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Abstract

Background: Voice disorders mainly result from chronic overuse or abuse, particularly in occupational voice users such as
teachers. Previous studies proposed a contact microphone attached to the anterior neck for ambulatory voice monitoring; however,
the inconvenience associated with taping and wiring, along with the lack of real-time processing, has limited its clinical application.

Objective: This study aims to (1) propose an automatic speech detection system using wireless microphones for real-time
ambulatory voice monitoring, (2) examine the detection accuracy under controlled environment and noisy conditions, and (3)
report the results of the phonation ratio in practical scenarios.

Methods: We designed an adaptive threshold function to detect the presence of speech based on the energy envelope. We invited
10 teachers to participate in this study and tested the performance of the proposed automatic speech detection system regarding
detection accuracy and phonation ratio. Moreover, we investigated whether the unsupervised noise reduction algorithm (ie, log
minimum mean square error) can overcome the influence of environmental noise in the proposed system.

Results: The proposed system exhibited an average accuracy of speech detection of 89.9%, ranging from 81.0% (67,357/83,157
frames) to 95.0% (199,201/209,685 frames). Subsequent analyses revealed a phonation ratio between 44.0% (33,019/75,044
frames) and 78.0% (68,785/88,186 frames) during teaching sessions of 40-60 minutes; the durations of most of the phonation
segments were less than 10 seconds. The presence of background noise reduced the accuracy of the automatic speech detection
system, and an adjuvant noise reduction function could effectively improve the accuracy, especially under stable noise conditions.

Conclusions: This study demonstrated an average detection accuracy of 89.9% in the proposed automatic speech detection
system with wireless microphones. The preliminary results for the phonation ratio were comparable to those of previous studies.
Although the wireless microphones are susceptible to background noise, an additional noise reduction function can alleviate this
limitation. These results indicate that the proposed system can be applied for ambulatory voice monitoring in occupational voice
users.

(JMIR Mhealth Uhealth 2020;8(12):e16746) doi: 10.2196/16746
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Introduction

Human voice is produced via the periodic vibrations of vocal
folds, driven by expiratory airflow. Cumulative voice loads and
excessive vocal fold vibrations result in phonotraumatic injuries,
such as vocal nodules and polyps [1]. The common symptoms
of dysphonia (ie, phonation discomfort) include hoarseness,
vocal fatigue, increased effort, and throat pain, which may limit
the performance and long-term careers of occupational voice
users [2]. Dysphonia also results in considerable financial losses
for individuals and society [3,4]; the estimated annual cost
associated with dysphonia is US $2.5 billion [5]. In addition,
voice-related disorders significantly lower the quality of life in
terms of physical functioning, general health, bodily pain,
fatigue, and role limitation [6].

The most recognized risk for voice disorders is occupational
voice overuse, commonly found in salespeople,
industrial/factory workers, teachers, clergy, lecturers, and singers
[6,7]. Among these occupations, the teaching profession has
been significantly investigated by academic researchers [8-10].
In comparison to other occupations, teachers are more likely to
report voice problems and the negative effects of dysphonia on
their work performance [11]. Roy et al [2] reported that the
prevalence of voice disorders was significantly higher in
teachers (137/1243, 11.0%) in comparison to nonteachers
(80/1288, 6.2%). The lifetime prevalence of dysphonia for
teachers (717/1243, 57.7%) was also significantly higher than
that for nonteachers (371/1288, 28.8%).

Voice therapy has been widely applied as the first-line treatment
for voice disorders related to voice overuse or abuse [12,13].
By implementing multiple treatment strategies, voice therapy
can effectively ameliorate the dysphonic symptoms, lower the
phonation effort, and improve the voice quality [13]. However,
one of the major challenges for voice therapy is the carryover
of voicing techniques and habits taught during treatment sessions
into their daily lives. To facilitate the maintenance of adequate
phonation behavior, serial studies proposed the concept of
ambulatory voice monitoring with promising results [14-16].
Most of these studies used a contact microphone or
accelerometer attached to the anterior neck [17,18]. Subsequent
studies demonstrated that this technology could significantly
aid patients in controlling and tracking their vocal hyperfunction
[19,20]. Another device for ambulatory voice monitoring was
designed as a neck collar embedded with a contact microphone
[21]. Although contact microphones and accelerometers can
accurately detect phonation via the vibration of neck skin, the
wiring and taping involved with these devices may cause
discomfort in users. Furthermore, voice usage was mostly
analyzed over a certain period with post hoc feedback [22],
whereas real-time monitoring of the phonation ratio has not yet
been reported.

To overcome the limitations in current devices, we propose a
novel automatic speech detection system using a wireless
microphone to capture acoustic signals from users, which can
eliminate the discomfort associated with the wiring and taping
of contact microphones. Our study hypothesizes that the speech

energy envelope received via a wireless microphone can be
used for ambulatory phonation monitoring. To examine this
hypothesis, we designed this research with the following
objectives: (1) to investigate the detection accuracy of speech,
(2) to compare the measured phonation ratio and length of
speech segments with those in existing literature, and (3) to
examine the robustness of the noise reduction algorithm in
simulated noisy conditions.

Methods

Overall Study Design
We proposed an automatic speech detection system using a
wireless microphone for real-time ambulatory voice monitoring.
We invited 10 teachers to participate in the pilot study. We
designed an adaptive threshold (AT) function to detect the
presence of speech based on the energy envelope. All
participants were equipped with a wireless microphone during
a teaching session (around 40-60 minutes) in a quiet classroom
(background noise <55 dB sound pressure level [SPL]). We
developed software for manually labeling the speech segments
according to the time and frequency domains. We randomly
selected 25 utterances (10 seconds each) from the recorded
audio files to acquire the coefficients required for the AT
function using a genetic algorithm (GA). Another 5 random
utterances were used to test the accuracy of the automatic speech
detection system using manually labeled data as the ground
truth. We also mimicked scenarios of noisy backgrounds by
mixing 4 different types of noise (at a signal-to-noise ratio
[SNR] of 0, 3, and 5 dB) into the original recordings. An
adjuvant noise reduction function using a log minimum mean
square error (logMMSE) [23] algorithm was applied to
counteract the influence on detection accuracy.

Participants
We invited 10 teachers to participate in this study. This study
was conducted at Far Eastern Memorial Hospital and National
Yang-Ming University. The study protocol was approved by
the Research Ethics Review Committee of Far Eastern Memorial
Hospital (FEMH 108019-E). For the first period of study, we
recruited 5 teachers from April to June 2019; for the second
period, we recruited another 5 teachers from February to April
2020. Each teacher was provided with a wireless microphone
during a regular teaching session of 40-60 minutes. The average
background noise level was controlled under 55 dB SPL,
established as the controlled environment test condition.

Automatic Speech Detection System

Overview
Figure 1 illustrates the automatic speech detection system
proposed in this study. The main corpus of this system is the
detection model, which automatically divides acoustic signals
into speech and nonspeech segments based on the energy
envelope. We used a frame size of 32 milliseconds with a
sampling rate of 16 kHz. Under simulated noisy conditions, the
noise reduction model can be turned on to alleviate the effects
from the background noise.
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Figure 1. Proposed automatic speech detection system. AT: adaptive threshold; GA: genetic algorithm; logMMSE: logarithm minimum mean square
error; NR: noise reduction.

Detection Model
The signals (Sj) recorded from the wireless microphone were
converted to envelope (Êj) by an “envelope detection” unit; the
power energy can be used in this unit. Then, the “detection unit”
predicted whether the input frames were speech or nonspeech
by comparing the value of Êj with that of the AT. The AT can
be calculated using Equation (1); it is based on the energy of
the input frame and 3 consecutive preceding frames.

Here, ai represents the coefficients of the energy envelope of
the current frame (i=0) and 3 successive preceding frames (i=1
to 3). It should be noted that the 3 successive preceding frames
are included in this equation according to the best performance
observed in our pilot study. Êj-i represents the input acoustic
energy features at the j-i frame index and b is the bias. When
the value of Êj exceeded the threshold derived from the AT in
Equation (1), the system generated “1” as the output, indicating

that this frame was recognized as speech. However, if the value
was lower than the threshold derived from the AT in Equation
(1), the system generated “0” (nonspeech) as the output.

The 5 coefficients required to calculate the AT were defined by
the following two steps: (1) manually labeling speech segments
of the recoded audio files and (2) using a GA to search for these
5 coefficients. In the first step, we developed software (Figure
2) to manually label the speech segments according to their time
and frequency domains. We applied the GA [24] to search for
these 5 coefficients for the AT function based on 25 randomly
selected utterances of 10 seconds each (details are provided in
Multimedia Appendix 1). After acquiring the coefficients
required for the AT function, another 5 random utterances were
used to test the accuracy of the automatic speech detection
system. Similarly, the manual labeling of the speech segments
was considered as the ground truth. The overall accuracy of
each subject was calculated based on each frame (ie, by dividing
the predicted number of speech frames by the total number of
speech frames labeled manually).

Figure 2. Overview of user interfaces in the proposed labeling tool. The selected speech segments are displayed as red brackets.
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Noise Reduction Model
Because a wireless microphone is an air-conducted device that
is susceptible to background noise, we performed additional
experiments to examine the performance of the noise reduction
model. We mimicked the presence of background noise by
mixing the recorded speech signal (Sj) with 4 different common
background noises (crowd cheering noise, sharp speech noise,
street noise, and white noise, shown in Multimedia Appendix

2) at 3 SNR levels (0, 3, and 5 dB), denoted by ). The noisy

signals ( ) were then processed by the logMMSE algorithm

to obtain enhanced signals ( ). Next, the were sent into the
detection model for energy and speech detection. We evaluated
the performance of the noise reduction model by comparing the
accuracy of speech detection under simulated noisy conditions
with or without the noise reduction function.

Measuring Phonation Ratio and Duration of Speech
Segments
To examine the applicability of the automatic speech detection
system, we calculated the phonation ratio of the participants as
shown in Equation (2), which is a common approach used to
analyze phonation habits and usage [19,25].

In addition, we calculated the duration and distribution of the
phonation and nonphonation segments in a similar manner as
in previous literature [22].

Results

Figure 3 displays the average recognition accuracy of the
automatic speech detection system, which was 89.9%
(frame-based) in the controlled environment, ranging from
81.0% (67,357/83,157) to 95.0% (199,201/209,685). Figures 4
and 5 illustrate the phonation ratio for the 10 teachers evaluated
during the teaching session. On average, the phonation ratio
ranged from 44.0% (33,019/75,044) to 78.0% (68,785/88,186).
We also noted a drastic decrease in the phonation ratio in subject
5 at approximately 20 minutes (asterisk, Figure 4). After
reviewing the recorded audio file, we observed that this teacher
did not speak for a while because he left the podium to fetch
chalk; this example further demonstrated the excellent sensitivity
of the proposed automatic speech detection system in practical
scenarios. Figures 6 and 7 illustrate the distribution of the speech
and nonspeech segments in logarithmic scales. Analytical results
showed that the durations of most of the speech and nonspeech
segments were less than 10 seconds.

Figure 3. Average accuracy of the automatic speech detection system with respect to 10 teachers in a controlled environment.
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Figure 4. Phonation ratio over time for the 10 teachers (Subjects 1-6).

Figure 5. Phonation ratio over time for the 10 teachers (Subjects 7-10).
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Figure 6. Speech and nonspeech segments measured by the automatic speech detection system. The x-axis indicates the length of the speech segments
in a logarithmic scale, while the y-axis represents the occurrences during the recording period in a logarithmic scale (Subjects 1-6).

Figure 7. Speech and nonspeech segments measured by the automatic speech detection system. The x-axis indicates the length of the speech segments
in a logarithmic scale, while the y-axis represents the occurrences during the recording period in a logarithmic scale (Subjects 7-10).

Figures 8 and 9 present a comparison of the same recordings
under the controlled environment and simulated noisy
conditions. We noticed that the detection accuracy dropped
significantly under noisy conditions, indicating that the

performance of the automatic speech detection system can be
easily affected by the presence of noise without a noise reduction
function. On average, the additional noise decreased the
accuracy by approximately 33%, 36%, 34%, and 36% for 4
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different types of noise: crowd cheering noise, sharp speech
noise, street noise, and white noise, respectively.

Figure 10 presents an example of the relationship between the
speech envelope and AT with and without the noise reduction
function. Under the controlled environment, the AT was higher
than the speech signal during nonspeech segments; in contrast,
the energy envelope exceeded the AT in the presence of speech
(Figure 10A). However, when the speech signal was
contaminated by background noise, the overall energy exceeded
the AT in both the speech and nonspeech segments (Figure

10B); thereby the proposed system may not be as effective in
differentiating between speech and nonspeech signals. After
enabling the logMMSE noise reduction function (Figure 10C),
the AT could accurately detect the segments of speech versus
nonspeech. On average, the additional noise reduction function
yielded an average improvement of 4.9%, 27.5%, 19.3%, and
29.8% under the conditions of crowd cheering noise, sharp
speech noise, street noise, and white noise, respectively. The
detailed improvements are provided in Multimedia Appendix
3.

Figure 8. Accuracy of the automatic speech detection system with the presence of 2 different types of background noise (crowd cheer noise and speech
sharp noise) at 3 SNR levels. The first bar of each graph indicates the accuracy of the original recording under the controlled environment. SNR:
signal-to-noise ratio.
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Figure 9. Accuracy of the automatic speech detection system with the presence of 2 different types of background noise (street noise and white noise)
at 3 SNR levels. The first bar of each graph indicates the accuracy of the original recording under the controlled environment. SNR: signal-to-noise
ratio.
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Figure 10. Example of the relationship between the speech envelope and AT in (A) the controlled environment, (B) noisy conditions without the noise
reduction function, and (C) noisy conditions with the noise reduction function. Each part of the figure presents the same speech; the gray background
denotes the speech segments, while the other areas indicate the nonspeech segments. AT: adaptive threshold.

Discussion

Principal Findings
In this study, we proposed an ambulatory phonation monitoring
system with a wireless microphone. The results demonstrated
that the proposed system can accurately differentiate between
speech and nonspeech segments based on the energy envelope

in a controlled environment. The implementation of an
additional noise reduction function using a logMMSE algorithm
can effectively reduce the impact of background noise.
Preliminary results of the phonation ratio and the distribution
of speech segments in 10 teachers were compatible with those
in previous literature [18,19].
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Applicability and Accuracy of Automatic Speech
Detection System
Most studies in the existing literature used a neck accelerometer
to detect the vibrations of vocal folds via skin [18,25]. Although
contact microphones can effectively suppress the effects of
background noise [16], they may not always be convenient for
the users, owing to the cumbersome wiring and taping. In
contrast, the wireless microphone used in this study eliminated
the discomfort associated with the wiring and taping of contact
microphones. All the participants reported good tolerance using
wireless microphone, without any physical discomfort during
the teaching session.

Previous studies [22] applied predefined criteria to detect voice
activity, such as the fundamental frequency during normal
speaking (ie, 70 to 1000 Hz), SPL greater than 30 dB, and a
low/high ratio of at least 22 dB. In this study, we specifically
designed software to manually label the speech segments (Figure
2), which served as the ground truth for examining the detection
accuracy of this novel system. Figure 3 demonstrates an average
detection accuracy of 89.9% in the controlled environment,
which established the applicability and reliability of the
proposed system.

In comparison to previous studies [18,25], our results
demonstrated a higher phonation ratio (range: 44.0%-78.0%;
Figure 3) owing to the continual lecturing of the teachers in the
classroom. Similarly, the durations of most of the speech
segments were less than 10 seconds. We did not observe long
durations of silence (nonspeech) in this study (Figures 6 and
7). In contrast, previous studies recorded the phonation ratio
throughout the day (except sleeping) [18,25]; thus, longer silence
periods were more likely to be documented.

Benefits of Noise Reduction Function
Because wireless microphones are more susceptible to
background noise, we examined the effectiveness of the
additional noise reduction function by mixing 4 different types
of background noise to simulate noisy conditions. Our results
showed that the noise reduction function using the logMMSE
algorithm can improve the detection accuracy by up to 45.8%
(maximum) in stable noise conditions (eg, sharp speech noise
and white noise) (Multimedia Appendix 3); however, logMMSE
works less efficiently in competing voice signals (eg, crowd
cheering noise), resulting in an improvement of approximately
5%, similar to previous literature [26]. Accordingly, other noise

reduction approaches, such as deep learning [27], may be more
robust for enhancing the automatic speech detection system in
the future. Additionally, automatic gain control [28] can also
be integrated into the system to normalize the input volume and
improve the accuracy in cases where sudden changes are
observed in the input volume.

Speaker Identification
The proposed system yielded comparable accuracy in most of
the test conditions and an additional noise reduction function
further improved the performance of the proposed system in
noisy conditions. However, there is still room for improvement
in some challenging conditions (eg, video sound or sudden
increase in volume). We observed that subject 3 played a video
clip with speech context during the class, and the loud speech
from the video was misidentified as the speech of subject 3. For
subject 4, several conversations took place between the teacher
and students, which also caused the voice signals from the
students to be misidentified as the speech of subject 4 and
reduced the accuracy. One way to alleviate this inherent
limitation of wireless microphones (ie, susceptibility to noise
and competitive speakers) is the use of a microphone array with
a beamforming algorithm that can fix (or adapt to adjust) the
recorded position to distinguish between the speech of the
speaker and background noise or other speakers. Another option
to improve our system is implementing the speaker identification
algorithm [29]; however, it requires significantly higher
computing power to handle complex features (such as i-vector
or x-vector [30,31]) using deep learning–based technology.

Future Perspective
The study results suggest that the proposed automatic speech
detection system with wireless microphone can be applied in
practical scenarios to overcome the limitations of contact
microphone for ambulatory phonation monitoring. The proposed
system can be further implemented on personal laptops (or
mobile phone devices) for daily use and timely feedback, as
illustrated in Figure 11. By monitoring the baseline phonation
ratio, doctors and speech language pathologists can prescribe a
certain threshold of phonation ratio based on individual
conditions. Upon exceeding this limit, an alarm signal (flash or
sound) could be sent to the user to ensure that they take enough
breaks; promising results are available with respect to this
concept [32] but it requires further evidential support from
ongoing studies.
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Figure 11. Exemplary use of the automatic speech detection system by a teacher.

Although the proposed automatic speech detection system
achieved 89.9% accuracy in this study for the proposed
ambulatory phonation monitoring, it still has room for
improvement. More recently, deep learning–based automatic
speech recognition (ASR) [33] and natural language processing
(NLP) [34,35] systems were proven to achieve higher speech
recognition efficiency for conventional communication between
human-machine applications (eg, Amazon Alexa, Google Home,
and Apple Siri). These deep learning–based ASR and NLP
systems could be applied in ambulatory phonation monitoring;
however, some critical issues need to be addressed. For example,
ASR and NLP technologies might violate the user’s privacy
because they recognize the context of the user’s speech. In
contrast, the automatic speech detection system of this study is
energy-based; it will not directly access the content of speech
and might be more acceptable to the users. In addition, ASR
and NLP technologies require high computing power, especially
when a deeper structure of the neural network is implanted to
achieve higher speech recognition accuracy. A cloud-based
ASR and NLP system could be effective in alleviating this
limitation; however, the recorded speech data still needs to be
uploaded to the server, which may lead to additional privacy
and security issues. More recently, phonetic posteriorgram
features obtained from the acoustic model of the ASR system
was introduced for speech processing applications, and it has
proven to achieve benefits in many tasks [36-38]. Following
the success of phonetic posteriorgram, our future study could

apply its features and deep learning technology to improve the
performance of the current model.

Furthermore, this system can also be extended for detecting
speech and communication disorders [39] (eg, Parkinson disease
[40] and depression [41]). However, such work may require
more sophisticated features of voice signals and computation
techniques, such as the combination of the Mel frequency
cepstral coefficients and deep neural networks, which was used
in a previous study [42]. With the significant advancements in
smartphones and smart home devices, the proposed automatic
speech detection system can potentially be implemented in these
devices to further decrease the clumsiness of any additional
devices [43].

Limitations
The first limitation of this study is the small number of
participants (N=10). A larger cohort is required to obtain more
robust evidence for the clinical use of automatic speech detection
for ambulatory phonation monitoring. In addition, only teachers
were recruited owing to the approved IRB protocol. Other
occupations with high vocal demands (eg, salespeople and
customer service representatives) will be included in the future
to expand the potential use of the proposed system. Second, the
proposed automatic speech detection system cannot precisely
identify the speech of the speaker in the presence of loud
competing background noise or other speakers. To overcome
this issue, algorithms that require higher computing power, such
as speaker identification or microphone array algorithms, could
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be used in future studies. Lastly, this automatic speech detection
system requires manually labeling the recorded speech for model
training. Considering the high accuracy achieved in this study,
future research does not need to record the original voice
content, so the confidentiality of the participants can be better
protected.

Conclusions
This study proposed an automatic speech detection system
comprising a wireless microphone to receive the acoustic signals

and an adaptive threshold for speech detection based on the
energy envelope. The proposed system demonstrated a speech
detection accuracy of 89.9%, and the analytical results for the
phonation ratio and speech segments were comparable to those
of previous research. Moreover, the use of an unsupervised
noise reduction function (logMMSE) can improve the robustness
of the proposed system in noisy conditions. These results imply
that the proposed system can be a potential tool for ambulatory
voice monitoring in occupational voice users.

Acknowledgments
This study was supported by the Ministry of Science and Technology of Taiwan under the 108-2314-B-418-013 and
109-2218-E-010-004 projects and Far Eastern Memorial Hospital-National Yang-Ming University Joint Research
(FEMH-NYMU108DN34).

Conflicts of Interest
The authors CTW and YHL are the inventors of “Real-time monitor system of phonation,” (Taiwan Patent No. TW I626647).

Multimedia Appendix 1
Using genetic algorithm to determine the parameters of the adaptive threshold.
[DOCX File , 395 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Spectrogram of the background noises used in this study.
[DOCX File , 1301 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Mean improvements in recognition accuracies when using the noise reduction function for the proposed auto speech detection
system under simulated noisy conditions.
[DOCX File , 26 KB-Multimedia Appendix 3]

References

1. Titze IR, Martin DW. Principles of voice production. Saddle River City, NJ: Prentice Hall; 1994:169-190.
2. Roy N, Merrill RM, Thibeault S, Parsa RA, Gray SD, Smith EM. Prevalence of voice disorders in teachers and the general

population. J Speech Lang Hear Res 2004 Apr;47(2):281-293. [doi: 10.1044/1092-4388(2004/023)] [Medline: 15157130]
3. Van Houtte E, Claeys S, Wuyts F, Van Lierde K. The impact of voice disorders among teachers: vocal complaints,

treatment-seeking behavior, knowledge of vocal care, and voice-related absenteeism. J Voice 2011 Sep;25(5):570-575.
[doi: 10.1016/j.jvoice.2010.04.008] [Medline: 20634042]

4. Cohen SM, Kim J, Roy N, Asche C, Courey M. The impact of laryngeal disorders on work-related dysfunction. Laryngoscope
2012 Jul;122(7):1589-1594. [doi: 10.1002/lary.23197] [Medline: 22549455]

5. Verdolini K, Ramig LO. Review: occupational risks for voice problems. Logoped Phoniatr Vocol 2001;26(1):37-46.
[Medline: 11432413]

6. Titze IR, Lemke J, Montequin D. Populations in the U.S. workforce who rely on voice as a primary tool of trade: a preliminary
report. J Voice 1997 Sep;11(3):254-259. [doi: 10.1016/s0892-1997(97)80002-1] [Medline: 9297668]

7. Williams NR. Occupational groups at risk of voice disorders: a review of the literature. Occup Med (Lond) 2003
Oct;53(7):456-460. [doi: 10.1093/occmed/kqg113] [Medline: 14581643]

8. Simberg S, Laine A, Sala E, Rönnemaa AM. Prevalence of voice disorders among future teachers. J Voice 2000
Jun;14(2):231-235. [doi: 10.1016/s0892-1997(00)80030-2] [Medline: 10875574]

9. Chen SH, Chiang SC, Chung YM, Hsiao LC, Hsiao TY. Risk factors and effects of voice problems for teachers. J Voice
2010 Mar;24(2):183-90, quiz 191. [doi: 10.1016/j.jvoice.2008.07.008] [Medline: 19481416]

10. Bermúdez de Alvear RM, Barón FJ, Martínez-Arquero AG. School teachers' vocal use, risk factors, and voice disorder
prevalence: guidelines to detect teachers with current voice problems. Folia Phoniatr Logop 2011;63(4):209-215. [doi:
10.1159/000316310] [Medline: 20938203]

11. Smith E, Lemke J, Taylor M, Kirchner HL, Hoffman H. Frequency of voice problems among teachers and other occupations.
J Voice 1998 Dec;12(4):480-488. [doi: 10.1016/s0892-1997(98)80057-x] [Medline: 9988035]

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e16746 | p. 12https://mhealth.jmir.org/2020/12/e16746
(page number not for citation purposes)

Wang et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=mhealth_v8i12e16746_app1.docx&filename=95eda490430a2c5de5b71856c6593de7.docx
https://jmir.org/api/download?alt_name=mhealth_v8i12e16746_app1.docx&filename=95eda490430a2c5de5b71856c6593de7.docx
https://jmir.org/api/download?alt_name=mhealth_v8i12e16746_app2.docx&filename=feb1385bd5c090681ca9b9817be6a095.docx
https://jmir.org/api/download?alt_name=mhealth_v8i12e16746_app2.docx&filename=feb1385bd5c090681ca9b9817be6a095.docx
https://jmir.org/api/download?alt_name=mhealth_v8i12e16746_app3.docx&filename=7239ec09aff2caf774842ca1f8c06f61.docx
https://jmir.org/api/download?alt_name=mhealth_v8i12e16746_app3.docx&filename=7239ec09aff2caf774842ca1f8c06f61.docx
http://dx.doi.org/10.1044/1092-4388(2004/023)
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15157130&dopt=Abstract
http://dx.doi.org/10.1016/j.jvoice.2010.04.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20634042&dopt=Abstract
http://dx.doi.org/10.1002/lary.23197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22549455&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11432413&dopt=Abstract
http://dx.doi.org/10.1016/s0892-1997(97)80002-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9297668&dopt=Abstract
http://dx.doi.org/10.1093/occmed/kqg113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14581643&dopt=Abstract
http://dx.doi.org/10.1016/s0892-1997(00)80030-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10875574&dopt=Abstract
http://dx.doi.org/10.1016/j.jvoice.2008.07.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19481416&dopt=Abstract
http://dx.doi.org/10.1159/000316310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20938203&dopt=Abstract
http://dx.doi.org/10.1016/s0892-1997(98)80057-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9988035&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


12. Stemple JC, Roy N, Klaben BK. Clinical voice pathology: Theory and management. San Diego, CA: Plural Publishing;
2018.

13. Chen SH, Hsiao T, Hsiao L, Chung Y, Chiang S. Outcome of resonant voice therapy for female teachers with voice disorders:
perceptual, physiological, acoustic, aerodynamic, and functional measurements. J Voice 2007 Jul;21(4):415-425. [doi:
10.1016/j.jvoice.2006.02.001] [Medline: 16581227]

14. Ryu S, Komiyama S, Kannae S, Watanabe H. A newly devised speech accumulator. ORL J Otorhinolaryngol Relat Spec
1983;45(2):108-114. [doi: 10.1159/000275632] [Medline: 6341919]

15. Cheyne HA, Hanson HM, Genereux RP, Stevens KN, Hillman RE. Development and testing of a portable vocal accumulator.
J Speech Lang Hear Res 2003 Dec;46(6):1457-1467. [doi: 10.1044/1092-4388(2003/113)] [Medline: 14700368]

16. Popolo PS, Svec JG, Titze IR. Adaptation of a Pocket PC for use as a wearable voice dosimeter. J Speech Lang Hear Res
2005 Aug;48(4):780-791. [doi: 10.1044/1092-4388(2005/054)] [Medline: 16378473]

17. Carroll T, Nix J, Hunter E, Emerich K, Titze I, Abaza M. Objective measurement of vocal fatigue in classical singers: a
vocal dosimetry pilot study. Otolaryngol Head Neck Surg 2006 Oct;135(4):595-602 [FREE Full text] [doi:
10.1016/j.otohns.2006.06.1268] [Medline: 17011424]

18. Titze I, Hunter E, Svec JG. Voicing and silence periods in daily and weekly vocalizations of teachers. J Acoust Soc Am
2007 Jan;121(1):469-478 [FREE Full text] [doi: 10.1121/1.2390676] [Medline: 17297801]

19. Mehta DD, Zañartu M, Feng SW, Cheyne HA, Hillman RE. Mobile voice health monitoring using a wearable accelerometer
sensor and a smartphone platform. IEEE Trans Biomed Eng 2012 Nov;59(11):3090-3096 [FREE Full text] [doi:
10.1109/TBME.2012.2207896] [Medline: 22875236]

20. Remacle A, Morsomme D, Finck C. Comparison of vocal loading parameters in kindergarten and elementary school teachers.
J Speech Lang Hear Res 2014 Apr 01;57(2):406-415. [doi: 10.1044/2013_JSLHR-S-12-0351] [Medline: 24129011]

21. Searl J, Dietsch AM. Tolerance of the VocaLog™ Vocal Monitor by Healthy Persons and Individuals With Parkinson
Disease. J Voice 2015 Jul;29(4):518.e13-518.e20. [doi: 10.1016/j.jvoice.2014.09.011] [Medline: 25726068]

22. Van Stan JH, Mehta DD, Sternad D, Petit R, Hillman RE. Ambulatory Voice Biofeedback: Relative Frequency and Summary
Feedback Effects on Performance and Retention of Reduced Vocal Intensity in the Daily Lives of Participants With Normal
Voices. J Speech Lang Hear Res 2017 Apr 14;60(4):853-864 [FREE Full text] [doi: 10.1044/2016_JSLHR-S-16-0164]
[Medline: 28329366]

23. Scalart P, Filho JV. Speech enhancement based on a priori signal to noise estimation. In: IEEE International Conference
on Acoustics, Speech, and Signal Processing Conference Proceedings. 1996 Presented at: IEEE International Conference
on Acoustics, Speech, and Signal Processing; 1996; Atlanta, GA p. 629-632. [doi: 10.1109/icassp.1996.543199]

24. John H H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence. In: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. Boston: A Bradford Book; 1992.

25. Van Stan JH, Mehta DD, Zeitels SM, Burns JA, Barbu AM, Hillman RE. Average Ambulatory Measures of Sound Pressure
Level, Fundamental Frequency, and Vocal Dose Do Not Differ Between Adult Females With Phonotraumatic Lesions and
Matched Control Subjects. Ann Otol Rhinol Laryngol 2015 Nov;124(11):864-874 [FREE Full text] [doi:
10.1177/0003489415589363] [Medline: 26024911]

26. Wang SS, Tsao Y, Wang HLS, Lai YH, Li LPH. A deep learning-based noise reduction approach to improve speech
intelligibility for cochlear implant recipients in the presence of competing speech noise. In: Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference (APSIPA ASC). 2017 Presented at: Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC); 2017; Kuala Lumpur p.
808-812. [doi: 10.1109/apsipa.2017.8282144]

27. Xu Y, Du J, Huang Z, Dai LR, Lee CH. Multi-objective learning and mask-based post-processing for deep neural
network-based speech enhancement. arXiv. 2017. URL: https://arxiv.org/abs/1703.07172 [accessed 2020-10-14]

28. Shan T, Kailath T. Adaptive algorithms with an automatic gain control feature. IEEE Trans. Circuits Syst 1988
Jan;35(1):122-127. [doi: 10.1109/31.1709]

29. Reynolds D, Rose R. Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans.
Speech Audio Process 1995 Jan;3(1):72-83. [doi: 10.1109/89.365379]

30. Kanagasundaram A, Vogt R, Dean DB, Sridharan S, Mason MW. I-vector based speaker recognition on short utterances.
2011 Presented at: 12th Annual Conference of the International Speech Communication Association (ISCA); 2011; Florence,
Italy p. 2341-2344 URL: https://eprints.qut.edu.au/46313/1/IS110023.PDF

31. David S, Garcia-Romero D, Sell G, Povey D, Khudanpur S. X-Vectors: Robust DNN Embeddings for Speaker Recognition.
NY, US: IEEE; 2018 Presented at: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP); 15-20 April 2018; Calgary, AB, Canada. [doi: 10.1109/ICASSP.2018.8461375]

32. Van Stan JH, Mehta DD, Petit RJ, Sternad D, Muise J, Burns JA, et al. Integration of Motor Learning Principles Into
Real-Time Ambulatory Voice Biofeedback and Example Implementation Via a Clinical Case Study With Vocal Fold
Nodules. Am J Speech Lang Pathol 2017 Feb 01;26(1):1-10 [FREE Full text] [doi: 10.1044/2016_AJSLP-15-0187] [Medline:
28124070]

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e16746 | p. 13https://mhealth.jmir.org/2020/12/e16746
(page number not for citation purposes)

Wang et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.jvoice.2006.02.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16581227&dopt=Abstract
http://dx.doi.org/10.1159/000275632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6341919&dopt=Abstract
http://dx.doi.org/10.1044/1092-4388(2003/113)
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14700368&dopt=Abstract
http://dx.doi.org/10.1044/1092-4388(2005/054)
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16378473&dopt=Abstract
http://europepmc.org/abstract/MED/17011424
http://dx.doi.org/10.1016/j.otohns.2006.06.1268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17011424&dopt=Abstract
http://europepmc.org/abstract/MED/17297801
http://dx.doi.org/10.1121/1.2390676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17297801&dopt=Abstract
http://europepmc.org/abstract/MED/22875236
http://dx.doi.org/10.1109/TBME.2012.2207896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22875236&dopt=Abstract
http://dx.doi.org/10.1044/2013_JSLHR-S-12-0351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24129011&dopt=Abstract
http://dx.doi.org/10.1016/j.jvoice.2014.09.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25726068&dopt=Abstract
http://europepmc.org/abstract/MED/28329366
http://dx.doi.org/10.1044/2016_JSLHR-S-16-0164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28329366&dopt=Abstract
http://dx.doi.org/10.1109/icassp.1996.543199
http://europepmc.org/abstract/MED/26024911
http://dx.doi.org/10.1177/0003489415589363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26024911&dopt=Abstract
http://dx.doi.org/10.1109/apsipa.2017.8282144
https://arxiv.org/abs/1703.07172
http://dx.doi.org/10.1109/31.1709
http://dx.doi.org/10.1109/89.365379
https://eprints.qut.edu.au/46313/1/IS110023.PDF
http://dx.doi.org/10.1109/ICASSP.2018.8461375
http://europepmc.org/abstract/MED/28124070
http://dx.doi.org/10.1044/2016_AJSLP-15-0187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28124070&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


33. Zhang W, Cui X, Finkler U, Kingsbury B, Saon G, Kung D. Distributed deep learning strategies for automatic speech
recognition. 2019 Presented at: ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP); 2019; Brighton, United Kingdom p. 5706-5710. [doi: 10.1109/icassp.2019.8682888]

34. Kaufman DR, Sheehan B, Stetson P, Bhatt AR, Field AI, Patel C, et al. Natural Language Processing-Enabled and
Conventional Data Capture Methods for Input to Electronic Health Records: A Comparative Usability Study. JMIR Med
Inform 2016 Oct 28;4(4):e35 [FREE Full text] [doi: 10.2196/medinform.5544] [Medline: 27793791]

35. Sheikhalishahi S, Miotto R, Dudley JT, Lavelli A, Rinaldi F, Osmani V. Natural Language Processing of Clinical Notes
on Chronic Diseases: Systematic Review. JMIR Med Inform 2019 Apr 27;7(2):e12239 [FREE Full text] [doi: 10.2196/12239]
[Medline: 31066697]

36. Tian X, Chng ES, Li H. A Speaker-Dependent WaveNet for Voice Conversion with Non-Parallel Dat. 2019 Presented at:
Interspeech 2019; 2019; Graz, Austria p. 201-205. [doi: 10.21437/interspeech.2019-1514]

37. Sun L, Li K, Wang H, Kang S, Meng H. Phonetic posteriorgrams for many-to-one voice conversion without parallel data
training. NY, US: IEEE; 2016 Presented at: IEEE International Conference on Multimedia and Expo (ICME); 2016; Seattle,
WA. [doi: 10.1109/ICME.2016.7552917]

38. Chen CY, Zheng WZ, Wang SS, Tsao Y, Li PC, Li YH. Enhancing Intelligibility of Dysarthric Speech Using Gated
Convolutional-based Voice Conversion System. In: IEEE Interspeech. 2020 Presented at: IEEE Interspeech; 2020; Shanghai.

39. Furlong LM, Morris ME, Erickson S, Serry TA. Quality of Mobile Phone and Tablet Mobile Apps for Speech Sound
Disorders: Protocol for an Evidence-Based Appraisal. JMIR Res Protoc 2016 Nov 29;5(4):e233 [FREE Full text] [doi:
10.2196/resprot.6505] [Medline: 27899341]

40. Erdogdu Sakar B, Serbes G, Sakar CO. Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's
disease. PLoS One 2017;12(8):e0182428 [FREE Full text] [doi: 10.1371/journal.pone.0182428] [Medline: 28792979]

41. Taguchi T, Tachikawa H, Nemoto K, Suzuki M, Nagano T, Tachibana R, et al. Major depressive disorder discrimination
using vocal acoustic features. J Affect Disord 2018 Jan 01;225:214-220. [doi: 10.1016/j.jad.2017.08.038] [Medline:
28841483]

42. Fang S, Tsao Y, Hsiao M, Chen J, Lai Y, Lin F, et al. Detection of Pathological Voice Using Cepstrum Vectors: A Deep
Learning Approach. J Voice 2019 Sep;33(5):634-641. [doi: 10.1016/j.jvoice.2018.02.003] [Medline: 29567049]

43. Chung AE, Griffin AC, Selezneva D, Gotz D. Health and Fitness Apps for Hands-Free Voice-Activated Assistants: Content
Analysis. JMIR Mhealth Uhealth 2018 Sep 24;6(9):e174 [FREE Full text] [doi: 10.2196/mhealth.9705] [Medline: 30249581]

Abbreviations
ASR: automatic speech recognition
AT: adaptive threshold
GA: genetic algorithm
logMMSE: log minimum mean square error
NLP: natural language processing
SPL: sound pressure level

Edited by G Eysenbach; submitted 23.10.19; peer-reviewed by B Johnson, C He; comments to author 20.01.20; revised version
received 03.06.20; accepted 03.10.20; published 03.12.20

Please cite as:
Wang CT, Han JY, Fang SH, Lai YH
Ambulatory Phonation Monitoring With Wireless Microphones Based on the Speech Energy Envelope: Algorithm Development and
Validation
JMIR Mhealth Uhealth 2020;8(12):e16746
URL: https://mhealth.jmir.org/2020/12/e16746
doi: 10.2196/16746
PMID: 33270033

©Chi-Te Wang, Ji-Yan Han, Shih-Hau Fang, Ying-Hui Lai. Originally published in JMIR mHealth and uHealth
(http://mhealth.jmir.org), 03.12.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete bibliographic
information, a link to the original publication on http://mhealth.jmir.org/, as well as this copyright and license information must
be included.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e16746 | p. 14https://mhealth.jmir.org/2020/12/e16746
(page number not for citation purposes)

Wang et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1109/icassp.2019.8682888
https://medinform.jmir.org/2016/4/e35/
http://dx.doi.org/10.2196/medinform.5544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27793791&dopt=Abstract
https://medinform.jmir.org/2019/2/e12239/
http://dx.doi.org/10.2196/12239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31066697&dopt=Abstract
http://dx.doi.org/10.21437/interspeech.2019-1514
http://dx.doi.org/10.1109/ICME.2016.7552917
https://www.researchprotocols.org/2016/4/e233/
http://dx.doi.org/10.2196/resprot.6505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27899341&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0182428
http://dx.doi.org/10.1371/journal.pone.0182428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28792979&dopt=Abstract
http://dx.doi.org/10.1016/j.jad.2017.08.038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28841483&dopt=Abstract
http://dx.doi.org/10.1016/j.jvoice.2018.02.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29567049&dopt=Abstract
https://mhealth.jmir.org/2018/9/e174/
http://dx.doi.org/10.2196/mhealth.9705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30249581&dopt=Abstract
https://mhealth.jmir.org/2020/12/e16746
http://dx.doi.org/10.2196/16746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33270033&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

