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Abstract

Background: The use of location-based data in clinical settings is often limited to real-time monitoring. In this study, we aim
to develop a proximity-based localization system and show how its longitudinal deployment can provide operational insights
related to staff and patients' mobility and room occupancy in clinical settings. Such a streamlined data-driven approach can help
in increasing the uptime of operating rooms and more broadly provide an improved understanding of facility utilization.

Objective: The aim of this study is to measure the accuracy of the system and algorithmically calculate measures of mobility
and occupancy.

Methods: We developed a Bluetooth low energy, proximity-based localization system and deployed it in a hospital for 30 days.
The system recorded the position of 75 people (17 patients and 55 staff) during this period. In addition, we collected ground-truth
data and used them to validate system performance and accuracy. A number of analyses were conducted to estimate how people
move in the hospital and where they spend their time.

Results: Using ground-truth data, we estimated the accuracy of our system to be 96%. Using mobility trace analysis, we generated
occupancy rates for different rooms in the hospital occupied by both staff and patients. We were also able to measure how much
time, on average, patients spend in different rooms of the hospital. Finally, using unsupervised hierarchical clustering, we showed
that the system could differentiate between staff and patients without training.

Conclusions: Analysis of longitudinal, location-based data can offer rich operational insights into hospital efficiency. In
particular, they allow quick and consistent assessment of new strategies and protocols and provide a quantitative way to measure
their effectiveness.

(JMIR Mhealth Uhealth 2020;8(10):e19874) doi: 10.2196/19874
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Introduction

Background
Hospitals and clinical contexts are spaces in which physical
attributes are often closely linked to organizational procedures,
processes, and protocols. Thus, the movement of people within
a hospital can be thought of as the physical manifestation of a

particular process. For instance, when a patient visits the hospital
for surgery, a particular sequence is expected to be followed:
admission, preparation, anesthesia, operation, and recovery.
The patient progresses along this sequence by moving through
the different rooms and spaces of the hospital. Similarly, staff
movement is closely linked to organizational processes. Further,
these rooms are highly specialized locations and serve specific
clinical and operational functions.
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In this paper, we demonstrate how to take advantage of this
close link between physical movement and functional and
organizational processes in hospitals to generate operational
insights. Specifically, we show how capturing and studying the
longitudinal movement of people in a hospital can provide
insights into the operational characteristics and efficiency of
the hospital. We show multiple analyses where long-term
mobility patterns help us quantify a hospital’s operational
efficiency.

Hospitals are no strangers to localization technologies [1].
Indoor localization has seen significant technological
improvements in recent years [2]—the relatively inexpensive
Bluetooth low energy (BLE) beacons and Apple’s iBeacon
standard have brought indoor localization closer to mainstream
use. Most of the applications in hospitals and clinical settings
have focused on process mining [3] or real-time localization
[4], that is, locating people or assets quickly and accurately.
However, the data collected by such real-time systems are
typically discarded and not accumulated for long periods. One
reason for the lack of interest in longitudinal analyses is that
we currently lack a movement-centered representation that is
flexible enough to work with a variety of localization systems,
which also allows researchers to study people’s flow across
indoor spaces and rooms.

Yet, outside clinical settings and health care, an increasing
number of studies suggest that long-term localization data can
provide meaningful insights in workplaces where efficiency is
of the essence and where the flow of people and assets can be
optimized by studying and analyzing their movements. For
instance, construction sites aim to minimize the movement of
heavy assets to reduce hazards and ensure a safer working
environment, and researchers are currently working on similar
projects [5]. Similarly, hospitals have an interest in reducing
the downtime of operating rooms (operating rooms) as they can
cost up to Aus $1500 (US $1063) per hour when in standby [6].
This means that hospitals are strongly motivated to develop
policies and standards that reduce the downtime of expensive
facilities such as operating rooms. However, it can be
challenging to accurately describe why facilities have downtime
or why patients have to wait for long periods.

Contribution
In this paper, we present a room- and movement-centered
analysis of longitudinal, indoor localization data, focusing on
the semantics of hospital rooms and their role in the workplace
workflow. By analyzing this data, we were able to measure the
occupancy levels of different rooms, understand how much time
patients and staff spent in each phase of the treatment process,
and visualize and quantify the movement of patients and staff
over time. We present an overview of the system we developed

and deployed, the challenges we faced, and the insights we
generated by analyzing the longitudinal movement data of staff
and patients. We tested and validated our approach in a
long-term deployment in the ward of a public teaching hospital
with 7 operating theaters. Previous works have looked at
gathering insights from indoor localization systems in different
settings: music festivals [7], museums and galleries [8], and
clinical environments [9]. However, these works do not provide
a long-term analysis, focusing instead on single-time events or
short-term data collection.

From a technical standpoint, the contribution of our work is in
the development of algorithms that can analyze longitudinal
indoor localization data and generate high-level insights with
minimal training and without an understanding of the specific
application domain (eg, hospitals). Researchers in the field of
geographic information sciences have tackled a similar challenge
of abstracting indoor spaces [10] from a theoretical point of
view, which has been shown to be useful in the modeling of
movements in clinical settings [11]. To the best of our
knowledge, this study is the first to invert the role of Bluetooth
tags and anchor nodes in a longitudinal deployment. From a
clinical perspective, our work demonstrates how localization
systems can be used to generate operational and efficiency
measures in clinical settings.

Methods

Overview
We developed a system that captures the movement of staff and
patients through the operating ward of a hospital, which spans
a single upper floor. Our technological implementation, which
we describe next, considers a range of requirements in terms of
range, precision, and power consumption. During our study,
the staff members we observed, including nurses, surgeons, and
technical staff, had a range of roles. We also captured patients’
journeys through the various rooms of that ward, starting from
the reception room to the preoperative rooms (daily process
unity [DPU] for preparation) anesthetic rooms, operating rooms,
and recovery rooms before discharge.

On the basis of discussions and interviews with staff members,
we produced a directed graph, as presented in Figure 1, which
shows the expected journey of a patient in this ward, from the
moment they arrive at the reception to the time of discharge.
As part of our aim to quantify the operational performance at
this hospital, one of our objectives was to understand what the
true patient journey looked like as opposed to the expected
journey. This entailed looking at how much time each stage of
the journey took and where staff members spent most of their
time.
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Figure 1. Graph representing the expected journey of a patient through the ward.

Indoor Localization System
Hospitals are logistically challenging environments where
efficiency and patient care are of utmost importance. Therefore,
tracking solutions involving bulky devices that require frequent
maintenance and attention are not appropriate for such a setting.
Thus, the system we deployed had to be unobtrusive, effortless
to manage, and reliable. Given that rooms play an important
operational role in hospitals, we were only interested in
capturing location at the room level and not at a more granular
scale, such as the specific coordinates of the people being
tracked. Therefore, we were able to use a proximity-based indoor
localization system. These systems have been around for many
years [12] and have been used in a multitude of scenarios
without deploying substantial infrastructure [13]. The following
requirements had the most significant impact on our choice of
the localization system:

• Proximity-based localization systems require fixed hardware
at a known location and mobile hardware that can infer its
location when it comes close to fixed hardware. Due to the
hospital’s hygiene policies and their privacy requirements,
nurses, surgeons, and patients may not be carrying their
phones at all times. Further, patients who are about to have
an operation are not able to carry any devices. Therefore,
in our scenario, mobile hardware (or beacon) carried by
people could not be their phone, and had to be a lightweight
and noninvasive device that did not distract staff and
patients.

• The equipment deployed throughout the theater needed to
have a battery life that kept them running and scanning the
surroundings for as long as possible without reducing their
accuracy.
• Because emergencies often take place, a power socket

may suddenly become essential to staff members;
therefore, equipment should not immediately turn off
when unplugged.

• Staff members often cycle through different
departments in the hospital, making it hard to inform
and educate them regarding our ongoing localization
project. Staff members are instructed to keep the rooms
safe for patients, and any new equipment may seem
suspicious or new to the staff.

• Similarly, patients might not be familiar with such
devices, as they might unplug the anchor nodes or turn
off their tracking device.

• We wanted to minimize the deployment of infrastructure,
which can be disruptive and costly. A number of
localization systems rely on Wi-Fi infrastructure, which is
already present. However, this requires people to carry their
own mobile devices, which is not always possible or
desirable. Similarly, radio-frequency identification (RFID)
systems have been used for localization, but they tend to
have either a very short range of a few centimeters (passive
RFID) or be heavy and noisy (active RFID) [14].

Considering the above requirements in terms of range, precision,
and power consumption, we developed a proximity-based
localization system that uses BLE [15]. The system consists of
Android smartphones deployed as fixed anchor nodes throughout
the hospital floor and RadBeacon Dot iBeacons [16] handed
out to patients and staff members, as shown in Figure 2. The
beacons are small and light enough to be attached to the staff
badge or patient bracelet. This potentially increases adherence
rates, as badges and bracelets are mandated to be worn at all
times.

Typically, BLE-based localization systems rely on beacons as
fixed anchor nodes and smartphones as carried devices [17].
Due to the constraints we have identified, we opted for an
inverted set up where staff members and patients carry a BLE
beacon, while smartphones act as fixed anchors strategically
placed throughout the hospital. To the best of our knowledge,
this is an approach that has not been tested before in a
longitudinal study.
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Figure 2. Beacons handed out to staff and patients; android devices that get mounted to the walls.

Software
We developed a custom Android app that continuously runs a
low energy scan to detect all nearby beacons. The app
continuously runs on the phone and locally stores the received
signal strength indication (RSSI) readings of the received
Bluetooth packets, along with the timestamp in epoch
milliseconds, the minor identification number of the iBeacon
emitting the packet, and the International Mobile Equipment
Identity of the smartphone itself. On a daily basis, each

smartphone uploaded a compressed data file containing the
collected data to our server. A web-based dashboard allowed
us to monitor our deployment, check the state of the smartphone
network, and check for irregularities or mistakes in the
smartphone and beacon labeling and configuration. Smartphones
sent a brief update on their own state, including the last group
of beacons they scanned, their battery level, and charging state,
to the dashboard every few seconds. A screenshot of the
dashboard is shown in Figure 3.

Figure 3. Snapshot of the web-based dashboard used to monitor the deployment and data collection. This was used to ensure the deployment runs as
expected.

Beacon Configuration
According to the manufacturer’s specifications, the beacon
batteries can last between a month and more than a year,
depending on the signal power and the advertisement rate to
which the beacon is set. A lower power or advertisement rate
allows for longer battery life, but the beacon emits its identity
less frequently, meaning that in cases where a beacon is moving
very fast, the anchor point can miss it. Conversely, a higher
power and advertisement rate improves the chances of a beacon
being detected at the cost of fairly short battery life.

Due to the way the hardware is built, the advertisement rate
needs to be set before the experiment. For this reason, we
conducted laboratory measurements to identify the optimal

beacon settings for our scenario. We assumed beacons to be
moving at walking speed and wanted them to be detectable at
room-size distances, in our case, up to 5 m away. We configured
beacons at different advertisement rates (1 Hz, 5 Hz, and 10
Hz) and placed them at varying distances from an anchor node
(1 m, 2 m, and 5 m). In Figure 4, we show the effect of these 2
variables (advertisement rate and distance) on how the anchor
node can detect those beacons (ie, the time between consecutive
received packets). Effectively, this is a measurement of the
number of packets lost. Given these experimental conditions,
we identified that the optimum setting for our scenario, in terms
of battery consumption and packet loss, is 5 Hz. At a frequency
of 1 Hz, we observed an undesirable loss of packets; at a
frequency of 10 Hz, we observed no noticeable performance
improvement, whereas the drain on the battery doubled.
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Figure 4. Laboratory measurements for different beacon advertisement rates (1 Hz, 5 Hz, and 10 Hz) and distance between the beacon and anchor
node (1m, 2m, and 5m). We identified 5 Hz as the optimum setting, in terms of performance and battery consumption.

Deployment
The project was approved by the hospital’s Health Human
Research Ethics Committee. Each fixed anchor node comprises
a plastic container, as shown in Figure 2 containing an Android
HTC U11 smartphone. We deployed our anchor nodes
throughout the ward (Figure 5) and plugged them into the

nearest wall socket. Because our objective was to detect the
presence of a beacon inside any given room, we placed 1 box
in each room of interest after confirming with the staff that the
box would not cause any inconvenience to them or the patients
and that a nearby power source was available. In most of the
rooms, the box was placed under a desk or mounted on a wall.

Figure 5. Unfiltered received signal strength indication readings and ground truth (gray line) for a single beacon moving across rooms. X-axis: time;
y-axis: room identifier; color: RSSI strength (blue: weak; red: strong). RSSI: received signal strength indication.

We handed out RadBeacon iBeacons to staff members (nurses,
theater technicians, and head theater technicians) who attached
them to their badges, as shown in Figure 6. Staff members are
mandated to carry their badges all the time, usually on their
front pocket, or sometimes in their bottom or trouser pocket.

When a beacon was handed out, we made a manual spreadsheet
entry to link the beacon ID to the staff ID. This allowed us to
link the beacon ID to staff roles during our analysis. Staff was
instructed to keep the same beacon during the study and make
a new data entry if they were issued a new beacon.
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Figure 6. Examples of how beacons were handed out. Strapped to a staff badge or to a patient's bracelet.

Patients received their beacon along with their patient bracelets
(Figure 6), as part of the hospital standard admission procedure.
To identify patients, the hospital uses plastic bracelets, which
strapped to their wrists during admission and cut off when they
are discharged. When nurses gave a beacon to a patient, a
spreadsheet entry was manually made to link the beacon ID to
the patient ID. This allowed us to identify which beacon
belonged to which patient during our analysis.

Ground-Truth Collection
Before we began our main deployment, we wanted to validate
the data generated by the system. Ground-truth in localization
refers to the true coordinates of an entity being localized.
Ground-truth data may be collected by researchers independently
through reliable and verifiable means, and is used to validate
the correctness of the localization algorithm and fine tune its
parameters. We systematically collected ground-truth data in
multiple sessions. A researcher carried beacons with them and
traversed the space while manually logging their precise location
and exact time using a smartphone app. In total, we collected
ground-truth data from 18 sessions, each lasting about 15 min
and collected on a single day. All sessions were quite dynamic,
meaning that the researcher moved continuously between rooms,
rather than remaining static at a single location. During these
sessions, we simulated realistic scenarios such as walking down

the halls, entering an operating room, roaming around the
surgery table, and eventually leaving and getting out of the ward
and the tracked area.

Using this ground-truth data, we were able to use our system
and test various filtering and analysis techniques until the trips
captured by the system accurately reflected the ground truth.
We present our results in the next section.

Results

Our main deployment lasted for 30 days in September 2019.
The deployment consisted of 20 anchor nodes installed in
various rooms of the operating ward, including 7 operating
rooms. We collected a total of 35 million packets emitted from
66 beacons handed out to 75 different people during this period.
Some beacons were reused, whereas others were replaced. They
were given to 17 patients by reception nurses (who also retrieved
them when a patient was discharged), 15 nurses, and 7 theater
tech staff.

Collected Raw Data
At the most basic level, our system captures raw signal strength
data, also known as RSSI. For example, Figure 7 shows the
RSSI for beacon 585 in the operating room.
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Figure 7. Received signal strength indication for a single beacon in a single room for a period of 3 min. A stronger signal suggests that the beacon was
closer to the anchor node. RSSI: received signal strength indication; OR: operating room.

There is substantial literature on how to use Bluetooth for indoor
localization purposes, and the reported applications range from
a simple but less accurate triangulation [18] to more accurate
but laborious finger-printing [19]. For our purposes, we were
interested in making room-level inferences about individuals’
presence because rooms are strongly linked to organizational
processes. This means that we did not need to use triangulation
(which requires the deployment of multiple anchor nodes), but
could rely on single proximity measurements to infer the room
within which an individual is. Bluetooth measurements are
notoriously prone to unreliable RSSI readings [20] because of
the physical nature of electromagnetic signals. The
measurements can be affected by the mere presence of a human
body or furniture, and especially walls and floors can attenuate
the received signal thus altering the final RSSI reading. We
actually used these limitations to our advantage by effectively
trapping the signal within our areas of interest, and took
advantage of the fact that signals traveling through walls are
substantially reduced in strength.

Although walls and floors work as natural filters, a post hoc
filter is still necessary because open doors or larger rooms can
cause the signal to bounce off the walls and end up in an
adjacent room. We visualize this phenomenon in Figure 8, where
we show the raw data collected by all anchor nodes in a span
of 13 min for beacon 585. In this graph, we show along the
y-axis the room identifier where beacon 585 was actually
detected. The colored circles indicate the detection and strength
of the signal, with purple showing a weak RSSI and red
indicating a strong RSSI. The graph shows a gray line
corresponding to the true path (ground truth) that the beacon
took through space during this 13 min. As the beacon moved
between rooms (gray line), multiple anchor nodes were able to
detect that beacon (colored circles). The graph also shows that
while the beacon is in a particular room, the signal strength for
the anchor node in that room is higher (bright red circles). Given
the amount of noise in this data, we needed to apply filters to
estimate the path of the beacon through the various rooms of
the hospital.

Figure 8. Unfiltered RSSI readings and ground truth (grey line) for a single beacon moving across rooms. X-axis: time; y-axis: room identifier; colour:
RSSI strength (blue: weak; red: strong).
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Localization Accuracy
Bluetooth-based positioning often uses Kalman filters to smooth
the RSSI values and remove outlier readings. Previous work
[21] shows that although it can improve accuracy, in certain
cases, a median filter can work just as well, but it does not
modify the data. The purpose of filtering is to remove noise so
that the location of a person in a room can be confirmed at the
correct time and with significant signal strength. We evaluated
3 different filters and compared their results with our collected
ground-truth data. Figure 9 shows how the different filters
smoothed the signal for the data presented in Figure 7. The

Kalman and Savitzky–Golay filters (second and third row) were
applied using their respective R package, whereas the median
filter (fourth row) was manually implemented to maximize
flexibility. As expected, the results in Figure 9 show that the
Kalman and the Savitzky–Golay filters fit the data correctly but
fail to smooth out the signal fluctuations enough to provide a
clear pattern, whereas the median filter provides a smooth
estimate that makes it more appropriate for comparison. In our
case, we desired smoothed values because if the data from
different rooms fluctuate substantially, then we were likely to
have interference and infer that the beacon was moving back
and forth between the 2 rooms.

Figure 9. Comparison of three approaches to filter received signal strength indication data. RSSI: received signal strength indication; OR: operating
room.

Next, we needed to determine (1) whether we should use median
filtering on its own or combine it with another filter and (2)
what time window our median filter should use. These decisions
were made based on the analysis shown in Figure 10, where we
show the performance of the median filter when applied to the
raw data and prefiltered data. We also investigated the effect
of different window sizes (between 2 and 60 seconds). Our
results show that the addition of a Kalman or Savitzky–Golay
to the median filter did not improve the accuracy. This means
that our median filter was robust. We also observed that when
using a smaller median time window, the resulting readings
fluctuated considerably, which may lead to interference across
adjacent rooms. On the other hand, a larger median time window
could filter out most of the noise and short bursts of high RSSI
packets, but in turn, it also lost the ability to detect granular
movement; a 60-second window will inevitably miss smaller
events of 10 or 20 seconds. For instance, a staff member visiting
a particular room for 20 seconds, and then moving to another
room may not be detected using a 60-second filtering window.

We used our ground-truth data to evaluate the accuracy of our
system using a range of different window sizes. There is no
universally accepted approach to measuring the accuracy of
data such as ours. Therefore, we adopted an approach in which
we penalized our system for inferring the wrong location at any
given time, but we did not consider the magnitude of the error.
To measure the system accuracy, we split the time series into
intervals of 1 second and compared the ground-truth data with
the reconstructed trace using a string comparison algorithm
(Jaro–Winkler with a prefix scale of 0.25 and cosine distances)
[22].

We observed that the optimum filtering window size was 15
seconds with the median filter, giving an accuracy of 96%. For
smaller window sizes, the accuracy drops by up to 10%. We,
therefore, used this window size in all our subsequent analyses,
meaning that visits to a room that lasted less than 15 seconds
may not be captured, but we will have stronger confidence in
the visits that do indeed get captured.
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Figure 10. Comparison of using only the median filter (green line) versus using it in conjunction with other filters (red and blue). We test performance
at different window sizes. RSSI: received signal strength indication.

Visualization of Movement
Figure 11 shows how our trace reconstruction process was
compared with the ground truth. This figure uses the same
dataset that we have used in all previous figures so far. We note
that this graph shows data for 12 min during which time the

position of the beacon was inferred to be in the wrong room for
about 30 seconds. We also observe that our estimate sometimes
appears to be slightly offset from the ground truth, suggesting
that transitions between rooms were shifted by a few seconds
rather than misclassified, meaning that our approach would not
substantially affect the longitudinal analysis.

Figure 11. Trace reconstruction from our data, as compared to ground truth (grey line).

Using this trace reconstruction approach, we then turned to
visualize and analyze data for longer periods. In Figure 12, we
show the movement of a single nurse during a period of 10 days.
From this graph, we can make a number of inferences. First,
we can see that the nurse typically was at the operating ward
from 9 am to 5 pm, and we can also identify the days when she

was not there (eg, weekends). We can also see that she appears
to spend more time in certain rooms (eg, 22-holding), whereas
she rarely visited other rooms (eg, 12-OR2). We can also see
differences in the patterns between days. For instance, on
Monday and Tuesday, the nurse spent a lot of time in room OR5
(operating theater 5).
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Figure 12. A reconstructed trace for a single nurse over a 10-day period. X-axis: date/time; y-axis: room.

This graph demonstrates 2 things. First, it highlights the richness
in the collected data and indicates the types of inferences that
can be made from the data’s temporal and spatial dimensions.
Second, it demonstrates how visualizing movement traces does
not scale, and indeed it becomes impractical to attempt to
visualize all collected data during the whole month. Therefore,
we must develop ways to summarize all our reconstructed trips
and find meaningful ways to interpret data over long periods.

Operational Insights
Representing the data as a time series of room-based events
makes it easy to visualize patterns in the way people move
through the spaces. Figure 12 shows the reconstructed traces of
a single nurse for 10 days. In this figure, we can identify the

daily and weekly patterns of the nurse and identify the rooms
where most of the time was spent. We repeated this process,
and in our analysis, we reconstructed all trips for all beacons
and people across the entire duration of the study. Due to the
richness of the data, it becomes inconvenient to visualize the
data from all participants in this manner. Therefore, we sought
alternative visualizations that could more clearly highlight
patterns for the entire dataset. We achieved this by visualizing
the occupancy rates of different rooms by different types of
people. In Figures 13 and 14, we visualize the amount of time
spent in each room by nurses and patients. This visualization
confirms that there is a clear distinction between nurses and
patients and the way they share their time across rooms during
the week.

Figure 13. Room occupancy of nurses over a week.
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Figure 14. Room occupancy of patients over a week.

All patients in this study were daily cases and therefore spent
most of their time in the DPU room. Relatively speaking, only
a small fraction of their time was spent in the operating room
or the anesthetic room. In addition, this visualization indicates
that some operating rooms were used more than others. For
instance, OR1 was often used multiple times in the lapse of a
week, whereas the same cannot be said of OR6.

It is important to highlight that our deployment did not recruit
100% of staff and patients. This means that it can be misleading

to calculate the absolute occupancy rates of rooms. For this
reason, in Table 1, we show how much time in total was spent
in a given room by different types of people during our
deployment. A person-day consisted of 86,400 seconds (ie, 24
hours) of presence by a single person. This is a more meaningful
metric that can be used to compare across rooms. Here, we see
that OR1 had the highest occupancy by staff, and the DPUs had
the highest occupancy levels during our deployment. In addition,
we see how much time, on average, patients spent in different
rooms.
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Table 1. Occupancy of different rooms, measured in person-days. Overall occupancy was made up of staff occupancy plus patient occupancy levels.

Patient occupancyStaff occupancyOverall occupancyRoom

0.440.490.9328, reception

0.060.470.5318, ARa1

0.030.540.5730, AR2

0.020.400.4227, AR3

0.010.220.2325, AR4

0.030.190.2317, AR5

00.090.0921, AR6

0.021.371.3923, ORb1

00.340.3412, OR2

0.010.250.2616, OR3

0.020.140.1613, OR4

0.010.810.8326, OR5

00.870.8731, OR6

00.450.4533, OR7

2.330.602.9414, DPUc1

2.780.653.4324, DPU2

00.460.4634, disposal

00.450.4522, holding

0.010.150.1615, recovery 2

0.040.610.6529, recovery 1

0.010.100.1120, hallway

aAR: anesthetic room.
bOR: operating room.
cDPU: daily process unity.

From our analysis, we could calculate how much time, on
average, patients spent in different rooms of the hospital, which
is indicative of how long each stage of the process took. For
instance, we find that patients spent an average of 42 min (SD
55 min) at reception, 8 to 50 min in an anesthetic room (SD
5-28 min), 5 to 20 min in an operating room (SD 2-8 min), 6 to
9 min in recovery (SD 2-8 min), and 3 to 4 hours (SD 14-22
hours) in the DPU before they were discharged.

Finally, our results show that each person may spend a different
amount of time in different rooms. Effectively, the variations

to these patterns can be thought of as a signature of the person’s
role and function. To demonstrate this, we applied a very
simplistic, unsupervised clustering to the data from Figures 13
and 14, and the results are shown in Figure 15. We fed the
clustering algorithm an array of occupancy rates that describe
how each person spent their time across different rooms. The
algorithm then clusters people based on these values (shown as
the dendrogram on the y-axis). We found that the algorithm,
without any additional input or training from us, could identify
2 clusters of patients and 2 clusters of staff (medical staff and
technical support staff).
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Figure 15. Using hierarchical clustering to group people and rooms into similar clusters. The data used for clustering is the time spent per room by
each person tracked. NSxx: medical staff; Pxx: patients; TTxx/HTxx: technical staff.

Discussion

Indoor Localization in Clinical Settings
The use of indoor localization technologies is not new to clinical
settings. In the past, most of the applications in hospitals and
clinical settings focused on real-time localization. In fact, there
are multiple commercial systems or indoor localization
technologies in clinical settings. For instance, IBM developed
the Real-Time Asset Locator

System that relies on ultrasound provides high spatial accuracy
at a substantial infrastructure investment [23]; a similar system
was developed by CenTrak using Bluetooth to provide real-time
localization services [24]. In addition, a number of research
papers have investigated the use of Bluetooth for real-time
localization [25], while also focusing on particular spaces such

as operating rooms [26] or particular patients, such as newborns
[27].

The popularity of real-time localization systems is increasing
because they can provide a number of valuable capabilities. For
instance, they allow staff to quickly call for help, raise alerts
when a patient has wandered into an inappropriate room, and
quickly find mobile equipment or assets when needed. However,
these systems do not typically provide an aggregated overview
and analysis of operational measures and do not provide enough
information to make grounded judgments about the processes
being followed in the hospital. For this reason, hospitals
typically undergo short, intense bursts of observations to map
their activities and movements. These typically last a couple of
weeks and rely on manual data collection, which can be costly,
time-consuming, and subject to the observer effect. In addition,
some systems such as TimeCaT [28] do allow staff to indicate
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their location and activity, but this requires ongoing manual
data entry, which can be time-consuming for staff.

Manual observation stints remain popular because longitudinal
data are useful for measuring and improving efficiency. In fact,
in other process-based disciplines, efficiency has been improved
using longitudinal analyses, including public transport [29],
traffic routing [30], and construction [5]. Therefore, our paper’s
premise is that analyzing long-term mobility patterns can help
us quantify a hospital’s operational efficiency in multiple ways.

System Performance
System accuracy was assessed using our ground-truth data
before the main deployment. During the deployment, we
considered the reliability and robustness of the system. In
general, we found that the system accuracy was consistently
high across all ground-truth tests (96%) in terms of room-level
localization [31]. During the actual deployment, there were a
number of challenges faced. For example, some staff lost or
misplaced their beacon and had to be issued another one. In
these cases, we noted the time when the old beacon was lost
and when the new beacon was issued, and these 2 data points
allowed us to seamlessly analyze the movement of any staff
member. However, these incidents point to a weakness of the
system and indoor localization in general [32], in that it does
not work for people who do not carry their tags. We also found
that our algorithm seems to identify trips that are temporally
shifted by a few seconds from the ground truth. This is a side
effect of using a temporal window to apply the median filter
[33,34], and we believe that in terms of longitudinal analysis it
does not significantly affect the findings. We also found that
the sampling rate of the beacons was adequate, and the beacons
did not face any battery or power issues during our deployment,
as expected [35].

Operational Insights
Our study demonstrates how longitudinal data from a
proximity-based localization system can be filtered, aggregated,
and analyzed to estimate relevant operational metrics related to
mobility and occupancy rates. Specifically, we showed that the
system could estimate how much time, on average, patients
spent at each stage of their treatment process, which rooms they
spent the most time in, and which stage seemed to take most
time. With a larger sample, it would be possible to break down
these results by particular conditions (eg, heart surgery and hip
surgery) and identify trends or outliers within those.

Our system could also provide the same metrics for staff, and
we could estimate where the staff spent their time and identify
daily and weekly patterns in their behavior. We showed that
different types of staff (medical vs technical support) exhibited
different movement patterns, and in fact, a simple hierarchical
clustering was able to identify the presence of these 2 staff
groups.

These metrics can be used to assess the impact of a new strategy
or protocol in the hospital. For instance, the metrics can be
compared before and after a new scheduling system is deployed
at the hospital. The comparison could be used to judge whether
patient journeys are affected (eg, they spend less time at
reception) and whether staff working patterns have substantially

shifted (eg, staff spends relatively more of their time in the
operating theater). In addition, it is also possible to characterize
and study the behavior of other relevant subgroups of staff, such
as junior medical staff. Their behavior can be aggregated and
analyzed to identify how and where they spend their time, and
to ensure that their time is spent effectively and with adequate
support.

Localization Technologies and Representations
From a localization standpoint, our work does not break new
ground in terms of accurately determining the location of people.
Perhaps one unique aspect of our work is our decision to use
an inverted deployment, whereby Bluetooth tags were given to
people, and phones were glued to the wall. Typically, the
opposite occurs; for example, in music festivals [7] or museums
and galleries [8], Bluetooth tags are installed near items of
interest while people carry phones that display information for
nearby items. Our decision meant that there was minimal
disruption to staff and patients, who had to simply carry a light
Bluetooth tag.

However, a technical contribution of our work is our
development of a movement-centered representation that is
flexible enough to work with a variety of localization systems
and settings. This allows our system to be easily redeployed to
other settings, such as schools, universities, and galleries, with
minimal changes. This is possible because we have developed
a data representation that allows us to calculate all the measures
we have presented in this paper, but which remains agnostic of
the space and environment where the deployment takes place.
Effectively, this representation allows researchers to study
people’s flow across abstracted rooms and spaces. Our work
bears a resemblance to temporal abstraction rules [10], which
can be applied to a variety of environments [36], for example,
previous research [11] on a knowledge-based temporal
abstraction of clinical phenomena. However, this approach relies
on time-stamped clinical data, which are, in part, electronic
patient records. Similarly, work on business process
management [37] relies on electronic records to model corporate
operations and functions, and recently, this work has been
applied to clinical settings [38].

Our work, on the other hand, could capture information that
was not necessarily part of electronic patient records, and which
would be too costly to acquire manually. By capturing
movement, we could make inferences about patient journeys
and staff work practices. Similar work has recently looked at
using Bluetooth to assess the levels of physical activity of people
moving inside buildings and consider abstract spaces in graph
form [9]. That work was confined to a handful of small trials,
each lasting a few minutes, whereas our deployment lasted a
month and had dozens of participants. Nevertheless,
conceptually, our work used a similar approach to model space
in an agnostic manner and captured people’s transition between
the various spaces being observed.

Limitations
The deployment we report took place at a single hospital, lasted
30 days, and did not include all patients and staff at the hospital.
We expect that a different hospital or setting might pose
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different challenges to the study. Still, we also point out that
our algorithm analyses do not rely on any particular
characteristic or aspect of the hospital itself. We also
acknowledge that our data are sparse, meaning that there were
many patients and staff that did not have a beacon in our study
and were not observed by the system. For this reason, we argue
that absolute occupancy rates were not particularly meaningful
in our case per se, but we could still compare rooms in terms
of how much time our participants spent there, which is a
relative measure. Finally, the deployment period was not long
enough to capture any potential seasonal effects or any
substantial changes to the policies and protocols used at this
hospital. A long-term deployment, possibly as part of an A to
B study design, would generate more insights on that front.

Conclusions
In this paper, we described the development, deployment, and
evaluation of an indoor localization system for hospitals and
clinical settings. We demonstrated how the analysis of
longitudinal data could provide operational insights regarding
how people inside the hospital move, where they spend their
time, and how much do various rooms get occupied. We also
discussed how these metrics can be adapted to measure a number
of clinical efficiency measures and how they can be used to
evaluate changes to policies and protocols in these settings. As
part of our future work, we plan to extend our system’s
algorithms to evaluate the accumulated exposure of clinical
staff to infected patients, particularly during the COVID-19
crisis.
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