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Abstract

Background: A mobile app generates passive data, such as GPS data traces, without any direct involvement from the user.
These passive data have transformed the manner of traditional assessments that require active participation from the user. Passive
data collection is one of the most important core techniques for mobile health development because it may promote user retention,
which is a unique characteristic of a software medical device.

Objective: The primary aim of this study was to quantify user retention for the “Staff Hours” app using survival analysis. The
secondary aim was to compare user retention between passive data and active data, as well as factors associated with the survival
rates of user retention.

Methods: We developed an app called “Staff Hours” to automatically calculate users’ work hours through GPS data (passive
data). “Staff Hours” not only continuously collects these passive data but also sends an 11-item mental health survey to users
monthly (active data). We applied survival analysis to compare user retention in the collection of passive and active data among
342 office workers from the “Staff Hours” database. We also compared user retention on Android and iOS platforms and examined
the moderators of user retention.

Results: A total of 342 volunteers (224 men; mean age 33.8 years, SD 7.0 years) were included in this study. Passive data had
higher user retention than active data (P=.011). In addition, user retention for passive data collected via Android devices was
higher than that for iOS devices (P=.015). Trainee physicians had higher user retention for the collection of active data than
trainees from other occupations, whereas no significant differences between these two groups were observed for the collection
of passive data (P=.700).

Conclusions: Our findings demonstrated that passive data collected via Android devices had the best user retention for this app
that records GPS-based work hours.

(JMIR Mhealth Uhealth 2020;8(11):e16309) doi: 10.2196/16309
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Introduction

In the past decade, smartphones have become nearly ubiquitous.
Over 3 billion smartphones have internet subscriptions, and

each device has the information processing capacity of
supercomputers of the 1990s [1]. Even in areas without easy
access to clean water, ownership of a smartphone and rapid
access to information have become symbols of modernity [2].
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Although most comparable sources of big data are scarce in the
world’s poorest nations, mobile phones are a notable exception
[3]. Individuals’ history of mobile phone use can be used to
infer their socioeconomic status [4]. Mobile apps could also
help to fill the gap of health inequality, such as that for workers
with extremely long work hours.

User retention is defined as the number of initial users who are
still active in a given time frame. User retention is usually
calculated as the number of those who are still active divided
by the total number of users registered [5]. User retention
enables designers to understand how often the users return to
use the available service of a mobile app. Tracking user retention
is both important and difficult, because the majority of mobile
app users only use apps over a short timeframe [6] and report
that the most important and acceptable components of a mobile
app are ease of use and time, with the average time of use being
9.3 seconds. Gathering enough data to make reliable inferences
of the retention rate over long timespans is also a challenge.
Recently, user retention was adopted as a crucial index to
evaluate the effect and utility of mobile apps designed for
self-management. Previous studies have shown that users benefit
from long-term engagement with an app [7]. However, the lack
of studies with large samples using a mobile app may signal a
need for additional studies on the potential use of a mobile app
to assist individuals in changing self-management behaviors,
such as health behaviors [5].

There were over 90 million documented mental health app
installations by the end of 2018 [8]. Although mobile apps have
been considered a feasible and acceptable means of
administering health intervention, most literature regarding
health apps has focused on preventing and managing chronic
disease, self-monitoring of health behaviors, or content analyses
of health and fitness apps [5]. However, studies investigating
the utility of mobile apps as a health intervention were mostly
executed in empirical study settings. Understanding patterns of
real-world usage of health apps is key to maximizing their
potential to increase self-management of care by the public [8].
Although the number of app installs and daily active minutes
of use may seem high, only a small portion of users actually
use apps for a long period of time [8]. A usage analysis of user
engagement of unguided mental health apps found the general
user retention is poor, with a median 15-day retention of 3.9%
and 30-day retention of 3.3% [8]. Therefore, how to enhance
long-term engagement of real-word usage of health apps may
be crucial for both designers and users.

Passive data are defined as data that are generated without any
direct involvement from the subject, such as GPS traces and
phone call logs. By contrast, active data are defined as data that
require active participation from the subject, such as surveys
and audio samples [9]. Passive data generated by mobile apps
have transformed the manner of traditional assessments based
on active data. In 2003, the Accreditation Council for Graduate
Medical Education implemented work hour limits for all
physicians in training in the United States. However, surveying
medical interns’ compliance with these work hour limits using
a traditional assessment took 2 years, and the national survey
was published in 2006 [10]. In addition, these self-reports could
not reflect fluctuations in work hours in a timely manner,

especially for medical staff with frequent on-call duties.
Nowadays, smartphones offer us objective and ecological
sources of measurement that continuously and passively collect
data. These reliable, quantitative data could facilitate real-time
policy evaluation and target resources to those with the greatest
requirement, even in remote and inaccessible regions. In
addition, policy regarding resident physician work hours has
shifted frequently in recent years [11,12]; assessing user
retention of an app like “Staff Hours” is useful to track the
implementation of a work hours policy, as well as the resident
physicians’ compliance with work hour limits.

We developed an iOS and Android smartphone app called “Staff
Hours” that automatically calculates users’ work hours through
GPS data. This passive data collection by “Staff Hours” is
similar to that of our previous apps, “Know Addiction” and
“Rhythm,” which collect and calculate smartphone screen time
and sleep time, respectively [13-18]. However, these two apps
were experimentally used for months, and user retention of an
app collecting passive data in a natural setting is still unknown.
The inherently dynamic nature of apps adds to the challenge of
developing reliable metrics of app users’ retention. In addition,
mobile app development is largely consumer-led and
commercial-driven, and the evaluation of user retention is often
app-centered and not user-centered. For example, a study
tracking the longitudinal availability of mental health apps
reported that these apps have a half-life; after a certain amount
of time, an app may no longer be available for public use [19].
These app-centered metrics may have a low correlation with
the apps’ clinical utility or usability [20].

Despite the ability of passive data collection by smartphone
apps, little is known about user retention in the real world. Of
particular interest are potential factors associated with the user
retention of mobile apps. We hypothesized that user retention
for passive data collection is higher than that for active data
collection. We further hypothesized that power-saving operating
systems and the target audience increase user retention for
passive data and active data, respectively. The primary aim of
this study was to quantify the user retention for the “Staff Hours”
app using survival analysis. The secondary aim was to compare
user retention between passive data and active data, as well as
factors associated with the survival rates of user retention.

Methods

Participants
We collected data from 421 office workers from August 2018
to March 2019 from the “Staff Hours” database, which is owned
by the National Health Research Institutes. This newly
developed “Staff Hours” app automatically estimates users’
work hours daily through a GPS record using an algorithm. All
participants were volunteers who were interested in their work
hours and had successfully installed this app. We defined any
data uploaded to our server during the first 28 days of their
registration as successful installation of this app. We excluded
79 of the 421 app users who did not provide demographic data
such as gender and age. Otherwise, app users had to provide
their demographic data and occupation. A total of 342
participants (224 men; mean age 33.76 years, SD 7.01 years,
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range 20-59 years) were included in this study. Most of the
participants (286/342, 83.6%) were medical staff, and most of
the medical staff (128/286, 44.8%) were trainee physicians
(resident physicians). The “Staff Hours” app is only available
in Taiwan, and consent was obtained from all users to allow
their data to be collected electronically before installation.
Different versions of this app were available on the Android or
iOS platform. The study was approved by the Institutional
Review Board of the National Health Research Institutes. All
clinical investigations were conducted according to the
principles expressed in the Declaration of Helsinki.

Measures

Designing the App — Staff Hours
The “Staff Hours” app is designed to automatically record GPS
data in the background without interrupting the smartphone
operating system. In the beginning of installation, users have

to provide at least one workplace location; the app can track up
to 5 locations simultaneously. The location is transformed to
longitude and latitude with the Google map format. The process
of recording the GPS-defined work hours is illustrated in Figure
1. The GPS detection range is a 1-km radius around the
workplace, and the recording of work hours starts when the
workplace location is within range for a consecutive 30 minutes.
Similarly, the recording of work hours ends when there is a
consecutive 30-minute period without the workplace within 1
km of the device. To save battery power, the sampling rate of
GPS data is fixed at 10 minutes. The user interface of the “Staff
Hours” app is shown in Figure 2. In addition to GPS-defined
work hours, users can set up their work schedules in this app.
The user-inputted “scheduled work hours” include “regular
work hours” and “on-call duty hours.” Aside from total work
hours, the app also provides the output “overtime work hours”
using the formula of “total work hours” minus “scheduled work
hours.”

Figure 1. Recording process of GPS-defined work hours. In this example, the user walks into and leaves the 1-km radius centered on the workplace
at 8:50 AM and 6:20 PM, respectively. The app then automatically generates GPS-defined work hours in real time (8:50-6:20).

Figure 2. Screenshots of the "Staff Hours" app: (A) home screen and registration; (B) workplace login; (C) data visualization.
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Collecting Passive Data — GPS-Defined Work Hours
Collecting and uploading data to the dedicated lab server occur
automatically in the app background, and no interference with
the daily routine of the smartphone use is observed. “Staff
Hours” collects these GPS-defined work hours in the Android
operating system, but the app stops during background refresh
in the iOS. These GPS-defined work hours data are called
“passive data” throughout this article since the data collection
does not require any active participation from the smartphone
user.

Collecting Active Data — Mental Health Survey
Every morning, there is a notification to remind the app users
to examine their work hour records. On the first day of every
month, this app pushes a notification for an 11-item mental
health survey. This questionnaire includes the Patient Health
Questionnaire (PHQ-9) for depressive symptoms [21],
experience with phantom vibration and ringing syndrome [22],
and one item for quality of life measured on a 4-point Likert
scale. In contrast to passive data, self-reported data from the
questionnaire are called “active data” throughout this article.

Defining User Retention
Considering the intermittent usage of this app and patterns of
uploaded data, we herein define that user retention of this app
stopped on the first date of a 28-day period without any data
being uploaded. For every smartphone, user retention was
measured separately for passive and active data.

Statistical Analysis
In this study, the user retention length and indicator of whether
an individual uninstalled the app were treated as a survival
event. The Kaplan-Meier estimator, a standard nonparametric

statistic used to estimate survival function of time-to-event data,
was applied to measure the survival rate of user retention. A
log-rank test was used to examine the difference in survival
curves among different subpopulations or data collection modes
(ie, active vs passive). A Cox proportional hazards model (Cox
model) was used to assess the association between the hazard
rate of user retention and two factors (smartphone users’
operating system and occupation). Occupations included resident
physicians, visiting staff, medical students, nurses, and others.
Comparing different occupations, we focused on resident
physicians because their work hours are the longest among all
occupations [22-27]. All analyses were performed using R
software (version 3.4). The survival analysis was based on the
package “survival” [28]. A P value less than .05 was considered
statistically significant.

Patient and Public Involvement
No patients nor public members were involved in our work.

Results

We first compared user retention time between self-reported
and GPS-defined work hours by analyzing active and passive
data recorded using the “Staff Hours” app. Survival curves of
user retention by passive and active data are illustrated in Figure
3. The survival rate of user retention for passive data was 46.7%
after 1 week, whereas the rate for active data was 22.2%. After
1 month, the survival rate for passive data was 27.3%, and that
for active data was 3.4%. The log-rank test results show that
the survival time of passive data was significantly higher than
that of active data (P=.011). This result is consistent after
conditioning on the different operation systems, which is shown
in Multimedia Appendix 1.

Figure 3. Survival curves of passive and active data.

The survival curves for the 2 operating systems (Android and
iOS) for passive data are shown in Figure 4 and for active data

are shown in Figure 5. For passive data, 1-week survival rates
of user retention for Android and iOS were 69.2% and 36.2%,
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respectively. After 1 month, the survival rate for Android
reduced to 49.5%, whereas the rate for iOS reduced to 16.7%.
For active data, 1-week survival rates of user retention for
Android and iOS were 8.3% and 28.6%, respectively. After 1
month, the survival rate for Android reduced to 0.8%, and the
survival rate for iOS reduced to 4.5%. The log-rank test revealed

that patterns of user retention varied based on the operating
system, with Android users maintaining a significantly higher
survival rate of user retention for passive data across time
(P=.015; Figure 4) than iOS users. By contrast, the patterns of
user retention for active data showed no significant difference
between Android and iOS (P=.700; Figure 5).

Figure 4. Survival curves of GPS-defined work hours between the operating systems.

Figure 5. Survival curves of self-reports between the operating systems.

The results of the Cox model are shown in Table 1 and
Multimedia Appendix 2. User retention for the collection of
passive data via Android devices was higher than that for iOS.
Resident physicians had higher user retention for the collection

of active data than those with other occupations (P=.041),
whereas no significant differences were observed between these
two groups in passive data collection.
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Table 1. Cox proportional hazards model.

Active dataPassive dataComparison

P valueHazard ratio (95% CI)P valueHazard ratio (95% CI)

.6101.707 (0.625-4.661).0122.688 (1.846-3.913)Operating system (iOS vs Android)

.0410.119 (0.044-0.322).3610.711 (0.497-1.017)Occupation (resident physicians vs others)

Discussion

Principal Findings
Our results suggest that quantifying user retention of an app
using survival analysis is feasible. The survival curves of user
retention for passive and active data collection provide a
reference for user retention of an app that was not actively
promoted. This user retention obtained via survival analysis
could be a useful indicator to monitor the effects of advertising
campaigns or promotional activities for any app. Our data help
to study the critical period of user retention. The survival rate
of 46.7% for the collection of passive data was until the first
week, and this suggests that more than half of the app users quit
using the app or technical problems interrupted the passive data
collection upon app installation. Helping first-time users to
navigate this app and delivering frequently asked questions
through a push notification during this critical period could be
valuable, and this survival rate implies potential technical
problems in the collection of passive data via this app. Previous
studies have also demonstrated similar results — that user
retention significantly decreases during the first week [29].
Among those who downloaded the “PTSD Coach” app
(n=153,834), designed for American veterans to reduce
post-traumatic stress disorder symptoms, 61.1% returned to use
the app after the first day of installation. Over half of users
(52.1%) continued to use the app or used it at least one time
beyond the first week of download. A commonly observed
pattern is the user downloading an app, quickly scanning it, and
determining personal relevance. For users who may only open
the app a single time, it is the only opportunity to capture their
interest. Therefore, mobile health app developers have also
suggested that health care professionals “need to very carefully
manage the initial phases of somebody using this kind of
technology and make sure they’re well monitored” [30].

“Staff Hours” provides the first model to examine user retention
for passive and active data collection simultaneously. Although
a higher user retention for passive data collection over active
data collection seems intuitive, we first quantified the survival
rate of user retention and examined the factors associated with
this survival rate. In addition, we established a user-centered
evaluation of the mobile app’s user retention based on an
app-centered longevity evaluation [19]. The present analysis
may be a useful metric of usability evaluation for a mobile
health app, even a software medical device. Apart from the
efficacy and safety evaluation in the traditional registration of
new drugs or medical devices, the American Psychiatric
Association proposed an app evaluation framework that
emphasizes usability or engagement [31]. The engagement
evaluation includes how many patients became stuck when
using an app or found them difficult to use. This user-centered

evaluation encourages app developers to involve patients or
potential target users in the development of their health apps.

Our findings show that user retention for the collection of
passive data via Android devices was higher than that with iOS.
Platform-related differences in user retention resulted from the
differences in the GPS data collection between Android and
iOS. Specifically, “Staff Hours” will stop collecting data during
a background refresh in iOS but not in Android. The fact that
passive data collection consumed more electricity in iOS could
explain the lower user retention in iOS for passive data. By
contrast, no significant platform-related differences in user
retention in the collection of active data were observed. Because
active data collection differs from passive data collection, which
was generated continuously from day-to-day human-machine
interaction, user retention is not associated with operating
systems. In summary, platform-related differences in user
retention in the collection of passive data, but not of active data,
imply that electricity consumption may be of a particular
concern to smartphone users, given the challenges of developing
apps for 2 distinct platforms.

Our results provide novel information regarding resident
physicians’ user retention in the collection of active data. This
higher user retention suggests that resident physicians represent
the right target audience for this app. “Staff Hours” was designed
not only to automatically record work hours but also to survey
staff’s mental health during moments of long work hours.
Resident physicians had extremely long work hours and mental
health issues at the time. As a result, they were more motivated
to continuously interact with this app. The PHQ-9 for depressive
symptoms, phantom vibration, and ringing syndrome in this
mental health survey is specifically designed for staff with
excessive work hours such as resident physicians. A systematic
review and meta-analysis showed a high prevalence rate of
28.8% of depression or depressive symptoms among resident
physicians [32]. Our previous study also showed that more than
85% of medical interns with 86.7 work hours per week
experienced phantom vibration and ringing syndrome, and these
syndromes significantly reduced 2 weeks after their internship
[27]. Such mental health surveys on smartphones are important
because smartphone use may reduce bias in the form of the
Hawthorne effect. This effect has been reported in a previous
study to demonstrate that PHQ-9 depressive symptom scores
recorded from the app were more sensitive in detecting suicidal
behavior than the traditionally administered PHQ-9 [33]. Mental
health and work hours are both important for resident physicians,
but excessive work hours did not represent poor mental health.
Our recent study showed that medical interns with an additional
10 work hours per week (ie, average additional 2 work hours
per day) had a relatively small increase in depressive symptoms,
with a PHQ-9 score of 0.13 [34].
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Limitations
Several methodologic limitations should be noted when
interpreting our findings. First, the rapid decrease in user
retention in the collection of active data may be attributed to
our definition of user retention, which stopped when no data
were uploaded for more than 28 consecutive days. Furthermore,
passive data and active data are collected from different sources
(ie, GPS and self-report, respectively). Therefore, the difference
in the user retention time is somehow affected by the
characteristics of these resources. For example, sampling rates
of active and passive data are unequal, and passive data are
generated every 10 minutes, but active data, according to a
mental health survey, are generated every month. Second, this
definition of retention did not include users’ return to using the
app after quitting for more than 28 consecutive days. Third, our
sample size was not large enough to identify more factors
associated with user retention and lacked significant power. In
addition, all of the individuals only had one smartphone, so it

was not feasible to compare the difference in retention time
between iOS and Android operation systems for the same
individuals. Finally, the user retention might also be different
in an app that is more attractive than “Staff Hours.” In addition,
the longer retention with our app on Android devices, compared
with iOS devices, can be explained by the difference in
electronic consumption, so the results might not be generalizable
to other apps.

Conclusions
In conclusion, we demonstrated that passive data collected via
Android devices had the best user retention with our app that
records GPS-based work hours. As a pilot study in this field,
our results provide new insights into quantifying the usability
of a mobile app using survival analysis. We also determined
that the first week upon installation is the critical period for the
app’s longevity. Analysis of user retention with additional apps
is required to validate our methods.
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