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Abstract

Background: Hand tremor typically has a negative impact on a person’s ability to complete many common daily activities.
Previous research has investigated how to quantify hand tremor with smartphones and wearable sensors, mainly under controlled
data collection conditions. Solutions for daily real-life settings remain largely underexplored.

Objective: Our objective was to monitor and assess hand tremor severity in patients with Parkinson disease (PD), and to better
understand the effects of PD medications in a naturalistic environment.

Methods: Using the Welch method, we generated periodograms of accelerometer data and computed signal features to compare
patients with varying degrees of PD symptoms.

Results: We introduced and empirically evaluated the tremor intensity parameter (TIP), an accelerometer-based metric to
quantify hand tremor severity in PD using smartphones. There was a statistically significant correlation between the TIP and
self-assessed Unified Parkinson Disease Rating Scale (UPDRS) II tremor scores (Kendall rank correlation test: z=30.521, P<.001,
τ=0.5367379; n=11). An analysis of the “before” and “after” medication intake conditions identified a significant difference in
accelerometer signal characteristics among participants with different levels of rigidity and bradykinesia (Wilcoxon rank sum
test, P<.05).

Conclusions: Our work demonstrates the potential use of smartphone inertial sensors as a systematic symptom severity assessment
mechanism to monitor PD symptoms and to assess medication effectiveness remotely. Our smartphone-based monitoring app
may also be relevant for other conditions where hand tremor is a prevalent symptom.

(JMIR Mhealth Uhealth 2020;8(11):e21543) doi: 10.2196/21543
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Introduction

Background
Parkinson disease (PD) is a neurodegenerative condition that
affects patients’physical and mental health [1,2] and has a wide
variety of motor and nonmotor symptoms. Tremor is a cardinal
motor symptom that can heavily hinder patients’ quality of life
[3] and is generally defined as an involuntary, rhythmic,
oscillatory movement of a body part [4]. Tremor can be
categorized based on its activation conditions into rest and action
tremor; in turn, action tremor is further divided into kinetic,
postural, or isometric subtypes [4]. Rest tremor affects body
parts that are not being voluntarily activated [4], kinetic tremor
appears during any voluntary movement, postural tremor
presents while maintaining a posture against gravity [5], and
isometric tremor occurs during a muscle contraction against a
rigid surface [6].

Among patients with PD, approximately 75% suffer from rest
tremor, around 50% from moderately severe postural tremor
[7], and an undetermined percentage from kinetic tremor [6].
These three types of tremor are pivotal in understanding PD.
Typically, the amplitude of rest tremor decreases when patients
activate the affected muscles and increases during mentally
stressful situations [4,8]. We target hand rest, postural, and
kinetic tremor, which occur at different frequency ranges (3-6
Hz, 6-9 Hz, and 9-12 Hz, respectively) [5]. The severity of PD
tremor is usually assessed visually by a health professional
during clinical visits, using tools such as the Unified Parkinson
Disease Rating Scale (UPDRS) [9]. Recently, however,
researchers have investigated the use of unobtrusive and
objective sensing technologies to detect and quantify hand
tremor.

Dyskinesia is defined as involuntary movement, different from
tremor, and is related to the timing and dosage of levodopa
medication [10]. We refer to a movement in the 1-3 Hz
frequency range as dyskinesia [11].

Related Work
Accelerometer data have been used to assess hand tremor using
smartphones [11-17] and wearable devices [5,18-20]. Previous
studies have attached an iPhone (Apple Inc) to a glove and
collected data using the smartphone’s built-in accelerometer
[11,12,15]. In a study by LeMoyne et al [11], subjects were
asked to use the glove while extending their forearm for 10
seconds. The study found a statistically significant difference
in the frequency response of the acceleration signal between a
participant with PD and one without. Barrantes et al [12]
measured rest and postural tremor in 30-second episodes and
identified relevant accelerometer features to classify PD tremor
and essential tremor. Similarly, Duque et al [15] collected
accelerometer data with participants at rest and with their arms
extended, and utilized machine learning to classify PD and
essential tremor.

Bazgir et al [16] used a similar setup with a glove to classify
rest, postural, and kinetic tremor UPDRS scores based on
accelerometer data logged during three scripted 1-minute tests:
at rest, with arms stretched, and while touching their nose with

their index finger. Kostikis et al [14] used a glove-mounted
smartphone to quantify rest and postural tremor severity. They
found a statistically significant difference between healthy
participants and participants with PD, but not between the left
and right hands of people with PD. In addition, they studied the
effects of PD medications in two volunteers with PD using
accelerometer data collected in “on” and “off” medication states
in laboratory conditions. The measurements were taken for the
right and left hands separately, at rest, and with their hands
extended. The “off” measurement was taken right before
medication intake, and the “on” measurement was taken 1 hour
after intake. The researchers detected a decrease in the metrics
(the sums of the squared magnitudes of the acceleration and the
sum of absolute differences in the acceleration vector) after
medication intake, with the exception of the right-hand extended
task for one of the volunteers.

Although these previous experiments have had positive results
on quantifying tremor, we believe that the utility of the findings
outside of the laboratory or a health care facility is limited. The
practicality of carrying and wearing a glove at all times is up
for debate, especially under extreme weather conditions.
Accordingly, a smartphone-only solution was first investigated
by Woods et al [13], where subjects held a smartphone for 10
seconds with their arm perpendicular to their body and elbow
pointing out under six conditions: with eyes open, with eyes
closed, during a bubble-balancing task, during a laser-pointing
task with two different distances, and while counting backward
by decrements of three. The authors detected a statistically
significant difference in the accelerometer signal between a
group with PD and a group with essential tremor, but they
focused on the effects of the six cognitive tasks on tremor.
Following up this line of research, this paper explores the
difference in the accelerometer signal captured during a scripted
task without additional hardware other than a smartphone.

In our study, the data were collected in naturalistic settings using
a mobile toolkit, the Sentient Tracking of Parkinson’s (STOP)
app, for monitoring PD symptoms in daily life. STOP includes
a gamified tremor assessment module based on a ball-balancing
game that logs the smartphone’s accelerometer, gyroscope, and
rotation data. STOP also provides users with a medication intake
journal and a daily symptom survey mechanism [21-23]. The
data set used in this paper was published previously [21]. In
this study, we analyzed the data set’s accelerometer and
medication intake data to answer the following research
questions: (1) how feasible is it to characterize hand tremor
using inertial data captured during our smartphone game?, and
(2) can the effects of PD medication be detected using the same
inertial data captured during game sessions played before and
after medication intake?

Methods

We installed the STOP app into the smartphones of 13
participants diagnosed with PD and collected accelerometer
data and medication logs. We used the Welch method to
generate the power spectral densities (PSDs) and extracted
features from the accelerometer data that we used to investigate
the feasibility of hand tremor assessment and medication effect.
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STOP Application and Data Collection
STOP is a smartphone app developed for people with PD with
four core functionalities: (1) an accelerometer-based ball game
for quantifying patients’ hand tremor, (2) a medication journal
for logging medication intake times, (3) a daily survey for
reporting the overall severity of PD symptoms, and (4) reminder
notifications [21-23].

To play the ball game, one has to place the smartphone
horizontally on the palm of the hand for 10 seconds and try to
keep a virtual ball inside a circle at the center of the screen.
During the game session, STOP logs data from the
accelerometer, linear accelerometer (acceleration without
gravity’s influence), gyroscope, and rotation vector sensors
[24]. It also records the position of the ball in relation to the
inner circle’s center and the screen’s pixel density to compute
an adjusted distance between the center of the ball and the center
of the screen. The inertial sensors’ sampling frequency is set to
50 Hz (or the device’s maximum, if less than 50 Hz). In addition,
users can record their medication intake using the “now” or
“specify time” buttons, or with their voice via the natural
language processing provided by Wit.ai [25].

During a real-world trial of STOP, data were collected from 13
participants with PD, eight females and five males [21]. The
participants were recruited from two countries, seven from

Finland and six from the United Kingdom. In this study, we
had to exclude two participants because of poor data quality
(see Data Set). Table 1 provides a summary of the remaining
11 participants’ characteristics; more details are provided in
Multimedia Appendix 1. Participants were asked to install and
use the STOP app for 1 month on their personal smartphones
(five iPhones and six Android phones) and to participate in three
interviews (at the start of the study, midway, and at the end).

Participants from Finland were located around the country, and
their consent to participate in the study was given via the
application. Participants from the United Kingdom, on the other
hand, signed a paper consent form. Following local guidelines,
approval from the University of Oulu’s ethical committee was
not needed because the risks associated with participating in
the study were similar to those of daily smartphone use. In
previous publications, we have shared users’ experience during
the trial and an analysis of the interview data [21]. To
summarize, participants were willing to use digital tools to track
their condition and were open to the possibility of sharing their
data with their doctors, which functioned as a motivator to use
such tools. In this paper, we analyze the inertial sensor data
recorded during the game sessions and medication logs to
quantify the severity of hand tremor and the effect that
medication has on it.

Table 1. Overview of participants’ characteristics.

Participants (n=11)Characteristics

64.7 (52-73)Age (years), mean (range)

7.1 (2-17)Years since PD diagnosed, mean (range)

3 (1-5)Number of PD medications, mean (range)

4.3 (1-7)Number of total daily medicationsa, mean (range)

11.8 (3-31)UPDRS II scoreb, mean (range)

1.2 (0-3)Tremor on UPDRS, mean (range)

2 (18%)Deep brain stimulator installed, n (%)

4 (36%)Suffer from hand tremor, n (%)

2 (18%)Plays with tremor-affected hand, n (%)

Suffers from other issues affecting hands, n (%)

3 (27%)Rigidity

1 (9%)Bradykinesia

aRefers to the number of medication intake times (ie, how many times per day the participant has to take medications, one or several at a time).
bThe Unified Parkinson Disease Rating Scale (UPDRS) II score quantifies the severity level of Parkinson disease (PD) symptoms affecting daily
activities (maximum score of 52). The scale for the tremor item on the UPDRS is as follows: 0=no tremor, 1=slight and infrequently present tremor,
2=moderate and bothersome tremor, 3=severe tremor interfering with many activities, and 4=marked tremor interfering with most activities.

Data Set
Our data set contained a total of 1856 medication logs (mean
of 107 [SD 54.9] logs per participant) and 2213 game sessions
(mean of 138 [SD 60.6] sessions per participant). These data
were recorded in 13 participants (P01 to P13) in naturalistic
conditions. Participants had varying medication regimens.

Game sessions were 10 seconds long. We excluded P03’s
sessions because the accelerometer sampling rate of his
smartphone was approximately 25 Hz instead of the desired 50
Hz, and we excluded P04’s sessions because they only contained
one sensor sample throughout the entire game for unknown
technical reasons. P05’s phone had data synchronization issues,
so only 1 week of data was collected, and P07 missed the first
week of data collection because he had problems installing the
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application. Despite this, we included P05 and P07 in the
analysis, resulting in a total of 11 participants.

Because the data were collected during a trial deployment of
the STOP app, there were no participant exclusion criteria
related to PD symptom severity. Based on the UPDRS II tremor
self-reports, we categorized the participants into five groups:
(1) all participants: P01, P02, P05, P06, P07, P08, P09, P10,
P11, P12, and P13; (2) no tremor (participants reported no
tremor): P02, P09, and P11; (3) tremor (participants reported
tremor but in an unspecified location): P06, P07, P08, and P12;
(4) hand tremor (participants reported hand tremor and played
with the unaffected hand): P01 and P05; and (5) plays with hand
tremor (participants reported hand tremor and played with the
affected hand): P10 and P13.

We highlighted individual circumstances that might affect
STOP’s measurements. P02 reported that his hand rigidity
helped him to keep the ball still during game sessions. P09 had
poor rotation in his wrists and P11 suffered from rigidity and
bradykinesia that make him feel stiff and slow, which might
have had a similar effect to that of P02. Finally, P01 was
right-handed but used his left hand for playing. Multimedia
Appendix 1 provides more details about participants’ symptoms
and playing conditions.

Data Preprocessing
Accelerometer data were recorded as participants played a game
for a duration of 10 seconds, henceforth referred to as a “game
session.” The accelerometer sampling rate was set to 50 Hz, but

the sampling rate varied across different smartphones, as the
participants used their own devices for the study. In addition,
for some devices, the sampling rate varied within a game
session. In the examples in Figure 1, P01’s sampling rate stayed
close to the requested rate, while the rate varied in P08’s device.
For all devices, the sampling frequency was set to 50 Hz. To
address the variation in the sensors’ sampling rate and get
uniformly sampled data, we applied a linear interpolation on
the accelerometer signal (see Multimedia Appendix 2 for
technical details).

We identified the closest medication intake record to each game
session and labeled the game sessions as “before” or “after”
(see Figure 2). Depending on multiple factors, medication can
take at least 15 minutes to kick in [26]. Therefore, for
participants who had to take their medication once or twice per
day (every 24 or 12 hours), a game session was considered
“before” medication if it was played between 5 hours before or
15 minutes after the intake log was completed. In contrast, the
game session was labeled “after” medication if it was played
between 30 minutes and 3 hours after the medication intake log
was completed. For participants with more than two medication
intakes per day, we used shorter thresholds. Specifically, the
game session was labeled “before” if it was played either 1 hour
before or 15 minutes after the medication intake, and “after” if
it was played between 30 and 90 minutes after the medication
intake. Game sessions outside of these periods were not included
in our medication effect analysis. Figure 2 shows an overview
of the labeled time periods; the medication intake time is
denoted as a red solid vertical line centered around zero.

Figure 1. Best case (left) and worst case (right) examples of varying smartphone sampling frequency during a game session.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 11 | e21543 | p. 4http://mhealth.jmir.org/2020/11/e21543/
(page number not for citation purposes)

Kuosmanen et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. The timing of medication intake and game sessions. The x-axis shows the time since medication, 0 is the medication intake time and is
highlighted with a red vertical line. Each game is associated with the closest medication intake time, either before or after. The y-axis presents the
acceleration signal power in logarithmic scale; the sum of power is calculated over the entire spectrum for each game session. Note that the y-axis ranges
differ. The first three rows show participants with more than two intakes per day while the last row shows those with only one or two.

Frequency Analysis: PSD
PD symptoms can be observed in specific frequency bands:
dyskinesia (1-3 Hz), rest tremor (3-6 Hz), postural tremor (6-9
Hz), and kinetic tremor (9-12 Hz). As described in the
introduction, tremor can be classified by its activation condition.
In our study setup, depending on the user’s posture during a
game session, we expected to see differences in the
accelerometer signal in rest tremor, postural tremor, and
dyskinesia frequencies, which we tried to detect by analyzing
this signal in the frequency domain.

We used the Welch method [27] to generate periodograms of
every participant’s game sequences. This method generates a
nonparametric estimation of the PSD, determining the power
contained in the signal's particular frequency components (see
Multimedia Appendix 2 for more details). The left columns in
Figures 3-5 show the mean of all games’ periodograms as well
as the confidence interval around the mean. The right columns

depict the averaged periodograms for the “before” and “after”
game subsets, respectively. We observed a higher PSD value
in the groups with PD tremor (ie, “tremor,” “hand tremor,” and
“plays with hand tremor” groups) than in the “no tremor” group.
A comparison of the groups is presented in the results section.

From the periodograms, several features were calculated to
describe the characteristics of the signal:

• area under the curve (AUC): describes the total power of
the signal (Hz) [12] (Figures 3-5 present the mean of PSDs
in each frequency);

• peak value (PV): represents the maximum value of the PSD;
• fundamental frequency (F0): the frequency of maximum

power [5,12,16,19]. The F0 can be used to categorize the
game sessions as dyskinesia, rest tremor, postural tremor,
or kinetic tremor games [5,19]. The percentage of game
sessions in each category of each participant is summarized
in Table 2 (the red line in Figure 6 illustrates the F0);

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 11 | e21543 | p. 5http://mhealth.jmir.org/2020/11/e21543/
(page number not for citation purposes)

Kuosmanen et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


• central frequency (F50): the central point where the
periodogram is divided into two equal parts in PSD
[5,12,16,19] (the green line in Figure 6 illustrates the F50);

• frequency dispersion (SF50): describes the width of the
frequency band around F50 containing 68% of the total
power of the signal [5,16,19] (see the blue area in Figure
6);

• |F50-F0|: the difference between F50 and F0 [5,16,19] (see
the distance between the red [F0] and green [F50] lines in
Figure 6);

• tremor intensity parameter (TIP): calculated as PV divided
by SF50. In Figure 6, P10 has a narrow, high peak in PSD,
causing a high TIP, whereas P02 has a lower PV and a wide
SF50, causing a low TIP. We introduce this parameter to
quantify tremor severity based on accelerometer data—a
higher TIP indicates a more severe tremor.

We utilized these features to quantify tremor severity during a
game session and to detect a difference in medication effects
between different game sessions.

Figure 3. Mean of the power spectral densities with the 95% CI for the “no tremor” group (P02, P09, and P11). The left column shows the mean of all
game sessions, and the right column shows the mean of the power spectral densities for “before” (red) and “after” (blue) games. Note that the y-axis
ranges differ. Frequency areas (dyskinesia, rest tremor, postural tremor, and kinetic tremor) are denoted by different column shades of the background.
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Figure 4. Mean of the power spectral densities with the 95% CI for the “tremor” group (P06, P07, P08, and P12). The left column shows the mean of
all game sessions, and the right column shows the mean of the power spectral densities for “before” (red) and “after” (blue) games. Note that the y-axis
ranges differ. Frequency areas (dyskinesia, rest tremor, postural tremor, and kinetic tremor) are denoted by different column shades of the background.
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Figure 5. Mean of the power spectral densities (PSDs) with the 95% CI for the “hand tremor” group (P01 and P05) and the “plays with hand tremor”
group (P10 and P13). The left column shows the mean of all game sessions, and the right column shows the mean of the power spectral densities for
“before” (red) and “after” (blue) games. Note that the y-axis ranges differ. Frequency areas (dyskinesia, rest tremor, postural tremor, and kinetic tremor)
are denoted by different column shades of the background.
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Table 2. The game sessions categorized as dyskinesia, rest tremor, postural tremor, or kinetic tremor according to the fundamental frequency are shown
as percentages of all game sessions of each participant (the absolute number of game sessions appears in parentheses).

Kinetic tremorPostural tremorRest tremorDyskinesiaParticipant by group

No tremor

0% (0/107)41% (44/107)7% (7/107)52%a (56/107)P02

0% (0/104)20% (21/104)62%a (64/104)18% (19/104)P09

0% (1/265)2% (5/265)34% (89/265)64%a (170/265)P11

Tremor

0% (0/175)0% (0/175)70%a (122/175)30% (53/175)P06

0% (0/51)80%a (41/51)10% (5/51)10% (5/51)P07

0% (0/174)58%a (101/174)12% (21/174)30% (52/174)P08

0% (0/111)26% (29/111)40%a (44/111)34% (38/111)P12

Hand tremor

0% (0/167)18% (30/167)66%a (111/167)1% (26/167)P01

0% (0/152)38% (57/152)21% (32/152)41%a (63/152)P05

Plays with hand tremor

0% (0/169)1% (2/169)95%a (160/169)4% (7/169)P10

0% (0/282)73%a (206/282)19% (54/282)8% (22/282)P13

aThe most prevalent symptom of the participant.

Figure 6. The power spectral density of one game of P10, playing with hand tremor, and one game of P02, with no tremor. The red, vertical line shows
the fundamental frequency (F0), the green line shows the central frequency (F50), and the gap between the lines is the difference between F50 and F0
(|F50-F0|). For P10, F0 and F50 are the same frequency, hence, |F50-F0|=0. The blue rectangle shows the SF50 (the frequency band around F50 containing
68% of the total power of the signal). P10 has a high peak value (PV) and a narrow SF50, leading to a high tremor intensity parameter (TIP) of 24.7.
The PV of P02 is small (as is the signal power in the PSD in general) and SF50 is wide; hence, he has a low TIP of 0.26. Note that the y-axis ranges in
both plots differ.

Results

In this section, we study our two research questions using the
PSD features described in the previous section: (1) how feasible
is it to characterize tremor using inertial data captured during
our smartphone game?, and (2) can the effects of PD medication
be detected using the same inertial data captured during game
sessions played before and after medication?

Hand Tremor Characterization via the TIP: Proposal
for an Objective Hand Tremor Severity Score
We found a significant correlation between self-reported UPDRS
II tremor severity scores (0 to 4) and the TIP (Kendall rank
correlation test: z=30.521, P<.001, τ=0.5367379; n=11). UPDRS
II tremor scores and descriptive statistics of the TIP for each
participant are shown in Table 3.

We then compared the groups across all features (see Figures
7 and 8). Figure 7 shows the AUC for all frequency ranges. We
found that for dyskinesia the means of all four groups were
similar and the tremor group had the largest variability. For the
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other three frequency ranges (rest tremor, postural tremor, and
kinetic tremor), the mean of the “plays with hand tremor” group
was greater than that of the other groups. The participants in
the “plays with hand tremor” group also had the highest PV and
lowest SF50, and thus the highest TIP score (Figure 8). We used
a Wilcoxon rank sum test to confirm that the differences
between our 4 groups were statistically significant, resulting in
six pairwise comparisons for AUC for all four frequency areas
(dyskinesia, rest tremor, postural tremor, and kinetic tremor),
PV, F0, F50, SF50, |F50-F0| and TIP (see P values in Table 4).
Table 4 is extended in Multimedia Appendix 3, also providing
the W for the Wilcoxon rank sum test.

All features were significantly different between the “no tremor”
and “plays with hand tremor” groups. Additionally, all features
except for SF50 showed a significant difference between the
“no tremor” and “tremor” groups and between the “no tremor”
and “hand tremor” groups. SF50 describes the width of the

frequency band around F50 containing 68% of the total power
of the signal. This suggests that when the tremor was located
in a body part other than the hand holding the device, the power
of the signal was spread in a wider frequency range, resembling
the case with no tremor. However, the “no tremor” group
differed significantly from the groups with tremors.

Features between the “tremor” and “hand tremor” groups were
significantly different only in the AUC for the dyskinesia,
postural tremor, and kinetic tremor frequency ranges. Hence,
we can say that the effect of tremors on the accelerometer signal
in these groups was mainly similar. In contrast, the comparison
of the “plays with hand tremor” group with the “tremor” group
and the “hand tremor“ group showed significant differences in
all features except F0 and F50. The tremor effect was similar
in frequency, but the magnitude of the tremors was different
when the tremor hand was used for playing.

Table 3. Self-reported tremor severity scores using the Unified Parkinson Disease Rating Scale (UPDRS) II, item 16.

Distribution of tremor intensity parameter

Maximum3rd quartileMeanMedian1st quartileMinimumUPDRS II item 16 scoreaParticipant

22.000.660.970.330.170.050P02

19.101.181.090.560.330.040P09

0.310.060.050.040.030.010P11

5.020.160.180.100.070.031P05

81.242.655.491.400.450.151P07

14.570.380.390.210.120.041P08

142.838.819.472.050.710.071P12

177.014.047.410.840.200.032P01

769.1059.6559.2615.933.320.062P10

610.813.796.401.690.920.152P13

321.2838.1235.4816.544.970.313P06

a0=no tremor, 1=slight and infrequently present tremor, 2=moderate and bothersome tremor, 3=severe tremor interfering with many activities, and
4=marked tremor interfering with most activities.
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Figure 7. Comparison of tremor groups using area under the curve for each frequency range: dyskinesia (1-3 Hz), rest tremor (3-6 Hz), postural tremor
(6-9 Hz), and kinetic tremor (9-12 Hz).

Figure 8. Comparison of groups in terms of the following features: peak value, fundamental frequency (F0), central frequency (F50), frequency
dispersion (SF50), difference between F50 and F0 (|F50-F0|), and tremor intensity parameter.
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Table 4. The P values from Wilcoxon rank sum tests comparing groups for each feature: area under the curve (AUC) for all four frequency areas, peak
value, fundamental frequency (F0), central frequency (F50), frequency dispersion (SF50), difference between F50 and F0 (|F50-F0|), and tremor intensity
parameter (TIP).

Hand tremor vs
plays with hand
tremor

Tremor vs plays
with hand tremor

Tremor vs hand
tremor

No tremor vs
plays with hand
tremor

No tremor vs hand
tremor

No tremor vs tremor

AUC

<.001.03<.001<.001<.001<.001Dyskinesia

<.001<.001.89<.001<.001<.001Rest tremor

<.001<.001.02<.001<.001<.001Postural tremor

<.001.03<.001<.001<.001<.001Kinetic tremor

<.001<.001.49<.001<.001<.001Peak value

.30.23.62<.001<.001<.001F0

.35.15.43<.001<.001<.001F50

<.001<.001.39<.001.54.71SF50

<.001<.001.18<.001<.001<.001|F50 - F0|

<.001<.001.78<.001<.001<.001TIP

Medication Effect Detection
We investigated the effect of medication intake on the
accelerometer signal characteristics. PD medication is often
targeted to alleviate motor symptoms; thus, it could have
affected participants’ motor performance during their game
sessions. To explore this possibility, we compared the “before”
and “after” game sessions of each individual.

In Figures 3-5, on the graphs on the right-hand side, we
highlighted the mean PSD of “before” (red) and “after” (blue)
game sessions with 95% CIs. Because our sample was relatively
small, some of the 95% CI boundaries were negative [28]. In
the “no tremor” group (Figure 3), P02 and P11 had peaks in the
dyskinesia frequency range, and the mean PSD of “before”
games was higher than the mean PSD of “after” games. This
suggests that the medication partially alleviated this symptom.
The 95% CIs for P09 were mostly overlapping, suggesting that
there was no difference in the mean PSD of “before” and “after”
games.

In the “tremor” group (Figure 4), P06 had a high peak in the
rest tremor frequency area, P08 had a high peak in the postural
tremor frequency area, and P07 had a peak in both. Compared
with the “no tremor” group, the peaks in the “tremor” group
were in tremor frequency ranges, rather than in the dyskinesia
frequency range, which matches our expectation of observing
this symptom. Even though the 95 CIs were overlapping, the
95% CI for “before” games was narrower. Figure 2 shows that
P06 and P08 often played the game at the same time as
medication intake, which might have resulted in the narrowing
of the 95% CI for “before” games. P12 had two peaks in the

“before” sessions in the dyskinesia frequency range; these peaks
were lower in “after” sessions.

In the “hand tremor” and “plays with hand tremor” groups
(Figure 5), P10 had a clear peak in the rest tremor frequency
range. However, the effect of medication was not visible, since
the “before” and “after” 95% CIs fully overlapped. This might
indicate that the medication was working well, and its effect
was maintained prior to the next intake. For P01, who suffered
from hand tremor but played with his nonaffected hand, we
found a difference in the tremor frequency between “before”
and “after” game sessions, and the peak frequency had shifted
(Figure 5). For P05 and P13, we observed that the mean PSD
of “before” games was higher than of “after” games (Figure 5).
P05 had a narrow 95% CI for “after” game sessions; thus, the
performance was more predictable after medication intake.

In Table 5, we summarized the changes detected in all of the
features between “before” and “after” game sessions. Many
participants had changes in their features between the game
sessions. A Wilcoxon rank sum test confirmed statistically
significant differences for three participants: (1) P02 in AUC
dyskinesia (W=861, P=.005), AUC resting tremor (W=1016,
P<.001), AUC postural tremor (W=970, P=.002), AUC kinetic
tremor (W=872, P=.036), PV (W=949, P=.004), SF50 (W=421,
P=.006), and TIP (W=953, P=.003); (2) P09 in SF50 (W=469,
P=.005); and (3) P11 in AUC dyskinesia (W=2767, P=.003),
PV (W=2590, P=.024), F50 (W=1490, P=.027), SF50 (W=1327,
P=.004), and TIP (W=2665, P=.011). These three participants
(P02, P09, and P11) reported no tremor (UPDRS II, item 16).
P02 and P09 presented with rigidity, and P11 presented with
rigidity and bradykinesia; hence, it seems that the medication
effect was more visible for these symptoms.
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Table 5. Change in means of features as percentages between “before” and “after” medication game sessions. The negative values represent a lower
mean in “after” game sessions than in “before” game sessions, while positive values represent the opposite.

TIPg|F50-F0|fSF50eF50dF0cPVb
AUC, kinet-
ic tremor

AUC, postural
tremor

AUC, rest
tremor

AUCa, dyski-
nesia

Participant by
group

No tremor

–3h2411h910–53h–56h–53h–51i–51hP02

21–28–23h–14–13130–23152P09

–35h4810h10h7–25h44–8–29hP11

Tremor

4315–432225212114P06

–8212104102814845P07

1084301139451422841P08

–69–40–9–14–59–30–48–40–62P12

Hand tremor

–3–24–5972104519–52P01

–51231–313–45–7–26–52–26P05

Plays with hand tremor

–3617–2–1–21–42–52–231P10

–65–2711–3–51–34–41–53–63P13

aAUC: area under the curve.
bPV: peak value.
cF0: fundamental frequency.
dF50: central frequency.
eSF50: frequency dispersion.
f|F50-F0|: difference between F50 and F0.
gTIP: tremor intensity parameter.
hDifference is statistically significant at P<.05, based on the Wilcoxon rank sum test.
iDifference is statistically significant at P<.001, based on the Wilcoxon rank sum test.

Discussion

In this paper, we show that it is feasible to detect and
characterize PD hand tremor severity using accelerometer data
captured during game play. Further, we investigated the
medication effect on the accelerometer signal, demonstrating a
statistically significant difference in the accelerometer data
characteristics of the game sessions played before and after
medication intake by participants with rigidity and bradykinesia.

Revisiting the Research Questions
First, how feasible is it to characterize hand tremor using inertial
data captured during our smartphone game? To this end, we
introduced the TIP for characterizing hand tremor severity, as
computed using accelerometer data. We show that TIP is
significantly correlated with the tremor score (item 16) on the
UPDRS II [9]. TIP was significantly different between
participants with no tremor and those with tremor symptoms,
as well as between the participants playing with the tremor hand
and participants with tremor in the opposite hand or in other
body parts (Table 4). These results suggest that it is possible to
objectively detect and quantify the severity of hand tremor using

smartphone accelerometer data across different tremor types
and intensities.

Inspired by previous work in hand tremor analysis using
accelerometer data [5,11-16,18,19], we analyzed the
accelerometer data collected during a 1-month real-world trial
of the STOP app [21]. Earlier studies have already shown that
accelerometer signals can be used to measure tremor under
controlled conditions similar to traditional clinical assessments
using the UPDRS II, either by discriminating between people
with and without PD [11-13,15,18] or by measuring tremor
severity [5,14,16,19]. We used partially similar methods to those
used in previous studies [5,12,16,19], but in contrast, we focused
on the feasibility of objective assessments in daily life, with a
task that could be conducted anywhere in less than 30 seconds
using one’s own smartphone. The smartphone is always with
you, and a gamified task does not draw attention, even in public
places. The low burden enables regular monitoring, providing
continuous data of symptoms over time to support in treatment
decisions.

Second, can the effects of PD medication be detected using the
same inertial data captured during game sessions played before
and after medication intake? In other words, we explored
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whether or not medication-induced changes in motor symptoms
could be measured using frequency-domain features extracted
from accelerometer data. We classified the games played into
two groups: “before” and “after” medication intake. For
participants suffering from rigidity and bradykinesia, we found
a statistically significant difference in particular signal
characterizing features (Table 5). It is known that bradykinesia
is usually responsive to PD medication [29]. Kostikis et al [14]
also compared “off” and “on” medication states in laboratory
conditions with two volunteers with PD. Even though they did
not measure rigidity, according to the physician observing the
measurements, the patients’ rigidity improved after medication
intake. Hence, our results are in line with their observations.
Further research is needed to reproduce these findings and to
investigate why we could not find a before-and-after difference
for all participants and for tremor symptoms. To this end, we
hypothesize that the time window of measurement could have
had an effect on the results. It is possible that our participants
were consistently under the effects of their medication, thus
resulting in similar data across all game sessions.

Reflection on Smartphone-Based Monitoring of PD in
Real Life
As this study was not a laboratory-controlled experiment, the
way participants played the game could have affected the
accelerometer data signal. For example, if the participant’s hand
was extended, such a position might have induced postural
tremor, or if the arm was resting on their lap, rest tremor might
have become dominant. Table 2 categorized the game sessions
according to the F0 as dyskinesia, rest tremor, postural tremor,
or kinetic tremor, as determined in a study by Pierleoni et al
[5]. Indeed, based on the interview data reported in our previous
study [21], some participants implemented strategies to “beat
the game.” For example, P10 and P12 reported to press their
elbow against their torso to keep their hands steady, and P01
would occasionally play the game while holding the smartphone
with both hands. These three participants had the most games
classified as rest tremor (Table 2). P08 mentioned that the game
was “easier” if sitting down, and a majority of his games were
grouped as postural tremor. P07 noticed how his posture
impacted the game and held his hand in such a way that it wasn't
supported by his body; very likely as a consequence, 80% of
his games were within the F0 postural tremor frequency area.

It should be noted that the F0 in tremor frequencies does not
indicate tremor (Table 2). F0 indicates the frequency of
maximum power in PSD but does not otherwise take into
account the magnitude of the peak. The TIP describes the
severity of the tremor effect, and with the F0 we can further
characterize the type of tremor.

Limitations
With the STOP app, tremor analysis is limited to tremor severity
in participants’ hands, measured using their own smartphone
as the instrument. Conversely, in assessments by health
professionals, tools such as the UPDRS can be used to evaluate
other tremor characteristics, such as amplitude in the legs, jaw,
and neck. In our study, the fragmentation of the smartphone
device base already caused minor issues, and this can only be
expected to exacerbate in the future. To this end, measures to

also track and account for the exact device make and model
should be added to the approach.

Levodopa treatment is prescribed to alleviate motor symptoms,
and although we know the medication intake time, we often
ignore the symptoms in particular participants that the
medication was prescribed for; hence, the analysis of the
medication intake effect is preliminary (it is unclear whether or
not the medication was meant to reduce tremor severity).
Additionally, the time difference between game sessions and
medication intake (“before” and “after” game sessions) varied,
as did the magnitude of the changes induced by the medication,
which were recorded by the STOP app. This time difference
should be taken into account in future studies.

The participant sample size was admittedly small. However,
this was compensated for by the high number of individual
contributions in the form of game sessions. Further, our data
analysis focused on results that generalize sufficiently well for
the purposes of this paper: investigating the role of
accelerometer data in differentiating between different
symptoms and the effects of medication.

Future Work
Further research is needed to assess the internal and external
validity of the TIP, as our results suggest it has the potential to
quantify tremor severity. Previous studies [5,14,16,19] have
based their tremor severity evaluations on the UPDRS, which
evaluates the tremor on a scale from 0 to 4. Similarly, we used
the self-assessed UPDRS II as a baseline in our measurements.
However, the UPDRS was designed not for daily symptom
severity assessment but rather to detect changes in symptom
level in the long term. In future, we shall explore different
alternatives to quantify tremor that we can use for baseline. One
option is to utilize self-reporting about tremor severity, or to
compare the TIP of a game session to the user’s long-term
average to provide insight into the variation in personal tremor
severity levels.

Changes in our accelerometer features were inconsistent between
“before” and “after” medication game sessions. This suggests
that we could explore personalized tremor classification models.
The effect of hand tremor is visible in the accelerometer signal,
but we did not find a statistically significant effect of medication.
In addition, it is necessary to focus on particular medication
types and PD symptoms to explore the difference between
“before” and “after” medication game sessions using
accelerometer data in more homogeneous conditions.

Given the availability and sensing capabilities of smartphones,
we envision that tools such as the STOP app can support the
care and monitoring of PD as well as enable frequent, or even
continuous, measuring of medication effects in naturalistic
conditions. Even though real-life assessments pose a challenge
for data quality due to differences in sensing devices and
conditions, standalone smartphone solutions can have a lower
burden, thus increasing engagement. For clinicians, a richer
picture of symptom severity enabled by sensor data could enable
them to better understand people’s conditions and prescribe
tailored medications.
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Conclusions
In summary, it is feasible to detect and quantify the severity of
hand tremor using accelerometer data collected with modern,
off-the-shelf smartphones. We replicated and validated
previously reported features derived from accelerometer data
collected in real-world settings. To this end, we presented the

TIP, a metric that could support further research into unobtrusive
tremor assessment with smartphones but requires further internal
and external validation. Additionally, we identified a statistically
significant difference between the game sessions before and
after medication intake among participants with rigidity and
bradykinesia, and concluded that detecting the effects of PD
medication is possible but further research is warranted.
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