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Abstract

Background: Eating behavior has a high impact on the well-being of an individual. Such behavior involves not only when an
individual is eating, but also various contextual factors such as with whom and where an individual is eating and what kind of
food the individual is eating. Despite the relevance of such factors, most automated eating detection systems are not designed to
capture contextual factors.

Objective: The aims of this study were to (1) design and build a smartwatch-based eating detection system that can detect meal
episodes based on dominant hand movements, (2) design ecological momentary assessment (EMA) questions to capture meal
contexts upon detection of a meal by the eating detection system, and (3) validate the meal detection system that triggers EMA
questions upon passive detection of meal episodes.

Methods: The meal detection system was deployed among 28 college students at a US institution over a period of 3 weeks.
The participants reported various contextual data through EMAs triggered when the eating detection system correctly detected
a meal episode. The EMA questions were designed after conducting a survey study with 162 students from the same campus.
Responses from EMAs were used to define exclusion criteria.

Results: Among the total consumed meals, 89.8% (264/294) of breakfast, 99.0% (406/410) of lunch, and 98.0% (589/601) of
dinner episodes were detected by our novel meal detection system. The eating detection system showed a high accuracy by
capturing 96.48% (1259/1305) of the meals consumed by the participants. The meal detection classifier showed a precision of
80%, recall of 96%, and F1 of 87.3%. We found that over 99% (1248/1259) of the detected meals were consumed with distractions.
Such eating behavior is considered “unhealthy” and can lead to overeating and uncontrolled weight gain. A high proportion of
meals was consumed alone (680/1259, 54.01%). Our participants self-reported 62.98% (793/1259) of their meals as healthy.
Together, these results have implications for designing technologies to encourage healthy eating behavior.

Conclusions: The presented eating detection system is the first of its kind to leverage EMAs to capture the eating context, which
has strong implications for well-being research. We reflected on the contextual data gathered by our system and discussed how
these insights can be used to design individual-specific interventions.
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Introduction

Dietary habits have been studied by health researchers for many
decades, and it is now well understood that eating-related habits
play a critical role in overall human health [1]. Such habits
consist of a variety of social, temporal, and spatial factors [1].
Despite the known relationship between dietary patterns and
wellbeing, measuring dietary patterns on a daily basis is
challenging [2,3]. Most assessment methodologies of dietary
patterns rely on self-reports by individuals to reflect on their
meals [4,5]. Self-reported food consumption quantities suffer
from under-report bias and recall bias [6]. This issue poses a
challenge for regular dietary assessment.

Human activity recognition using passive sensing can address
some of the challenges of dietary assessment methods [7-10].
For example, identifying when individuals eat can be used to
infer if individuals are consuming food at regular intervals of
time. Recent ubiquitous computing research has shown promise
in eating detection, primarily showing various ways to infer
when an individual is eating [10-14]. However, dietary patterns
of an individual are not exclusively related to their interactions
with food.

Several contextual factors are directly or indirectly related to
eating and, consequently, wellbeing, including with whom a
person is eating [15,16], where they are eating [17], what other
activities are being performed while eating [18,19], and mood
around the time of eating [20]. For example, regular family
meals are associated with positive well-being. Hence, it is
valuable to understand in what context people eat for assessing
their well-being. There are several eating detection approaches
that utilize passive sensing methods to detect when an individual
is eating. Such detection systems can be categorized into the
following three primary categories, based on the sensing
modality used to infer eating activities: (1) acoustic sensing
[7,8,21]; (2) camera-based sensing [22,23]; and (3) inertial
sensing [9,24]. However, using current technology, it is not
feasible to passively and reliably detect relevant contextual data
(eg, company, mood, kind of food, and nutrition value of food)
regarding eating without being intrusive (eg, camera and
microphone).

A widely adopted [25-28] way of collecting subjective
contextual data is by using ecological momentary assessment
(EMA). EMAs are short questionnaires that can capture
contextual information from individuals [29]. EMA questions
can be delivered via platforms such as text messages [30], voice
calls [31,32], and smart devices [33,34]. While self-reported
surveys are prone to recall bias, EMAs are most effective when
asked near real time of the actual event of interest [29,35].
Owing to the above advantages, EMAs have successfully been
used to facilitate a number of eating-related studies, such as
examining mood and binge eating [36], environmental factors
and obesity [37], night eating [38], and eating disorders [39].

As such, a real-time eating episode detector can harness EMAs
to gather insights about an individual’s dietary patterns and use
these insights to gauge the eating habits of individuals.

Motivated by the above, our work builds on a baseline
recognition system for passively recognizing eating events using
a smartwatch’s three-axis accelerometer to capture eating
movements. Through a machine learning pipeline, we first
predicted individuals’ hand-to-mouth movements and then
obtained aggregated meal-scale eating episodes. By leveraging
such a machine learning technique, we designed an eating
detection system that not only focuses on real-time detection
with high predictive accuracy but also allows us to recognize
people’s eating contexts. In particular, the real-time eating
recognizer prompts eaters with EMA questions (designed after
an online study) for capturing relevant contextual information,
while at the same time preserving privacy and remaining
minimally intrusive, as required for real-world deployment.

This work aimed to develop and evaluate a novel approach of
gathering eating context through short EMA questions that are
triggered by an automated meal detection system. We deployed
and validated our system in a college student population. Young
adults in the age group of 18 to 25 years are likely to develop
a poor diet for a variety of reasons, such as embarking on higher
education or employment, beginning independent living, and
starting to live with partners [40,41]. Through our research, we
made the following contributions:

• We designed and deployed a real-time meal detection
system using a commercial smartwatch that triggers EMAs
to validate prediction, which reliably predicted major meals
with an F1 score of 87.3%.

• Using the real-time meal detection system, we demonstrated
how a variety of contextual data can be captured using
EMAs in a college student population.

Methods

Development of a Real-Time Passive Meal Detection
System
Automated detection of eating behavior would entail selecting
a sensing modality that can detect an eating episode while it is
in progress. Furthermore, the respective sensing modality should
be feasible for regular use. Several eating detection systems
place a microphone on the neck [7,13]. However, such a solution
is not practical to implement in a study that focuses on capturing
eating episodes of individuals on a daily basis because it might
be considered too socially awkward for everyday use.

There has been relevant research from the eating detection
community that involves the use of hand movements [9,42,43]
as a proxy for estimating when an individual is eating. For
example, Thomaz et al [9] collected and released a data set on
hand movements that were related to both eating and noneating
activities. The data set was collected from participants in a
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laboratory setting and a semicontrolled setting. The researchers
used three-axis accelerometer data from Pebble smartwatches,
which were worn by the participants on their dominant hand,
to collect data on eating- and noneating-related hand movements.

Since commercial smartwatches are becoming a part of
day-to-day life, especially for college students, we chose to
build a meal detection system based on the data set of Thomaz
et al [9]. In this section, we provide a brief description of the
baseline eating recognition system by Thomaz et al [9], clarify
why we needed to extend and enhance the baseline system, and
finally show the improvements in recognition performance
provided by our extended approach over the baseline system.

Baseline Eating Detection System
Thomaz et al [9] built and evaluated an offline eating detection
pipeline for recognizing eating moments in 60-minute intervals.
For detecting an eating episode, the authors collected a data set
in a laboratory setting that comprised 21 participants and

contained both eating and noneating hand movements. The
authors also collected another data set in a semicontrolled setting
outside the laboratory with only “eating” and “noneating” labels
and named the data set as Wild-7. The data from an integrated
three-axis accelerometer were collected using a first-generation
Pebble watch and transmitted to a companion smartphone app.
After annotating the data, the authors employed an eating
moment recognition pipeline, which is similar to the
conventional activity recognition chain [44].

Drawing from the work of Thomaz et al, we created a baseline
offline eating detection system initially to replicate the results.
For creating the baseline classifier, we used a 50% overlapping
6-second sliding window to extract the following five statistical
features along each axis of the accelerometer: mean, variance,
skewness, kurtosis, and root mean square. Figure 1 shows the
replication results for detecting eating and noneating gestures
with the Lab-21 data set.
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Figure 1. Eating gesture recognition performance. (A) Eating gesture recognition performance (F1 score) using the baseline system. (B) Eating gesture
recognition performance using our system. For both figures, "Eat FK" represents eating gestures with a fork and knife, "Eat FS" represents eating
gestures with a fork and spoon, "Eat Hand" represents eating gestures with the hands, and the rest of the classes are nontarget classes. The gesture
recognition performance was observed in the Wild-7 data set released by Thomaz et al [9].

Motivation for Changes in the Eating Detection Pipeline
The recognition system of Thomaz et al took an offline
approach, which can be used for passively logging eating
episodes (typically at the meal level, ie, a major eating event).
However, for capturing the contextual factors of eating, as they
are of relevance for the assessment of well-being aspects [23],
we require a real-time recognition system, which can reliably
recognize eating moments and then, with minimal delay, prompt
the user to answer EMA questions about their eating episode,
ideally while the eating episode is still in progress. The baseline
system, while serving as an excellent starting point for our work,

needs to be extended such that it can be used for our purposes
as outlined above. The main directions of improvement are as
follows: (1) real-time recognition of eating episodes and (2)
improvement of the accuracy of automated recognition. The
baseline eating detection system was not robust enough to
distinguish between eating and noneating gestures. Hence, we
improved upon the baseline eating detection system by
incorporating features that represent the temporal aspect of
sensor data.
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Real-Time Meal Detection System
The system architecture for real-time meal detection using a
smartwatch and smartphone is presented in Figure 2. Upon
detecting 20 eating gestures in a 15-minute span, the smartphone
prompts the user with EMAs to capture in-situ eating-related
information. After we trained a random forest classifier offline
using the Python package sklearn, we ported the best classifier

to run on Android using sklearn porter. This model used for
making predictions on the smartphone runs every 10 minutes.
When tested on a Google Pixel 2 device, the meal detection app
on average consumed 30 MB of space on the phone while
passively receiving data and 140 MB of RAM while the
classifier was running. Using a Pebble 1 smartwatch, data were
sent in batch mode to conserve the battery life of the device,
which was approximately 36 hours.

Figure 2. System architecture for real-time meal detection using a smartwatch and smartphone. ECDF: empirical cumulative distribution function;
EMA: ecological momentary assessment.

Changes in Feature Representation
Before porting our system to run the analysis of sensor data that
were recorded through the smartwatch in real time on
smartphones, we extended the baseline system aiming for

improved low-level gesture detection results. The baseline
system misclassified some nontarget classes that appear very
similar to typical eating-related hand movements, examples of
which include brushing, combing, talking on the phone, etc.
Upon closer inspection, we conclude that this failure was due
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to the fact that the feature representation used was unable to
capture the temporal aspect of the signal. For example, talking
on the phone would require someone to take the phone with
their hand close to their head, which is similar to the
hand-to-mouth movement during eating. If the feature
representation does not capture the fact that the hand is not
coming back down, as is the case for eating, both movements
appear very similar in the feature space, which leads to
confusion.

Hence, our first points of investigation were whether we can
improve the feature representation and how changes in the
feature space can affect the gesture recognition classification.
In response to the observation of the need to differentiate
temporal dynamics, we employed the structural empirical
cumulative distribution function (ECDF) feature representation
[45], which specifically captures the temporal aspect of
movement data at the feature level. Structural ECDF is a

variation of the distribution-based feature representation ECDF
[46].

Using a window size of 3 seconds with a 50% overlap generated
the best results (Figure 3) on the Wild-7 data set made available
by Thomaz et al [9]. The experimental results can be seen in
Figure 1. It can be seen that for nontarget class detection (other,
phone, chat, brush, etc), the system based on structural ECDF
features performed much better. In particular, “brush” was not
well recognized by the baseline system, but through the
structural ECDF feature representation, we were able to classify
this gesture with more than 20% higher accuracy. The
recognition accuracy for “chat” also improved by more than
20%. The “chat” class contained gesticulation while the
participant talked to other people. Recognition of the target
classes (“eating with a fork and knife,” “eating with a fork and
spoon,” and “eating with the hands”) improved overall by 38%,
with “eating with a fork and knife” improving by 20%.

Figure 3. Eating moment recognition performance (F1 score) using the baseline system and our system. This analysis was performed on the same data
set that Thomaz et al [9] collected for their study. ECDF: empirical cumulative distribution function.

Moving Away From the Clustering Approach
Thomaz et al indicated that they found the best performance
when predicted gestures were clustered within a window of 60
minutes, that is, they needed at least 60 minutes of sensor data
to infer whether an individual had an eating episode [9].
However, since the goal of our study was to capture eating
behavior with respect to major meals, we needed to gather
eating-related information from participants during/after each
meal. Some of these insights about major meals can only be
provided by participants, for example, whether the system
predicted the meal correctly, since the system is not always
accurate with meal predictions. If the detection was correct, one
could ask a variety of questions that cannot be inferred passively.

Hence, to maximize recognition performance and mitigate the
effects of noisy frame-level classification, we aggregated the
results of the frame-level recognizer with a window of size W
accumulating the frame-level results. A threshold-based
approach was adopted in which N frames within the window
must be recognized as one of the target classes for the window
to be considered an eating episode, thus triggering an EMA.
We used the window size mentioned by Thomaz et al of W=60
as a starting point and found that N=39 frames produced the
highest F1 score (71.38%). Since our goal was to make the
detection system as real time as possible, we started reducing
the prediction window W by increments of 5 minutes at a time
and optimized for the F1 score. We found that at W=25 minutes,
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our system performed the best (F1=74.63% with N=34 frames).
However, when we considered W=15 minutes of sensor data,
the F1 score was 69.44% (N=20 frames), which was not less
than the F1 score at W=25 minutes but was closer to the actual
eating episode for triggering the EMA. We finally decided upon
using a window of W=15 minutes with N=20 eating gestures
for detecting meal-level eating episodes.

Development of EMA Questions
Once we finalized a functional real-time meal detection system,
the next step was to go beyond detecting major meal episodes
and use the system for answering questions related to the mental
well-being of college students. We designed a 3-week-long
study to passively detect the meal consumption patterns of
college students. However, given that we wanted to use EMAs
to capture the context of an eating episode, it was important to
understand what questions should be asked regarding an
individual’s meal. Hence, we first conducted an online survey
study that addressed the following questions: (1) How much
time do students generally spend on each meal? (2) Why do
students miss certain meals? (3) What are the factors that
constitute the “quality” eating experience of students?

We used the responses to this online survey to inform the design
of the EMA questionnaire administered to the participants of
the 3-week-long study.

Online Survey Study Design
Since we were interested in the three questions formulated
above, we asked the below three open-ended and structured
questions to the online participants. For the below questions 2
and 3, we provided some preset options that were informed by

conducting structured interviews with 25 students (15 male and
10 female students) from the same university. We conducted
qualitative coding on the interview data to derive themes and
use those themes as available options for questions. In addition,
the students had the option of giving their own responses. We
wanted to validate whether the themes reflected the responses
of a larger subset of students. The questions were as follows:
(1) How much time do you spend on major eating episodes (eg,
breakfast, lunch, and dinner)? (2) If you ever miss some of your
major meals (ie, breakfast, lunch, and dinner), please briefly
mention why you miss these meals; (3) What does “quality”
eating mean to you? We intend to learn about what you consider
important as part of your eating experience. You are encouraged
to come up with your own answer.

In addition to these questions, the students had to report their
demographic information, which included their age, ethnicity,
self-identified gender, and current academic status in the school.
The demographic information was asked after the eating-related
questions. The demographic information was used to ensure
that our data sampling was representative of the college campus.
Recruitment for the survey was conducted through various
online communication channels such as email, Reddit, Facebook
groups, etc. The timeline for the survey distribution was
throughout summer 2018 and fall 2018.

Participant Demographics
A total of 162 participants responded to the survey. Among
these respondents, 82 were female, 74 were male, one was
nonbinary, and five did not disclose their gender identity. Figure
4 shows other demographic information of the student
population that responded to the online survey.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e20625 | p. 7http://mhealth.jmir.org/2020/12/e20625/
(page number not for citation purposes)

Bin Morshed et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Online survey response. (A) Student categories that responded to the online survey. (B) Age groups (in years) of students who responded to
the online survey. (C) Ethnic identity of students who responded to the online survey.

Leveraging Responses From the Online Survey

Time Spent Per Meal

The average self-reported meal consumption times for breakfast,
lunch, and dinner were 10 minutes, 20 minutes, and 25 minutes,
respectively. Hence, we did not attempt to further improve our
classifier since the minimum average meal consumption time
was approximately 10 minutes for the student population of the
target university. We used this information to decide upon the
eating moment prediction window for capturing meals.

Factors for Missing Meals

We performed qualitative coding to extract themes from the
responses to why students missed their meals. The themes found
were workload, personal choice (ie, intermittent fasting), eating
disorder (ie, anorexia), food insecurity, and mental health (ie,
stress and mood). The responses in this section were crucial for
us to derive our exclusion criteria for the meal consumption and
mental well-being study. We were unaware of the fact that parts
of the student population may experience food insecurity.
However, we did expect some students to miss major meals due
to eating disorders. Some responses included self-identified
stress and mood when skipping a meal. In addition, some
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responses identified academic/professional workload as one of
the reasons for missing meals.

Perception of “Quality” Eating Experience

We analyzed responses to this question with a similar process
used for the previous questions. The emergent themes were
contextual factors, perception of “healthiness” of the meal, and
eating without distraction. Some of the contextual factors
identified by the students were taking a meal with family, the
location where the meal is being eaten, the noise around the
eating location, etc. Some students mentioned that they would
consider their meal as a “quality” meal if they were just taking
their meal and doing nothing else while consuming the food.
Finally, some of the students identified that if they took a healthy
meal, they would consider it as a quality meal. The perceived
healthiness of meals, company during meals, location of meals,
and types of meals were the most common themes that came

up as responses to this question. They were factored in the EMA
questions, which are described below.

Study Protocol

Prompting EMA Questions

Whenever our meal detection system detected a meal-level
eating episode, we prompted the user to answer questions on
their smartphone (Figure 5) to validate whether they were
actually having an eating episode. If the user responded with
“yes” to the question, we asked them follow-up questions
regarding (1) what kind of meal (eg, breakfast, lunch, and
dinner) they were eating; (2) with whom and where they were
eating; (3) what kind of activities they were performing while
taking the meal; and (4) whether the meal was perceived as
healthy. In order to obtain the ground truth total number of
eating episodes, at the end of each day, participants were asked
which meals they had during that day.

Figure 5. Prompt for validation. (A) Sample prompt for user validation on whether a meal was being taken. (B) Sample question users would get if
they select "yes" in the validation.

Passive Sensing From the Smartwatch

For collecting and sending the raw accelerometer data from the
Pebble smartwatch to a companion Android device, we wrote
a native Pebble watch app (in C) that sampled the watch’s
accelerometer at 25 Hz and sent the data in batches to the phone
approximately every 5 minutes. The battery of the Pebble watch
lasted approximately 36 hours on a single charge.

Compensation

The timeline for our study was 3 weeks. If participants
participated for more than 2 weeks in our study, they received
an AmazeFit Bip watch valued at US $80. If they participated
for more than 1 week but less than 2 weeks, they received an
Amazon Gift Card valued at US $25. If participants did not
participate for at least 1 week, they did not receive any
compensation.

Exclusion Criteria

The results of our survey revealed that some students miss meals
for a variety of reasons. Two of these reasons were the presence

of an eating disorder and food insecurity. For these students,
such a precondition can trigger stress. For example, participants
with an eating disorder may have a relapse when they journal
food since it makes them more self-conscious. Given that we
were not in the position to effectively intervene if it was ethically
required, we did not include students with food insecurity in
our study. We used a validated eating disorder questionnaire
[47] and a validated survey for identifying food insecurity [48]
in our participants.

Recruitment

Our 3-week study was conducted in two semesters (summer
2019 and fall 2019). During summer, we recruited nine
participants (four female and five male participants), and during
fall, we recruited 21 participants (11 female and 10 male
participants). In total, we obtained data from 28 participants
(15 female and 13 male participants).
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Results

Performance of the Meal Detection System
We reflected upon the validity and reliability of the meal
detection system that we deployed for approximately 3 weeks.
We report the confusion matrix for the recognized eating events,
explain in detail how we gathered the ground truth for eating
and noneating events, and mention what kind of eating episodes
were particularly challenging for our system to detect.

Recall that our real-time system (Figure 2) prompted participants
with EMAs to capture eating-related information whenever it

detected an eating episode. The first question in the series of
EMA questions was to understand whether the participants were
having a meal (Figure 5). If the participants answered “Yes,”
we considered it as a true positive, and if the participants
answered “No,” we considered it as a false positive. To capture
false negatives, we asked participants at the end of the day which
meals (eg, breakfast, lunch, and dinner) they actually had on
that particular day. If our system did not detect that meal, we
considered that meal as a false negative. It allowed us to
understand how well or poorly our meal detector performed
compared with the ground truth. Figure 6 shows the confusion
matrices for eating episodes.

Figure 6. Confusion matrix. (A) Confusion matrix with number of meals. (B) Confusion matrix with percentage of meals.

The unweighted average F1 score for predicting major meals
was 87.3%. The false-positive rate was 0.7%. The unweighted
F1 score is particularly useful for cases where there is a class
imbalance. In our study, there were only 1305 out of 44,651
instances that resembled eating episodes, which justifies
F1-score analysis.

In addition, we wanted to investigate for which kinds of
activities our meal detection system was making wrong
predictions. Hence, during exit interviews, we asked participants
whether they could recall for which activities the meal detector
was erroneously prompting them (false positives) or around
what kinds of eating episodes the meal detector was not
detecting eating events (false negatives).

We analyzed the misclassification as follows. For false-positive
predictions, we found that if participants performed hand
movements similar to eating-related movements over an
extended period of time (eg, brushing teeth and trimming beard),
our meal detector was confusing these with eating episodes.
For false-negative predictions, we found that short eating
episodes (eg, eating a banana and taking a few spoons of yogurt
in the morning as breakfast) were generally not detected by our
meal detector. Table 1 presents the percentage of eating episodes
that were detected by our meal detection system throughout the
study.

Table 1. Percentage of meals detected by our meal detection system.

Percentage of detected episodesTotal detected episodesTotal episodesMeal type

90264294Breakfast

99406410Lunch

98589601Dinner

As can be seen, breakfast was the most frequently skipped meal
by our participants throughout the study. It should be noted that
seven of our participants self-identified themselves as
individuals who did not have breakfast. Lunch was skipped
more than dinner.

Context During Eating Episodes
We now report the contextual factors that were captured by our
meal detection system. Our EMAs asked about various aspects
that are challenging to be passively detected without invading
an individual’s privacy. These include the company of a
participant during the meal, whether they were hungry when
they had the meal, etc.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e20625 | p. 10http://mhealth.jmir.org/2020/12/e20625/
(page number not for citation purposes)

Bin Morshed et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We found that 62.99% (793/1259) of meals were perceived as
healthy and 31.05% (391/1259) of meals were perceived as
unhealthy, and for the rest 5.95% (75/1259), the participants
did not know whether the meal was healthy.

Since students generally operate on a busy and mobile schedule,
we were interested to know where they were having their meals.
We found that most meals were consumed either at the
apartment/dorm room (393/1259, 31.22%) or family home
(390/1259, 30.98%). Additionally, 14.54% (183/1259) of meals
were consumed at workplaces, 10.25% (129/1259) were
consumed at restaurants, and 4.13% (52/1259) were consumed
in classes. Other than the predefined options, students could
report places under the “other” option, and example responses
included church, party, ministry, supermarket, and car.

The company during meals is strongly associated with
well-being. By asking participants their company via EMAs,
we found that participants had 54.17% (682/1259) of the
detected meals alone, 24.17% (304/1259) with friends, 13.82%
(174/1259) with family, 3.81% (48/1259) with partners, and
3.49% (44/1259) with colleagues.

Distracted eating is one of the most important factors behind
many unhealthy eating behaviors, such as overeating,
undereating, and binge eating. We gathered information on what
noneating activities students were doing while they were having
their meal (Figure 7). The two most common activities during
eating were using a smartphone (281/1259, 22.32%) and laptop
(178/1259, 14.14%). Only 0.87% (11/1259) of meal episodes
were without any distractions.

Figure 7. Meal data. (A) Percentage of meals that were healthy and unhealthy. (B) Percentage of meals that were consumed at various locations. (C)
Percentage of meals that were consumed with various companies. (D) Percentage of activities that were performed during various meals.

Discussion

Principal Results
Our work shows that major meal episodes can be detected using
our meal detection system with an F1 score of 87.3%, a precision
of 80%, and a recall of 96%. We demonstrated how an
EMA-based design can augment a meal detection system to
gather contextual information on eating behavior. This is the
first-of-its-kind real-time meal detection system. When deployed
for over a period of 3 weeks with 28 participants, our system
showed a low false-positive rate of 0.7%, which is practical for
daily usage considering that too many false positives may be
bothersome to participants.

Among all consumed meals, 54.17% (682/1259) were consumed
in isolation and 31.22% (393/1259) were consumed at
apartment/dorm rooms. Most of the meal activities were often
performed with another activity. Smartphone use and laptop
use were the two most dominant activities (281/1259, 22.32%
and 178/1259, 14.14%, respectively) during meals. Less than
1% (11/1259, 0.87%) of meal episodes were “only eating”
episodes, which means for the rest of the cases, our participants
were engaged in some other activities during a meal. These
findings uncover previously unexplored and difficult to glean
information, namely college students’ eating behaviors at a
longitudinal scale. Our work can inform the design of well-being
interventions in student populations.
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Engaging in noneating activities during eating is considered as
a distraction, and distraction during eating reduces the ability
to assess internal sensory cues such as taste perception, which
can lead to overeating [49,50]. Given the high percentage of
distracted meals, we argue that college students can benefit from
healthy eating behavior technologies that can build on our meal
detection system.

Comparison With Prior Work
Thomaz et al built an offline meal detection system that could
detect eating episodes in a period of 60 minutes with an F1 score
of 71.3%. We improved upon this baseline detection system in
two ways. First, we made the detection system detect an eating
moment within 15 minutes, with an F1 score of 69.44%. This
improvement over the state-of-the-art wrist-worn meal detection
system allowed us to prompt participants with EMA questions
to capture various contexts during meals, which was missing
from most meal detection systems in prior work. Previous work
leveraging EMAs relied solely on nonautomated self-reports of
eating behaviors, which are prone to recall bias and potentially
can be a source of erroneous data. For example, we found that
students are often doing other activities while having their meals,
and such activities are a cause for distraction during eating.
Given that we have provided a way to gauge an individual’s
eating behavior, relevant interventions can be designed to
support healthy eating behaviors.

In a recent literature survey, Bell et al reported that 33 research
studies performed an in-field assessment with a meal detection
system [14]. The in-field assessment entailed participants using
the sensor setup in a “free-living” condition. The authors
reported the sample size of participants and how long they
participated in “free-living” sessions. With respect to the number
of participants, there were only two studies [14] that had more

participants than our study; however, the rest of the studies
(n=31) had fewer participants. For both of these studies, the
timeline for the free-living condition was only 1 day, which is
much less than our study timeline of 21 days. In fact, our work
is the longest longitudinal study for any real-time meal detection
system.

Limitations and Future Work
Though we argue that a smartwatch is more practical for
detecting when an individual is eating, our study is limited in
the sense that we asked our participants to wear the smartwatch
on their dominant hand. Hence, we do not have insights into
how robust our system is if the smartwatch is worn on the
nondominant hand. However, Thomaz et al found in their study
that wearing a smartwatch on the nondominant hand produced
similar kinds of results compared with wearing a smartwatch
on the dominant hand [51]. We did not validate this observation
in our study.

In addition, our system is likely not robust enough to capture
short snacking episodes. Snacking behavior has strong
implications for mental and physical well-being [52]. However,
solely based on wrist movements, it is difficult, if not
impossible, to detect if a hand movement close to the mouth is
for eating or some other activity [9]. Our future work will focus
on appropriate eating detection technologies to capture snacking
behavior and contexts during snacking.

Conclusions
We present the first real-time meal detection system that
leverages EMA to capture context during meals, which has
strong implications for well-being research. Through our paper,
we reflected on how meaningful contextual data can be used
for well-being research.

Acknowledgments
MBM was partly supported by a grant from Siemens FutureMaker Fellowship Task Order #7. MDC was partly supported by
NIH grant #R01MH117172. The project was partly supported by a grant from Semiconductor Research Corporation in collaboration
with Intel Labs.

Conflicts of Interest
None declared.

References

1. Ogden J. The Psychology of Eating: From Healthy to Disordered Behavior. UK: John Wiley & Sons; 2011.
2. Althubaiti A. Information bias in health research: definition, pitfalls, and adjustment methods. J Multidiscip Healthc

2016;9:211-217 [FREE Full text] [doi: 10.2147/JMDH.S104807] [Medline: 27217764]
3. Shim J, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health 2014;36:e2014009 [FREE

Full text] [doi: 10.4178/epih/e2014009] [Medline: 25078382]
4. Karvetti RL, Knuts LR. Validity of the 24-hour dietary recall. J Am Diet Assoc 1985 Nov;85(11):1437-1442. [Medline:

4056262]
5. Hu FB, Rimm E, Smith-Warner SA, Feskanich D, Stampfer MJ, Ascherio A, et al. Reproducibility and validity of dietary

patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 1999 Mar;69(2):243-249. [doi: 10.1093/ajcn/69.2.243]
[Medline: 9989687]

6. Fries E, Green P, Bowen DJ. What did I eat yesterday? Determinants of accuracy in 24-hour food memories. Appl. Cognit.
Psychol 1995 Apr;9(2):143-155 [FREE Full text] [doi: 10.1002/acp.2350090204]

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e20625 | p. 12http://mhealth.jmir.org/2020/12/e20625/
(page number not for citation purposes)

Bin Morshed et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://dx.doi.org/10.2147/JMDH.S104807
http://dx.doi.org/10.2147/JMDH.S104807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27217764&dopt=Abstract
https://dx.doi.org/10.4178/epih/e2014009
https://dx.doi.org/10.4178/epih/e2014009
http://dx.doi.org/10.4178/epih/e2014009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25078382&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4056262&dopt=Abstract
http://dx.doi.org/10.1093/ajcn/69.2.243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9989687&dopt=Abstract
http://paperpile.com/b/oaCinQ/7g6K
http://dx.doi.org/10.1002/acp.2350090204
http://www.w3.org/Style/XSL
http://www.renderx.com/


7. Yatani K, Truong K. BodyScope: a wearable acoustic sensor for activity recognition. In: UbiComp '12: Proceedings of the
2012 ACM Conference on Ubiquitous Computing. 2012 Presented at: ACM Conference on Ubiquitous Computing;
September 5-8, 2012; New York, NY p. 341-350. [doi: 10.1145/2370216.2370269]

8. van den Boer J, van der Lee A, Zhou L, Papapanagiotou V, Diou C, Delopoulos A, et al. The SPLENDID Eating Detection
Sensor: Development and Feasibility Study. JMIR Mhealth Uhealth 2018 Sep 04;6(9):e170 [FREE Full text] [doi:
10.2196/mhealth.9781] [Medline: 30181111]

9. Thomaz E, Essa I, Abowd G. A Practical Approach for Recognizing Eating Moments with Wrist-Mounted Inertial Sensing.
In: UbiComp '15: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
2015 Sep Presented at: ACM International Joint Conference on Pervasive and Ubiquitous Computing; September 7-11,
2015; Osaka, Japan p. 1029-1040. [doi: 10.1145/2750858.2807545]

10. Bedri A, Li R, Haynes M, Kosaraju RP, Grover I, Prioleau T, et al. EarBit: Using Wearable Sensors to Detect Eating
Episodes in Unconstrained Environments. Proc ACM Interact Mob Wearable Ubiquitous Technol 2017 Sep;1(3) [FREE
Full text] [doi: 10.1145/3130902] [Medline: 30135957]

11. Dong Y, Scisco J, Wilson M, Muth E, Hoover A. Detecting periods of eating during free-living by tracking wrist motion.
IEEE J Biomed Health Inform 2014 Jul;18(4):1253-1260. [doi: 10.1109/JBHI.2013.2282471] [Medline: 24058042]

12. Heydarian H, Adam M, Burrows T, Collins C, Rollo ME. Assessing Eating Behaviour Using Upper Limb Mounted Motion
Sensors: A Systematic Review. Nutrients 2019 May 24;11(5) [FREE Full text] [doi: 10.3390/nu11051168] [Medline:
31137677]

13. Rahman T, Czerwinski M, Gilad-Bachrach R, Johns P. Predicting “About-to-Eat” Moments for Just-in-Time Eating
Intervention. In: DH '16: Proceedings of the 6th International Conference on Digital Health Conference. 2016 Presented
at: 6th International Conference on Digital Health Conference; April 2016; Montréal, QC, Canada. [doi:
10.1145/2896338.2896359]

14. Bell BM, Alam R, Alshurafa N, Thomaz E, Mondol AS, de la Haye K, et al. Automatic, wearable-based, in-field eating
detection approaches for public health research: a scoping review. NPJ Digit Med 2020;3:38 [FREE Full text] [doi:
10.1038/s41746-020-0246-2] [Medline: 32195373]

15. Utter J, Denny S, Robinson E, Fleming T, Ameratunga S, Grant S. Family meals and the well-being of adolescents. J
Paediatr Child Health 2013 Nov 31;49(11):906-911 [FREE Full text] [doi: 10.1111/jpc.12428] [Medline: 24251656]

16. Yiengprugsawan V, Banwell C, Takeda W, Dixon J, Seubsman S, Sleigh AC. Health, happiness and eating together: what
can a large Thai cohort study tell us? Glob J Health Sci 2015 Jan 14;7(4):270-277 [FREE Full text] [doi:
10.5539/gjhs.v7n4p270] [Medline: 25946941]

17. Utter J, Denny S, Lucassen M, Dyson B. Adolescent Cooking Abilities and Behaviors: Associations With Nutrition and
Emotional Well-Being. J Nutr Educ Behav 2016 Jan;48(1):35-41.e1. [doi: 10.1016/j.jneb.2015.08.016] [Medline: 26411900]

18. Khan Z, Zadeh ZF. Mindful Eating and it's Relationship with Mental Well-being. Procedia - Social and Behavioral Sciences
2014 Dec;159:69-73. [doi: 10.1016/j.sbspro.2014.12.330]

19. Lyzwinski LN, Edirippulige S, Caffery L, Bambling M. Mindful Eating Mobile Health Apps: Review and Appraisal. JMIR
Ment Health 2019 Aug 22;6(8):e12820 [FREE Full text] [doi: 10.2196/12820] [Medline: 31441431]

20. Carroll E, Czerwinski M, Roseway A, Kapoor A, Johns P, Rowan K, et al. Food and Mood: Just-in-Time Support for
Emotional Eating. 2013 Presented at: Humaine Association Conference on Affective Computing and Intelligent Interaction;
September 2-5, 2013; Geneva, Switzerland p. 252. [doi: 10.1109/acii.2013.48]

21. Cheng J, Zhou B, Kunze K, Rheinländer C, Wille S, Wehn N, et al. Activity recognition and nutrition monitoring in every
day situations with a textile capacitive neckband Internet. In: UbiComp '13 Adjunct: Proceedings of the 2013 ACM
conference on Pervasive and ubiquitous computing adjunct publication. 2013 Presented at: ACM conference on Pervasive
and ubiquitous computing adjunct publication; September 2013; Zurich, Switzerland. [doi: 10.1145/2494091.2494143]

22. Liu J, Johns E, Atallah L, Pettitt C, Lo B, Frost G, et al. An Intelligent Food-Intake Monitoring System Using Wearable
Sensors. 2012 Presented at: Ninth International Conference on Wearable and Implantable Body Sensor Networks; May
9-12, 2012; London, UK. [doi: 10.1109/bsn.2012.11]

23. Noronha J, Hysen E, Zhang H, Gajos K. Platemate: crowdsourcing nutritional analysis from food photographs. In: UIST
'11: Proceedings of the 24th annual ACM symposium on User interface software and technology. 2011 Presented at: 24th
annual ACM symposium on User interface software and technology; October 16-19, 2011; Santa Barbara, CA, USA. [doi:
10.1145/2047196.2047198]

24. Amft O, Troster G. On-Body Sensing Solutions for Automatic Dietary Monitoring. IEEE Pervasive Comput 2009
Apr;8(2):62-70. [doi: 10.1109/mprv.2009.32]

25. Lu H, Frauendorfer D, Rabbi M, Mast M, Chittaranjan G, Campbell A, et al. StressSense: detecting stress in unconstrained
acoustic environments using smartphones. In: UbiComp '12: Proceedings of the 2012 ACM Conference on Ubiquitous
Computing. 2012 Presented at: ACM Conference on Ubiquitous Computing; September 2012; Pittsburgh, USA p. 351-360.
[doi: 10.1145/2370216.2370270]

26. Morshed MB, Saha K, Li R, D'Mello SK, De Choudhury M, Abowd GD, et al. Prediction of Mood Instability with Passive
Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol 2019 Sep 09;3(3):1-21 [FREE Full text] [doi:
10.1145/3351233]

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e20625 | p. 13http://mhealth.jmir.org/2020/12/e20625/
(page number not for citation purposes)

Bin Morshed et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1145/2370216.2370269
https://mhealth.jmir.org/2018/9/e170/
http://dx.doi.org/10.2196/mhealth.9781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30181111&dopt=Abstract
http://dx.doi.org/10.1145/2750858.2807545
http://europepmc.org/abstract/MED/30135957
http://europepmc.org/abstract/MED/30135957
http://dx.doi.org/10.1145/3130902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30135957&dopt=Abstract
http://dx.doi.org/10.1109/JBHI.2013.2282471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24058042&dopt=Abstract
https://www.mdpi.com/resolver?pii=nu11051168
http://dx.doi.org/10.3390/nu11051168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31137677&dopt=Abstract
http://dx.doi.org/10.1145/2896338.2896359
https://doi.org/10.1038/s41746-020-0246-2
http://dx.doi.org/10.1038/s41746-020-0246-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32195373&dopt=Abstract
http://paperpile.com/b/oaCinQ/7qld
http://dx.doi.org/10.1111/jpc.12428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24251656&dopt=Abstract
https://doi.org/10.5539/gjhs.v7n4p270
http://dx.doi.org/10.5539/gjhs.v7n4p270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25946941&dopt=Abstract
http://dx.doi.org/10.1016/j.jneb.2015.08.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26411900&dopt=Abstract
http://dx.doi.org/10.1016/j.sbspro.2014.12.330
https://mental.jmir.org/2019/8/e12820/
http://dx.doi.org/10.2196/12820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31441431&dopt=Abstract
http://dx.doi.org/10.1109/acii.2013.48
http://dx.doi.org/10.1145/2494091.2494143
http://dx.doi.org/10.1109/bsn.2012.11
http://dx.doi.org/10.1145/2047196.2047198
http://dx.doi.org/10.1109/mprv.2009.32
http://dx.doi.org/10.1145/2370216.2370270
https://dl.acm.org/doi/10.1145/3351233
http://dx.doi.org/10.1145/3351233
http://www.w3.org/Style/XSL
http://www.renderx.com/


27. Saha K, Chan L, De Barbaro K, Abowd GD, De Choudhury M. Inferring Mood Instability on Social Media by Leveraging
Ecological Momentary Assessments. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol 2017 Sep 11;1(3):1-27.
[doi: 10.1145/3130960]

28. Bin Morshed M, Saha K, De Choudhury M, Abowd GD, Ploetz T. Measuring Self-Esteem with Passive Sensing. 2020
Presented at: 14th EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth
’20); May 18-20, 2020; Atlanta, GA, USA. [doi: 10.1145/3421937.3421952]

29. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annu Rev Clin Psychol 2008;4:1-32. [doi:
10.1146/annurev.clinpsy.3.022806.091415] [Medline: 18509902]

30. Hébert ET, Stevens EM, Frank SG, Kendzor DE, Wetter DW, Zvolensky MJ, et al. An ecological momentary intervention
for smoking cessation: The associations of just-in-time, tailored messages with lapse risk factors. Addict Behav 2018
Mar;78:30-35 [FREE Full text] [doi: 10.1016/j.addbeh.2017.10.026] [Medline: 29121530]

31. Scott LN, Stepp SD, Hallquist MN, Whalen DJ, Wright AG, Pilkonis PA. Daily shame and hostile irritability in adolescent
girls with borderline personality disorder symptoms. Personal Disord 2015 Jan;6(1):53-63 [FREE Full text] [doi:
10.1037/per0000107] [Medline: 25580673]

32. Silk JS, Dahl RE, Ryan ND, Forbes EE, Axelson DA, Birmaher B, et al. Pupillary reactivity to emotional information in
child and adolescent depression: links to clinical and ecological measures. Am J Psychiatry 2007 Dec;164(12):1873-1880
[FREE Full text] [doi: 10.1176/appi.ajp.2007.06111816] [Medline: 18056243]

33. van Roekel E, Goossens L, Verhagen M, Wouters S, Engels RC, Scholte RH. Loneliness, Affect, and Adolescents' Appraisals
of Company: An Experience Sampling Method Study. J Res Adolesc 2013 Jun 21;24(2):350-363. [doi: 10.1111/jora.12061]

34. Russell MA, Wang L, Odgers CL. Witnessing substance use increases same-day antisocial behavior among at-risk adolescents:
Gene–environment interaction in a 30-day ecological momentary assessment study. Dev Psychopathol 2015 Dec
09;28(4pt2):1441-1456 [FREE Full text] [doi: 10.1017/s0954579415001182]

35. Shiffman S, Stone A. Ecological momentary assessment: A new tool for behavioral medicine research. In: Krantz DS,
Baum A, editors. Technology and methods in behavioral medicine. Mahwah, NJ, USA: Lawrence Erlbaum Associates,
Inc; 1998:117-131.

36. Wegner KE, Smyth JM, Crosby RD, Wittrock D, Wonderlich SA, Mitchell JE. An evaluation of the relationship between
mood and binge eating in the natural environment using ecological momentary assessment. Int J Eat Disord 2002
Nov;32(3):352-361. [doi: 10.1002/eat.10086] [Medline: 12210650]

37. Thomas JG, Doshi S, Crosby RD, Lowe MR. Ecological momentary assessment of obesogenic eating behavior: combining
person-specific and environmental predictors. Obesity (Silver Spring) 2011 Aug 27;19(8):1574-1579 [FREE Full text] [doi:
10.1038/oby.2010.335] [Medline: 21273995]

38. Boseck JJ, Engel SG, Allison KC, Crosby RD, Mitchell JE, de Zwaan M. The application of ecological momentary assessment
to the study of night eating. Int J Eat Disord 2007 Apr;40(3):271-276. [doi: 10.1002/eat.20359] [Medline: 17177212]

39. Stein KF, Corte CM. Ecologic momentary assessment of eating-disordered behaviors. Int J Eat Disord 2003 Nov
26;34(3):349-360. [doi: 10.1002/eat.10194] [Medline: 12949927]

40. Niemeier HM, Raynor HA, Lloyd-Richardson EE, Rogers ML, Wing RR. Fast food consumption and breakfast skipping:
predictors of weight gain from adolescence to adulthood in a nationally representative sample. J Adolesc Health 2006
Dec;39(6):842-849 [FREE Full text] [doi: 10.1016/j.jadohealth.2006.07.001] [Medline: 17116514]

41. Poobalan A, Aucott L, Clarke A, Smith W. Diet behaviour among young people in transition to adulthood (18-25 year
olds): a mixed method study. Health Psychol Behav Med 2014 Jan 01;2(1):909-928 [FREE Full text] [doi:
10.1080/21642850.2014.931232] [Medline: 25750826]

42. Kyritsis K, Diou C, Delopoulos A. Modeling Wrist Micromovements to Measure In-Meal Eating Behavior From Inertial
Sensor Data. IEEE J Biomed Health Inform 2019 Nov;23(6):2325-2334. [doi: 10.1109/JBHI.2019.2892011] [Medline:
30629523]

43. Kyritsis K, Tatli CL, Diou C, Delopoulos A. Automated analysis of in meal eating behavior using a commercial wristband
IMU sensor. Annu Int Conf IEEE Eng Med Biol Soc 2017 Jul;2017:2843-2846. [doi: 10.1109/EMBC.2017.8037449]
[Medline: 29060490]

44. Bulling A, Blanke U, Schiele B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput.
Surv 2014 Jan;46(3):1-33. [doi: 10.1145/2499621]

45. Kwon H, Abowd G, Plötz T. Adding structural characteristics to distribution-based accelerometer representations for activity
recognition using wearables. Proceedings of the 2018 ACM International Symposium on Wearable Computers New York,
NY. In: ISWC '18: Proceedings of the 2018 ACM International Symposium on Wearable Computers. 2018 Presented at:
ACM International Symposium on Wearable Computers; October 8-12, 2018; Singapore p. 72-75. [doi:
10.1145/3267242.3267258]

46. Hammerla N, Kirkham R, Andras P, Ploetz T. On preserving statistical characteristics of accelerometry data using their
empirical cumulative distribution. Proceedings of the 2013 International Symposium on Wearable Computers New York,
NY. In: ISWC '13: Proceedings of the 2013 International Symposium on Wearable Computers. 2013 Presented at:
International Symposium on Wearable Computers; September 9-12, 2013; Zurich, Switzerland p. 65-68. [doi:
10.1145/2493988.2494353]

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e20625 | p. 14http://mhealth.jmir.org/2020/12/e20625/
(page number not for citation purposes)

Bin Morshed et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1145/3130960
http://dx.doi.org/10.1145/3421937.3421952
http://dx.doi.org/10.1146/annurev.clinpsy.3.022806.091415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18509902&dopt=Abstract
http://europepmc.org/abstract/MED/29121530
http://dx.doi.org/10.1016/j.addbeh.2017.10.026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29121530&dopt=Abstract
http://europepmc.org/abstract/MED/25580673
http://dx.doi.org/10.1037/per0000107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25580673&dopt=Abstract
http://europepmc.org/abstract/MED/18056243
http://dx.doi.org/10.1176/appi.ajp.2007.06111816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18056243&dopt=Abstract
http://dx.doi.org/10.1111/jora.12061
http://paperpile.com/b/oaCinQ/EjQ2
http://dx.doi.org/10.1017/s0954579415001182
http://dx.doi.org/10.1002/eat.10086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12210650&dopt=Abstract
http://paperpile.com/b/oaCinQ/SkSc
http://dx.doi.org/10.1038/oby.2010.335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21273995&dopt=Abstract
http://dx.doi.org/10.1002/eat.20359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17177212&dopt=Abstract
http://dx.doi.org/10.1002/eat.10194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12949927&dopt=Abstract
http://paperpile.com/b/oaCinQ/4JPT
http://dx.doi.org/10.1016/j.jadohealth.2006.07.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17116514&dopt=Abstract
http://europepmc.org/abstract/MED/25750826
http://dx.doi.org/10.1080/21642850.2014.931232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25750826&dopt=Abstract
http://dx.doi.org/10.1109/JBHI.2019.2892011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30629523&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2017.8037449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29060490&dopt=Abstract
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1145/3267242.3267258
http://dx.doi.org/10.1145/2493988.2494353
http://www.w3.org/Style/XSL
http://www.renderx.com/


47. Luce K, Crowther J. The reliability of the eating disorder examination—Self-report questionnaire version (EDE-Q). Int. J.
Eat. Disord 1999 Apr;25(3):349-351. [doi: 10.1002/(SICI)1098-108X(199904)25:3<349::AID-EAT15>3.0.CO;2-M]

48. Pia Chaparro M, Zaghloul SS, Holck P, Dobbs J. Food insecurity prevalence among college students at the University of
Hawai’i at Mānoa. Public Health Nutr 2009 Aug 04;12(11):2097-2103. [doi: 10.1017/s1368980009990735]

49. van der Wal RC, van Dillen LF. Leaving a flat taste in your mouth: task load reduces taste perception. Psychol Sci 2013
Jul 01;24(7):1277-1284. [doi: 10.1177/0956797612471953] [Medline: 23722984]

50. Wallis DJ, Hetherington MM. Stress and eating: the effects of ego-threat and cognitive demand on food intake in restrained
and emotional eaters. Appetite 2004 Aug;43(1):39-46. [doi: 10.1016/j.appet.2004.02.001] [Medline: 15262016]

51. Thomaz E, Bedri A, Prioleau T, Essa I, Abowd G. Exploring Symmetric and Asymmetric Bimanual Eating Detection with
Inertial Sensors on the Wrist Internet. In: DigitalBiomarkers '17: Proceedings of the 1st Workshop on Digital Biomarkers.
2017 Presented at: 1st Workshop on Digital Biomarkers; June 2017; Niagara Falls, NY, USA. [doi:
10.1145/3089341.3089345]

52. Smith AP, Rogers R. Positive effects of a healthy snack (fruit) versus an unhealthy snack (chocolate/crisps) on subjective
reports of mental and physical health: a preliminary intervention study. Front Nutr 2014;1:10 [FREE Full text] [doi:
10.3389/fnut.2014.00010] [Medline: 25988113]

Abbreviations
ECDF: empirical cumulative distribution function
EMA: ecological momentary assessment

Edited by G Eysenbach; submitted 24.05.20; peer-reviewed by J van den Boer, A Adams; comments to author 19.06.20; revised version
received 14.08.20; accepted 30.10.20; published 18.12.20

Please cite as:
Bin Morshed M, Kulkarni SS, Li R, Saha K, Roper LG, Nachman L, Lu H, Mirabella L, Srivastava S, De Choudhury M, de Barbaro
K, Ploetz T, Abowd GD
A Real-Time Eating Detection System for Capturing Eating Moments and Triggering Ecological Momentary Assessments to Obtain
Further Context: System Development and Validation Study
JMIR Mhealth Uhealth 2020;8(12):e20625
URL: http://mhealth.jmir.org/2020/12/e20625/
doi: 10.2196/20625
PMID: 33337336

©Mehrab Bin Morshed, Samruddhi Shreeram Kulkarni, Richard Li, Koustuv Saha, Leah Galante Roper, Lama Nachman, Hong
Lu, Lucia Mirabella, Sanjeev Srivastava, Munmun De Choudhury, Kaya de Barbaro, Thomas Ploetz, Gregory D Abowd. Originally
published in JMIR mHealth and uHealth (http://mhealth.jmir.org), 18.12.2020. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mHealth and uHealth, is
properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/, as well as
this copyright and license information must be included.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e20625 | p. 15http://mhealth.jmir.org/2020/12/e20625/
(page number not for citation purposes)

Bin Morshed et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1002/(SICI)1098-108X(199904)25:3<349::AID-EAT15>3.0.CO;2-M
http://dx.doi.org/10.1017/s1368980009990735
http://dx.doi.org/10.1177/0956797612471953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23722984&dopt=Abstract
http://dx.doi.org/10.1016/j.appet.2004.02.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15262016&dopt=Abstract
http://dx.doi.org/10.1145/3089341.3089345
https://doi.org/10.3389/fnut.2014.00010
http://dx.doi.org/10.3389/fnut.2014.00010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25988113&dopt=Abstract
http://mhealth.jmir.org/2020/12/e20625/
http://dx.doi.org/10.2196/20625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33337336&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

