, type 2 diabetes, and various
cardiovascular diseases [56,63,64]. According to a recent review,

locomotor activity modulates the molecular clock in skeletal
muscle, affecting both the amplitude and phase of circadian
rhythms [65]. Besides, it was found that the muscle molecular
clock does not synchronize rapidly with the changes in the
behavioral cycle [62]. Here, relying on previous research and
our findings, we cautiously assume that unstable locomotor
activity rhythms, even because of commuting to work, breaks,
or any other locomotor activity occurring at different times, do
not allow circadian clocks to align with these activity rhythms
and establish a stable internal biorhythm and, therefore, provoke
disruptions in metabolic functioning. Moreover, as IS is a
nonparametric measure, we may assume that stable and regular
rhythms in locomotor activity, regardless of shift work and
alignment with day-night cycle, contribute to better
cardiometabolic outcomes.

Conclusions and Future Research
Wearable fitness trackers enable the collection of biometric
data, such as steps, HR, and sleep characteristics, at a low cost
and at a population scale, which might have clinical value and
public health implications. Our findings suggest that
consumer-grade fitness trackers can provide insightful
information with respect to the risk factors of cardiometabolic
disease. We employed the measure of IS in circadian activity
rhythms based on steps and show that this metric can be used
for personalized risk prediction. With wearables, people can
monitor their biometrics and activity, enabling early detection
of deviations in digital biomarkers. In addition, wearables can
be used to increase control over modifiable behavioral and
lifestyle risk factors of cardiometabolic disease.

The molecular mechanisms underlying the effects of activity
rhythms on the risk biomarkers of cardiometabolic disease
require additional longitudinal and experimental studies, and
results need to be confirmed in other populations. Future
research examining the utility of consumer-grade fitness trackers
should focus on the prognostic prediction of health outcomes
in free-living conditions using wearable data and recent
advances in machine learning. The development of highly
accurate predictive algorithms that combine different data and
digital markers in a single model is one of the main targets in
this field.
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