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Abstract

Background: Voice disorders mainly result from chronic overuse or abuse, particularly in occupational voice users such as
teachers. Previous studies proposed a contact microphone attached to the anterior neck for ambul atory voice monitoring; however,
the inconvenience associated with taping and wiring, along with the lack of real-time processing, haslimited its clinical application.

Objective: This study aims to (1) propose an automatic speech detection system using wireless microphones for rea-time
ambulatory voice monitoring, (2) examine the detection accuracy under controlled environment and noisy conditions, and (3)
report the results of the phonation ratio in practical scenarios.

Methods: We designed an adaptive threshold function to detect the presence of speech based on the energy envelope. Weinvited
10 teachersto participate in this study and tested the performance of the proposed automatic speech detection system regarding
detection accuracy and phonation ratio. Moreover, we investigated whether the unsupervised noise reduction algorithm (ie, log
minimum mean sguare error) can overcome the influence of environmental noisein the proposed system.

Results. The proposed system exhibited an average accuracy of speech detection of 89.9%, ranging from 81.0% (67,357/83,157
frames) to 95.0% (199,201/209,685 frames). Subsequent analyses revealed a phonation ratio between 44.0% (33,019/75,044
frames) and 78.0% (68,785/88,186 frames) during teaching sessions of 40-60 minutes; the durations of most of the phonation
segments were less than 10 seconds. The presence of background noise reduced the accuracy of the automatic speech detection
system, and an adjuvant noise reduction function could effectively improve the accuracy, especially under stable noise conditions.

Conclusions: This study demonstrated an average detection accuracy of 89.9% in the proposed automatic speech detection
system with wireless microphones. The preliminary results for the phonation ratio were comparable to those of previous studies.
Although the wireless microphones are susceptibl e to background noise, an additional noise reduction function can alleviate this
limitation. These resultsindicate that the proposed system can be applied for ambulatory voice monitoring in occupational voice
users.

(JMIR Mhealth Uhealth 2020;8(12):€16746) doi: 10.2196/16746
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Introduction

Human voice is produced via the periodic vibrations of vocal
folds, driven by expiratory airflow. Cumulative voiceloads and
excessivevoca fold vibrationsresult in phonotraumatic injuries,
such as vocal nodules and polyps [1]. The common symptoms
of dysphonia (ie, phonation discomfort) include hoarseness,
vocal fatigue, increased effort, and throat pain, which may limit
the performance and long-term careers of occupational voice
users[2]. Dysphoniaal so resultsin considerable financial losses
for individuals and society [3,4]; the estimated annua cost
associated with dysphonia is US $2.5 billion [5]. In addition,
voice-related disorders significantly lower the quality of lifein
terms of physical functioning, general health, bodily pain,
fatigue, and role limitation [6].

The most recognized risk for voice disorders is occupational
voice overuse, commonly found in salespeople,
industria/factory workers, teachers, clergy, lecturers, and singers
[6,7]. Among these occupations, the teaching profession has
been significantly investigated by academic researchers[8-10].
In comparison to other occupations, teachers are more likely to
report voice problems and the negative effects of dysphoniaon
their work performance [11]. Roy et al [2] reported that the
prevalence of voice disorders was significantly higher in
teachers (137/1243, 11.0%) in comparison to nonteachers
(80/1288, 6.2%). The lifetime prevalence of dysphonia for
teachers (717/1243, 57.7%) was a so significantly higher than
that for nonteachers (371/1288, 28.8%).

Voicetherapy has been widely applied asthefirst-line treatment
for voice disorders related to voice overuse or abuse [12,13].
By implementing multiple treatment strategies, voice therapy
can effectively ameliorate the dysphonic symptoms, lower the
phonation effort, and improve the voice quality [13]. However,
one of the major challenges for voice therapy is the carryover
of voicing techniques and habitstaught during treatment sessions
into their daily lives. To facilitate the maintenance of adequate
phonation behavior, serial studies proposed the concept of
ambulatory voice monitoring with promising results [14-16].
Most of these studies used a contact microphone or
accelerometer attached to the anterior neck [17,18]. Subsequent
studies demonstrated that this technology could significantly
aid patientsin controlling and tracking their vocal hyperfunction
[19,20]. Another device for ambulatory voice monitoring was
designed as aneck collar embedded with a contact microphone
[21]. Although contact microphones and accelerometers can
accurately detect phonation via the vibration of neck skin, the
wiring and taping involved with these devices may cause
discomfort in users. Furthermore, voice usage was mostly
analyzed over a certain period with post hoc feedback [22],
whereas real-time monitoring of the phonation ratio has not yet
been reported.

To overcome the limitations in current devices, we propose a
novel automatic speech detection system using a wireless
microphone to capture acoustic signals from users, which can
eliminate the discomfort associated with the wiring and taping
of contact microphones. Our study hypothesizesthat the speech
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energy envelope received via a wireless microphone can be
used for ambulatory phonation monitoring. To examine this
hypothesis, we designed this research with the following
objectives: (1) to investigate the detection accuracy of speech,
(2) to compare the measured phonation ratio and length of
speech segments with those in existing literature, and (3) to
examine the robustness of the noise reduction algorithm in
simulated noisy conditions.

Methods

Overall Study Design

We proposed an automatic speech detection system using a
wireless microphonefor real-time ambul atory voice monitoring.
We invited 10 teachers to participate in the pilot study. We
designed an adaptive threshold (AT) function to detect the
presence of speech based on the energy envelope. All
participants were equipped with a wireless microphone during
ateaching session (around 40-60 minutes) in aquiet classroom
(background noise <55 dB sound pressure level [SPL]). We
devel oped software for manually labeling the speech segments
according to the time and frequency domains. We randomly
selected 25 utterances (10 seconds each) from the recorded
audio files to acquire the coefficients required for the AT
function using a genetic algorithm (GA). Another 5 random
utterances were used to test the accuracy of the automatic speech
detection system using manually labeled data as the ground
truth. We also mimicked scenarios of noisy backgrounds by
mixing 4 different types of noise (at a signal-to-noise ratio
[SNR] of 0, 3, and 5 dB) into the original recordings. An
adjuvant noise reduction function using a log minimum mean
square error (logMMSE) [23] agorithm was applied to
counteract the influence on detection accuracy.

Participants

We invited 10 teachers to participate in this study. This study
was conducted at Far Eastern Memorial Hospital and National
Yang-Ming University. The study protocol was approved by
the Research Ethics Review Committee of Far Eastern Memoria
Hospital (FEMH 108019-E). For the first period of study, we
recruited 5 teachers from April to June 2019; for the second
period, we recruited another 5 teachers from February to April
2020. Each teacher was provided with a wireless microphone
during aregular teaching session of 40-60 minutes. The average
background noise level was controlled under 55 dB SPL,
established as the controlled environment test condition.

Automatic Speech Detection System

Overview

Figure 1 illustrates the automatic speech detection system
proposed in this study. The main corpus of this system is the
detection model, which automatically divides acoustic signals
into speech and nonspeech segments based on the energy
envelope. We used a frame size of 32 milliseconds with a
sampling rate of 16 kHz. Under simulated noisy conditions, the
noise reduction model can be turned on to aleviate the effects
from the background noise.
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Figure 1. Proposed automatic speech detection system. AT: adaptive threshold; GA: genetic algorithm; logMM SE: logarithm minimum mean square

error; NR: noise reduction.
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The signals (§) recorded from the wireless microphone were
converted to envelope (Ej) by an “envelope detection” unit; the
power energy can be used in thisunit. Then, the“ detection unit”
predicted whether the inputﬂframas were speech or nonspeech
by comparing the value of E; with that of the AT. The AT can
be calculated using Equation (1); it is based on the energy of
the input frame and 3 consecutive preceding frames.

AT=b+ ¥ caEi; (1)
Here, g represents the coefficients of the energy envelope of
the current frame (i=0) and 3 successive preceding frames (i=1
to 3). It should be noted that the 3 successive preceding frames

areincluded in this equation according to the best performance
observed in our pilot study. Ej_i represents the input acoustic

energy features at the j-i frame index and b is the bias. When
the value of E; exceeded the threshold derived from the AT in

Equation (1), the system generated “ 1" asthe output, indicating

v 110100110101100001
Enhanced Envelope Detection _W
speech detection | F; unit 'L
| Output “0” or “1”

that thisframe was recognized as speech. However, if the value
was lower than the threshold derived from the AT in Equation
(2), the system generated “0” (nonspeech) as the output.

The 5 coefficients required to calcul ate the AT were defined by
thefollowing two steps: (1) manually labeling speech segments
of therecoded audio filesand (2) using aGA to search for these
5 coefficients. In the first step, we developed software (Figure
2) to manually label the speech segments according to their time
and frequency domains. We applied the GA [24] to search for
these 5 coefficients for the AT function based on 25 randomly
selected utterances of 10 seconds each (details are provided in
Multimedia Appendix 1). After acquiring the coefficients
required for the AT function, another 5 random utterances were
used to test the accuracy of the automatic speech detection
system. Similarly, the manual labeling of the speech segments
was considered as the ground truth. The overall accuracy of
each subject was cal culated based on each frame (ie, by dividing
the predicted number of speech frames by the total number of
speech frames labeled manually).

Figure 2. Overview of user interfacesin the proposed labeling tool. The selected speech segments are displayed as red brackets.
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Noise Reduction Model

Because awireless microphoneis an air-conducted device that
is susceptible to background noise, we performed additional
experiments to examine the performance of the noise reduction
model. We mimicked the presence of background noise by
mixing the recorded speech signal (S) with 4 different common
background noises (crowd cheering noise, sharp speech noise,
street noise, and white noise, shown in Multimedia Appendix

2) at 3SNR levels (0, 3, and 5 dB), denoted by s ). The noisy
signals ( s/ ) were then processed by the logM M SE algorithm

to obtain enhanced signals (5. Next, the ' were sent into the
detection model for energy and speech detection. We evaluated
the performance of the noise reduction model by comparing the
accuracy of speech detection under simulated noisy conditions
with or without the noise reduction function.

Measuring Phonation Ratio and Duration of Speech

Segments

To examine the applicability of the automatic speech detection
system, we cal culated the phonation ratio of the participants as
shown in Equation (2), which is a common approach used to
analyze phonation habits and usage [19,25].

Wang et al

speech frames

Phonation ratio (%) = - —— Frames

X 100% (@)

In addition, we calculated the duration and distribution of the
phonation and nonphonation segments in a similar manner as
in previous literature [22].

Results

Figure 3 displays the average recognition accuracy of the
automatic speech detection system, which was 89.9%
(frame-based) in the controlled environment, ranging from
81.0% (67,357/83,157) to 95.0% (199,201/209,685). Figures 4
and 5illustrate the phonation ratio for the 10 teachers eval uated
during the teaching session. On average, the phonation ratio
ranged from 44.0% (33,019/75,044) to 78.0% (68,785/88,186).
We also noted adrastic decrease in the phonation ratio in subject
5 a approximately 20 minutes (asterisk, Figure 4). After
reviewing the recorded audio file, we observed that thisteacher
did not speak for a while because he left the podium to fetch
chalk; thisexample further demonstrated the excellent sensitivity
of the proposed automatic speech detection system in practical
scenarios. Figures 6 and 7 illustrate the distribution of the speech
and nonspeech segmentsin logarithmic scales. Analytical results
showed that the durations of most of the speech and nonspeech
segments were less than 10 seconds.

Figure 3. Average accuracy of the automatic speech detection system with respect to 10 teachersin a controlled environment.
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Figure 4. Phonation ratio over time for the 10 teachers (Subjects 1-6).
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Figure 6. Speech and nonspeech segments measured by the automatic speech detection system. The x-axisindicates the length of the speech segments
in alogarithmic scale, while the y-axis represents the occurrences during the recording period in alogarithmic scale (Subjects 1-6).

Subject 1 L Subject 2
B Speech O Speech
B Nonspeech HNonspeech
g
= g
0-00 0128032 032-1 1316 10~inf 00032 0@01S0LE0N 0321 10-in
Duration of segment (s) Duration of segment (s
Subject 3 Subject 4
] Bl Speech i @ Speech
B Nonspeech BNonspeech
5 2
00 032-0.128 0128032 03 6 10-ind 8 0.128-0.32 316 316~10 l0wanf
Duration of segment (s} Duration of segment (s)
Subject 5 Subject 6
E Speech E Speech
B Nonspeech B Nonspeech
2 8
2 =
E :
E

0.128-0.3;
Duration of sezment (s)

0128032 03
Duration of segment (s)

Figure 7. Speech and nonspeech segments measured by the automatic speech detection system. The x-axis indicates the length of the speech segments
in alogarithmic scale, while the y-axis represents the occurrences during the recording period in alogarithmic scale (Subjects 7-10).
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Figures 8 and 9 present a comparison of the same recordings performance of the automatic speech detection system can be
under the controlled environment and simulated noisy easily affected by the presence of noisewithout anoisereduction
conditions. We noticed that the detection accuracy dropped function. On average, the additional noise decreased the
significantly under noisy conditions, indicating that the accuracy by approximately 33%, 36%, 34%, and 36% for 4
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different types of noise: crowd cheering noise, sharp speech
noise, street noise, and white noise, respectively.

Figure 10 presents an example of the relationship between the
speech envelope and AT with and without the noise reduction
function. Under the controlled environment, the AT was higher
than the speech signal during nonspeech segments; in contrast,
the energy envel ope exceeded the AT in the presence of speech
(Figure 10A). However, when the speech signa was
contaminated by background noise, the overall energy exceeded
the AT in both the speech and nonspeech segments (Figure

Wang et al

10B); thereby the proposed system may not be as effective in
differentiating between speech and nonspeech signals. After
enabling the logM M SE noise reduction function (Figure 10C),
the AT could accurately detect the segments of speech versus
nonspeech. On average, the additional noise reduction function
yielded an average improvement of 4.9%, 27.5%, 19.3%, and
29.8% under the conditions of crowd cheering noise, sharp
speech noise, street noise, and white noise, respectively. The
detailed improvements are provided in Multimedia Appendix
3.

Figure8. Accuracy of the automatic speech detection system with the presence of 2 different types of background noise (crowd cheer noise and speech
sharp noise) at 3 SNR levels. The first bar of each graph indicates the accuracy of the origina recording under the controlled environment. SNR:

signal-to-noiseratio.

]

Crowi cheer noise

Speech sharp noise

|

https://mhealth.jmir.org/2020/12/€16746

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | €16746 | p. 7
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

Wang et al

JMIR MHEALTH AND UHEALTH

Street noise

memt @SNRC OSHRI WSHRS

White noise

@SR S

mem @SNRC DSHRI

Figure 9. Accuracy of the automatic speech detection system with the presence of 2 different types of background noise (street noise and white noise)

at 3 SNR levels. The first bar of each graph indicates the accuracy of the original recording under the controlled environment. SNR: signal-to-noise

ratio.
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Figure 10. Example of the relationship between the speech envelope and AT in (A) the controlled environment, (B) noisy conditions without the noise
reduction function, and (C) noisy conditions with the noise reduction function. Each part of the figure presents the same speech; the gray background
denotes the speech segments, while the other areas indicate the nonspeech segments. AT: adaptive threshold.
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in a controlled environment. The implementation of an
additional noise reduction function using alogM M SE agorithm

Principal Findings

In this study, we proposed an ambul atory phonation monitoring
system with a wireless microphone. The results demonstrated

can effectively reduce the impact of background noise.
Preliminary results of the phonation ratio and the distribution
of speech segmentsin 10 teachers were compatible with those
in previous literature [18,19].

that the proposed system can accurately differentiate between
speech and nonspeech segments based on the energy envelope
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Applicability and Accuracy of Automatic Speech
Detection System

Most studiesin the existing literature used aneck accelerometer
to detect the vibrations of vocal foldsviaskin[18,25]. Although
contact microphones can effectively suppress the effects of
background noise [16], they may not always be convenient for
the users, owing to the cumbersome wiring and taping. In
contrast, the wireless microphone used in this study eliminated
the discomfort associated with the wiring and taping of contact
microphones. All the participants reported good tolerance using
wireless microphone, without any physical discomfort during
the teaching session.

Previous studies[22] applied predefined criteriato detect voice
activity, such as the fundamental frequency during normal
speaking (ie, 70 to 1000 Hz), SPL greater than 30 dB, and a
low/high ratio of at least 22 dB. In this study, we specifically
designed softwareto manually label the speech segments (Figure
2), which served asthe ground truth for examining the detection
accuracy of thisnovel system. Figure 3 demonstrates an average
detection accuracy of 89.9% in the controlled environment,
which established the applicability and reliability of the
proposed system.

In comparison to previous studies [18,25], our results
demonstrated a higher phonation ratio (range: 44.0%-78.0%;
Figure 3) owing to the continual lecturing of theteachersin the
classroom. Similarly, the durations of most of the speech
segments were less than 10 seconds. We did not observe long
durations of silence (nonspeech) in this study (Figures 6 and
7). In contrast, previous studies recorded the phonation ratio
throughout the day (except deeping) [18,25]; thus, longer silence
periods were more likely to be documented.

Benefits of Noise Reduction Function

Because wireless microphones are more susceptible to
background noise, we examined the effectiveness of the
additional noise reduction function by mixing 4 different types
of background noise to simulate noisy conditions. Our results
showed that the noise reduction function using the logMM SE
algorithm can improve the detection accuracy by up to 45.8%
(maximum) in stable noise conditions (eg, sharp speech noise
and white noise) (Multimedia Appendix 3); however, o gMMSE
works less efficiently in competing voice signals (eg, crowd
cheering noise), resulting in an improvement of approximately
5%, similar to previousliterature [26]. Accordingly, other noise

https://mhealth.jmir.org/2020/12/€16746
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reduction approaches, such asdeep learning [27], may be more
robust for enhancing the automatic speech detection systemin
the future. Additionally, automatic gain control [28] can also
beintegrated into the system to normalize the input volume and
improve the accuracy in cases where sudden changes are
observed in the input volume.

Speaker Identification

The proposed system yielded comparable accuracy in most of
the test conditions and an additiona noise reduction function
further improved the performance of the proposed system in
noisy conditions. However, thereis still room for improvement
in some challenging conditions (eg, video sound or sudden
increase in volume). We observed that subject 3 played avideo
clip with speech context during the class, and the loud speech
from the video was misidentified as the speech of subject 3. For
subject 4, several conversations took place between the teacher
and students, which also caused the voice signals from the
students to be misidentified as the speech of subject 4 and
reduced the accuracy. One way to aleviate this inherent
limitation of wireless microphones (ie, susceptibility to noise
and competitive speakers) isthe use of amicrophone array with
a beamforming algorithm that can fix (or adapt to adjust) the
recorded position to distinguish between the speech of the
speaker and background noise or other speakers. Ancther option
toimprove our systemisimplementing the speaker identification
algorithm [29]; however, it requires significantly higher
computing power to handle complex features (such as i-vector
or x-vector [30,31]) using deep learning—based technology.

Future Per spective

The study results suggest that the proposed automatic speech
detection system with wireless microphone can be applied in
practical scenarios to overcome the limitations of contact
microphonefor ambulatory phonation monitoring. The proposed
system can be further implemented on personal laptops (or
mobile phone devices) for daily use and timely feedback, as
illustrated in Figure 11. By monitoring the baseline phonation
ratio, doctors and speech language pathol ogists can prescribe a
certain threshold of phonation ratio based on individual
conditions. Upon exceeding thislimit, an alarm signal (flash or
sound) could be sent to the user to ensure that they take enough
breaks;, promising results are available with respect to this
concept [32] but it requires further evidential support from
ongoing studies.
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Figure 11. Exemplary use of the automatic speech detection system by ateacher.
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Although the proposed automatic speech detection system
achieved 89.9% accuracy in this study for the proposed
ambulatory phonation monitoring, it till has room for
improvement. More recently, deep learning—based automatic
speech recognition (ASR) [33] and natural language processing
(NLP) [34,35] systems were proven to achieve higher speech
recognition efficiency for conventional communication between
human-machine applications (eg, Amazon Alexa, Google Home,
and Apple Siri). These deep learning—based ASR and NLP
systems could be applied in ambulatory phonation monitoring;
however, some critical issues need to be addressed. For example,
ASR and NLP technologies might violate the user’s privacy
because they recognize the context of the user’s speech. In
contrast, the automatic speech detection system of thisstudy is
energy-based; it will not directly access the content of speech
and might be more acceptable to the users. In addition, ASR
and NL P technol ogi es reguire high computing power, especially
when a deeper structure of the neural network is implanted to
achieve higher speech recognition accuracy. A cloud-based
ASR and NLP system could be effective in alleviating this
limitation; however, the recorded speech data till needs to be
uploaded to the server, which may lead to additional privacy
and security issues. More recently, phonetic posteriorgram
features obtained from the acoustic model of the ASR system
was introduced for speech processing applications, and it has
proven to achieve benefits in many tasks [36-38]. Following
the success of phonetic posteriorgram, our future study could
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apply its features and deep learning technology to improve the
performance of the current model.

Furthermore, this system can also be extended for detecting
speech and communi cation disorders[39] (eg, Parkinson disease
[40] and depression [41]). However, such work may require
more sophisticated features of voice signals and computation
techniques, such as the combination of the Mel frequency
cepstral coefficients and deep neural networks, which was used
in a previous study [42]. With the significant advancementsin
smartphones and smart home devices, the proposed automatic
speech detection system can potentially beimplemented in these
devices to further decrease the clumsiness of any additional
devices[43].

Limitations

The first limitation of this study is the smal number of
participants (N=10). A larger cohort is required to obtain more
robust evidencefor theclinical use of automatic speech detection
for ambulatory phonation monitoring. In addition, only teachers
were recruited owing to the approved IRB protocol. Other
occupations with high vocal demands (eg, salespeople and
customer service representatives) will be included in the future
to expand the potentia use of the proposed system. Second, the
proposed automatic speech detection system cannot precisely
identify the speech of the speaker in the presence of loud
competing background noise or other speakers. To overcome
thisissue, algorithmsthat require higher computing power, such
as speaker identification or microphone array algorithms, could
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beused in future studies. Lastly, this automatic speech detection
system requires manual ly labeling the recorded speech for model
training. Considering the high accuracy achieved in this study,
future research does not need to record the origina voice
content, so the confidentiality of the participants can be better
protected.

Conclusions

This study proposed an automatic speech detection system
comprising awireless microphoneto receive the acoustic signals
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