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Abstract

Background: Quantification of dietary intake is key to the prevention and management of numerous metabolic disorders.
Conventional approaches are challenging, laborious, and lack accuracy. The recent advent of depth-sensing smartphones in
conjunction with computer vision could facilitate reliable quantification of food intake.

Objective: The objective of this study was to evaluate the accuracy of a novel smartphone app combining depth-sensing hardware
with computer vision to quantify meal macronutrient content using volumetry.

Methods: The app ran on a smartphone with a built-in depth sensor applying structured light (iPhone X). The app estimated
weight, macronutrient (carbohydrate, protein, fat), and energy content of 48 randomly chosen meals (breakfasts, cooked meals,
snacks) encompassing 128 food items. The reference weight was generated by weighing individual food items using a precision
scale. The study endpoints were (1) error of estimated meal weight, (2) error of estimated meal macronutrient content and energy
content, (3) segmentation performance, and (4) processing time.

Results: In both absolute and relative terms, the mean (SD) absolute errors of the app’s estimates were 35.1 g (42.8 g; relative
absolute error: 14.0% [12.2%]) for weight; 5.5 g (5.1 g; relative absolute error: 14.8% [10.9%]) for carbohydrate content; 1.3 g
(1.7 g; relative absolute error: 12.3% [12.8%]) for fat content; 2.4 g (5.6 g; relative absolute error: 13.0% [13.8%]) for protein
content; and 41.2 kcal (42.5 kcal; relative absolute error: 12.7% [10.8%]) for energy content. Although estimation accuracy was
not affected by the viewing angle, the type of meal mattered, with slightly worse performance for cooked meals than for breakfasts
and snacks. Segmentation adjustment was required for 7 of the 128 items. Mean (SD) processing time across all meals was 22.9
seconds (8.6 seconds).

Conclusions: This study evaluated the accuracy of a novel smartphone app with an integrated depth-sensing camera and found
highly accurate volume estimation across a broad range of food items. In addition, the system demonstrated high segmentation
performance and low processing time, highlighting its usability.

(JMIR Mhealth Uhealth 2020;8(3):e15294) doi: 10.2196/15294
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Introduction

Qualitative and quantitative assessment of dietary intake are
cornerstones for the prevention and management of metabolic
diseases such as obesity and diabetes [1,2]. Traditional manual
food records that rely on human abilities to quantify food intake
are time-consuming and error-prone [3]. One of the main
challenges is the appropriate estimation of portion size (ie,
volume) [4]. Inaccurate portion size estimation contributes up
to 50% of the total estimation error [5]. Novel approaches
replacing manual input by automated techniques may overcome
the inherent limitations of traditional approaches, while
increasing usability.

Mobile devices, currently ubiquitous, could simplify dietary
monitoring. Although there are a number of commercially
available apps offering access to food composition databases
or providing reference images to facilitate estimation of portion
size [6], they are generally limited by the need for manual user
input.

High-quality smartphone cameras and computer vision
approaches can be combined to fully automate portion size
estimation. Users capture images of the meal using the
smartphone camera, and the app subsequently builds a 3D model
of the food to calculate its volume [7]. Combining the food
volume with macronutrient-density databases, the app translates
the volume into weight and then nutrient information. Food
identification can be accomplished either by user selection or
as part of the automated image processing, which further
minimizes the need for user input [8].

Researchers have described several such systems [9-13]. A
major challenge in many of these approaches lies in the
capturing of the third dimension (depth) due to geometric
constraints. In particular, factors such as precise food location,
shape and size of food items, and changes in these parameters
depending on camera perspective potentially interfere with
reliable depth assessment. To overcome such constraints,
fiducial markers, which ground the scene in a common frame
of reference, are utilized. In addition, some systems use multiple
images or video sequences of the food, followed by a complex
calibration process. All these aspects inherently affect usability
and accuracy.

The recent advent of miniaturized depth-sensing cameras
embedded within smartphones (eg, iPhone X) opens a new
horizon for automated food quantification. Using a single
capture including depth information from any convenient
viewing angle, this technology has the potential to eliminate
the need for manual input, thereby increasing usability as well
as accuracy. Therefore, the aim of this study was to evaluate
the accuracy of a novel smartphone app that combines
depth-sensing with computer vision to quantify food volume
across a broad range of meals reflecting a real-life setting.

Methods

Study Design
The study occurred at the Central Kitchen Facility of the
University Hospital Bern, Switzerland, in mid-January 2019.
The system was tested on regular meals served to patients and
hospital staff. A total of 48 test meals were randomly generated
from a pre-defined pool of 128 food items. The test meals
comprised the following meal types: breakfast, cooked meals,
and snacks. Meals consisted of 4 (breakfast), 3 (cooked meals),
or 1 (snacks) food items and were served on a standard plate or
in a standard bowl. The meal content is described in Multimedia
Appendix 1.

For each test meal, a single image was taken at a predefined
angle of either 45° or 90° from the horizontal position (the angle
was estimated by the user). The allocation of the capture angle
of each meal was pre-defined using a balanced randomization
procedure. The randomization sequence was produced as a
binary sequence in three batches (by meal type). Images were
captured under natural light conditions.

Smartphone App
The app was provided by SNAQ GmbH (Zurich, Switzerland)
using a software version from May 2018, and it was installed
on an iPhone X (Apple Inc, Cupertino, California), which uses
a built-in depth sensor applying structured light. The automated
food quantification workflow is summarized in Figure 1 and
consisted of (1) capturing the scene, (2) analyzing the scene,
(3) estimating the volume, (4) converting the food volume into
food weight, and (5) conversion of the food weight into
macronutrient content.

Figure 1. Automated food quantification workflow performed by the SNAQ app.
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First, the user takes a photograph using the phone, and a depth
map of the food is generated through the phone’s front sensors
consisting of a photo camera and an active depth sensor.

Second, the system partitions the image into consistent regions
representing different items and eliminates those that are not
food. To do so, a convolutional neural network has learned how
food is structured in terms of sets of pixels and their correlations
to the visual appearance of images. The data used to train the
system consist of images with flags for each pixel indicating
whether the respective pixel represents food. If the automated
segmentation is not deemed satisfactory, the user can manually
adjust the outlines of the items. A workflow of the segmentation
as well as an example of good and bad segmentations are
provided in Multimedia Appendix 2. Then, based on the depth
map and input from the phone sensors, the visible point cloud
is transformed into a set of surfaces using a Delaunay
triangulation. The system extracts the location and orientation
of the table (vertical plane) using the RANSAC-Algorithm [14]
for an outlier-robust fitting. From this, the surfaces of each dish
are defined. Selection of the food type is manually performed
for each of the segmented food items.

Third, the segmented food items are used to cut the visible
surface into partial food surfaces. Each food surface is then
closed by the dish surfaces before their volume is calculated.

Fourth, the food volume is converted into food weight using a
food density database. Finally, the food weight is converted
into macronutrient content using the Swiss Food Composition
Database [15].

This study was designed to assess the accuracy of automated
quantification of portion sizes. Automated food recognition (ie,
the taxonomy of the food items) was not a focus of this study.
Instead, the user capturing the image selected the respective
food item from a pre-defined list within the app.

Reference Method
The reference weight was generated by weighing individual
food items to the nearest 0.1 g using a precision scale (ME4002,
Mettler Toledo, Greifensee, Switzerland). Conversion into
macronutrient content was performed using the Swiss Food
Composition Database [15].

Endpoints
There were four study endpoints: (1) error of the estimated meal
weight, (2) error of the estimated meal macronutrient content
and energy content, (3) segmentation performance (defined as
the number of items requiring manual correction of segmentation
as well as intersection of the uncorrected and corrected
segmentation areas over the corrected segmentation area), and

(4) processing time (defined as the time period from image
capture to macronutrient/energy output, including the time
required for manual inputs).

Sample Size Calculation and Statistical Analysis
The number of test meals in this study was determined based
on a pilot experiment showing a mean (SD) difference in
carbohydrate content of –2.6 g (9.2 g). Applying a power of
80% and significance level of .05 for 48 meals was deemed
appropriate.

The error was determined on the meal level, and the following
error metrics were used: bias, defined as the difference between
estimation and reference (estimate-reference); absolute error,
defined as |estimate-reference|; and 95% limits of agreement,
calculated as ±2*SD of the bias. Bland-Altman plots were
generated to visualize the level of agreement between the
estimate and reference values. General linear models were used
to assess the effect of meal type and inclination angle on the
estimation error. P values <.05 were considered statistically
significant. SPSS version 25.0 (IBM Corp, Armonk, NY) was
used for statistical analysis. Data are described using mean (SD)
and median (interquartile range [IQR]). All absolute error and
bias values in this paper are presented as absolute values (g)
followed by the relative values (%) in parentheses.

Results

Macronutrient and Energy Content of the Test Meals
The 48 test meals encompassed 128 food items. The mean
reference macronutrient and energy contents of the 48 test meals
are summarized in Multimedia Appendix 3. On average, the
meals weighed 235.8 g (range 29.6-582.4 g). Meals contained
an average 38.5 g carbohydrate (range 4.4-101.0 g), 14.6g
protein (range 0.2-66.9 g), and 11.7 g fat (range 0.1-37.1 g).
Mean energy content was 325 kcal (range 32-609 kcal). Insights
into the study meals, including the representation of different
meal types, are provided in Multimedia Appendix 4.

Errors of Estimated Meal Weight, Estimated Meal
Macronutrient Content, and Estimated Meal Energy
Content
The mean (SD) error metrics are summarized in Table 1, and
the median (IQR) error metrics are presented in Multimedia
Appendix 5. Corresponding Bland-Altman plots are presented
in Figures 2-6. In both absolute and relative terms, the mean
(SD) absolute error of the estimated weight for all meals was
35.1 g (42.8 g; 14.0% [12.2%]), and the mean (SD) bias was
19.3 g (52.1 g; 5.4% [17.8%]). The 95% limits of agreement
were –84.8 g and 123.4 g (Figure 2).
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Table 1. Error metrics for all meals and by meal, reported as the difference between the app’s estimate and the reference weight, macronutrient content,
or energy content.

Limits of agreement, gBiasAbsolute errorMeal characteristics

Relative value, %,
mean (SD)

Absolute value, g,
mean (SD)

Relative value, %,
mean (SD)

Absolute value, g,
mean (SD)

Weight  

–84.8, 123.45.4 (17.8)19.3 (52.1)14.0 (12.2)35.1 (42.8)All meals

–88.3, 98.70.2 (12.3)5.2 (46.8)9.5 (7.5)30.9 (34.6)Breakfast

–73.4, 180.815.2 (18.0)53.7 (63.6)18.2 (14.7)62.9 (53.8)Cooked meals

–38.5, 36.41.0 (19.2)–1.0 (18.7)14.2 (12.4)11.5 (14.6)Snacks

Carbohydrate 

–13.9, 15.92.9 (18.3)1.0 (7.5)14.8 (10.9)5.5 (5.1)All meals

–18.7, 17.7–1.0 (14.7)–0.5 (9.1)12.1 (7.9)7.1 (5.5)Breakfast

–12.4, 18.78.6 (20.3)3.2 (7.8)18.2 (11.6)6.5 (5.2)Cooked meals

–9.3, 9.81.0 (19.2)0.3 (4.8)14.2 (12.5)2.9 (3.7)Snacks

Protein 

–10.0, 13.45.6 (15.2)1.7 (5.9)13.0 (13.8)2.4 (5.6)All meals

–3.1, 3.10.0 (8.8)0.0 (1.5)7.3 (4.6)1.0 (1.1)Breakfast

–12.9, 23.515.3 (20.8)5.3 (9.1)17.4 (18.9)5.6 (8.9)Cooked meals

–2.0, 1.51.4 (19.4)–0.3 (0.9)14.2 (12.7)0.5 (0.8)Snacks

Fat

–3.8, 4.75.7 (16.9)0.5 (2.1)12.3 (12.8)1.3 (1.7)All meals

–3.1, 3.93.1 (11.6)0.4 (1.8)8.4 (8.3)1.2 (1.3)Breakfast

–3.6, 6.212.1 (18.0)1.3 (2.4)14.4 (16.0)1.6 (2.3)Cooked meals

–4.1, 3.51.8 (19.2)–0.4 (1.9)14.0 (12.8)1.1 (1.6)Snacks

Energy 

–99.4, 130.3a4.1 (16.2)15.5 (57.4)a12.7 (10.8)41.2 (42.5)aAll meals

–101.1, 105.4a0.4 (11.4)2.1 (51.6)a9.2 (6.2)40.4 (30.5)aBreakfast

–88.7, 184.2a11.0 (15.8)47.8 (68.2)a14.7 (12.3)59.1 (58.0)aCooked meals

–76.4, 69.5a1.0 (19.2)–3.5 (36.5)a14.2 (12.4)24.1 (26.9)aSnacks

akcal.
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Figure 2. Bland-Altman plot illustrating the difference between the estimated and reference meal weights.

The mean (SD) absolute error of the estimated carbohydrate
content for all meals was 5.5 g (5.1 g; 14.8% [10.9%]), and the
mean (SD) bias was 1.0 g (7.5 g; 2.9% [18.3%]). The 95% limits
of agreement were –13.9 g and 15.9 g (Figure 3). The mean
(SD) absolute error of the estimated protein content for all meals
was 2.4 g (5.6 g; 13.0% [13.8%]), and the mean (SD) bias was
1.7 g (5.9 g; 5.6% [18.2%]). The 95% limits of agreement were
–10.0 g and 13.4 g (Figure 4). The mean (SD) absolute error of

the estimated fat content for all meals was 1.3 g (1.7 g; 12.3%
[12.8%]), and the mean (SD) bias was 0.5 g (2.1 g; 5.7%
[16.9%]). The 95% limits of agreement were –3.8 g and 4.7 g
(Figure 5). The mean (SD) absolute error of the estimated energy
content for all meals was 41.2 kcal (42.5 kcal; 12.7% [10.8%]),
and the mean (SD) bias was 15.5 kcal (57.4 kcal; 4.1% [16.2%]).
The 95% limits of agreement were –99.4 kcal and 130.3 kcal
(Figure 6).

Figure 3. Bland-Altman plot illustrating the difference between the estimated and reference carbohydrate content of the meals.
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Figure 4. Bland-Altman plot illustrating the difference between the estimated and reference protein content of the meals.

Figure 5. Bland-Altman plot illustrating the difference between the estimated and reference fat content of the meals.
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Figure 6. Bland-Altman plot illustrating the difference between the estimated and reference energy content of the meals.

While viewing angle had no significant influence on the
accuracy of macronutrient and energy estimation (P=.96, P=.83,
P=.99, P=.73, and P=.70 for absolute errors in weight,
carbohydrate, protein, fat, and energy content, respectively),
we observed a significant effect of meal type on the accuracy
for all macronutrients and energy content (P=.001, P=.001,
P=.001, P=.002, and P=.005 for absolute errors in weight,
carbohydrate, protein, fat, and energy content, respectively).
The mean bias values of the cooked meals for carbohydrate,
protein, and fat content were significantly higher than for the
breakfasts, with a mean (SD) difference in bias of 18.3% (4.9%)
for carbohydrate, 19.6% (4.9%) for protein, and 17.7% (5.1%)
for fat (all P<.001). The comparison of bias for snacks relative
to the bias of cooked meals resulted in marginal outcomes for
fat (P=.02), carbohydrate (P=.08), and protein (P=.07).
Furthermore, the bias for snacks was not different from the bias
for breakfasts for all macronutrients (P=.37, P=.26, P=.23,

P=.79, and P=.50 for weight, carbohydrate, protein, fat, and
energy content, respectively).

Segmentation Performance
In 7 of the 128 items (5.5%), segmentation required manual
adjustment. The intersection over union of unadjusted to
adjusted segmentation area was 71.8%.

Processing Time
Mean (SD) processing time across all meal types was 22.9
seconds (8.6 seconds). Processing time was significantly lower
for snacks (mean 17.9 seconds, SD 7.0 seconds) compared with
cooked meals (mean 27.8 seconds, SD 10.8 seconds; mean
difference –9.9 seconds, SD 2.7 seconds; P<.001). Processing
time was lower for breakfast (mean 23.1 seconds, SD 3.5
seconds) compared with cooked meals (mean difference –4.7
seconds, SD 2.8 seconds; P=.12). Figure 7 provides the
processing time stratified by meal type.
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Figure 7. Box-plot of the processing time according to meal type. Box-plots show median values (solid line), interquartile range (IQR; box outline),
spread of data points without outliers (whiskers) and outliers identified as 1.5*IQR (symbols).

Discussion

This study evaluated the accuracy of a novel smartphone app
that combines depth sensing with computer vision using
volumetry to quantify the macronutrient content of meals in a
real-life setting. The main findings were as follows: the accuracy
was adequate across all macronutrients, the accuracy differed
according to meal type (lower for cooked meals than for snacks
and breakfast), segmentation was good, and processing was
fast.

When compared with previous reports of apps using computer
vision without depth sensors, the present app had comparable,
or even superior, accuracy. Rhyner et al [16] reported a mean
absolute error of 26.2% in carbohydrate content when assessing
60 cooked meals with non-overlapping food items. In a further
preclinical study assessing the accuracy of the prototype used
by Rhyner et al and based on 54 cooked meals, the mean
absolute error in carbohydrate quantification was 14.8 g, which
corresponds to 24.7% for a meal carbohydrate content of 60 g
[17]. In contract, with the app in the present study, mean
absolute errors in macronutrient content estimation ranged from
12.3% (fat) to 15% (carbohydrate).

Of note, two recent studies assessing the accuracy of
image–based food quantification using volume as a reference
metric reported mean absolute errors in volume estimation of
7.2% [12] and 5.8% [18] based on the assessment of 5 and 20

food items, respectively. These slightly smaller errors compared
to those in this study can be explained by the different reference
metric used to define the system accuracy (error in estimated
volume versus error in estimated weight and consequently
macronutrient content). Of note, errors in weight estimation
have two potential sources: inaccuracies in volume and density
estimation. Additionally, operational aspects of the previously
reported systems differ from those in this study. Xu et al [12]
used a complex multi-step approach including reference objects,
while Makhsous et al [13] added a depth sensor with structured
light to the smartphone and complemented their approach with
video sequences, significantly increasing the complexity of the
workup. These differences highlight the important tradeoffs
between accuracy and usability.

Of note, this study revealed a comparably short processing time,
ranging from 18 seconds for snacks to 29 seconds for cooked
meals. This is faster than those reported in previous studies,
where processing times generally exceeded the limit of 1 minute
[19]. This highlights the usability of the present system even
when applied to meals in a real-life setting.

The accuracy of the tested app differed according to meal type
and was lower for cooked meals than for breakfasts and snacks.
This might have resulted from the different levels of complexity
in terms of scene analysis of the respective meals. Whereas the
breakfasts and snacks had food items that were clearly separated
from each other, the cooked meals had food items with touching

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 3 | e15294 | p. 8http://mhealth.jmir.org/2020/3/e15294/
(page number not for citation purposes)

Herzig et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


borders or a certain degree of overlap. Notably, the angle of
image capture did not affect the estimation accuracy in this
study, indicating the flexibility, usability, and robustness of the
system.

We acknowledge a number of limitations of this study. First,
the assessment was limited to meals provided by the hospital
kitchen, preventing a generalized statement on the accuracy.
However, the system was tested using real-life meals,
underscoring its potential use in practice. Second, the system
was limited to a single type of smartphone (iPhone X) with a
depth sensor, precluding statements on the performance of the
software combined with different hardware components.
However, this approach supports the strength of providing a
commercially available tool. Third, the depth sensor limited the

reconstruction to 1/20th of the resolution and with lower depth
precision than with a passive depth sensor (dual camera
approach). However, the use of a depth sensor foregoes the need
for fiducial markers, rendering it more convenient to users.
Fourth, we served all meals on one plate or bowl type, possibly

reducing the variation in volume estimation that was unrelated
to the depth sensor. Finally, this study exclusively focused on
the accuracy of volume quantification and did not consider food
recognition.

When considering both observed accuracy and usability of the
present system, the field of potential use appears broad. Such
a system may be of interest in the medical sector to assist with
nutritional counseling and management of patients with
metabolic disorders (eg, diabetes mellitus, obesity) or at risk of
malnutrition. Beyond this, such a system may be valuable in
nutritional epidemiology due to the potential to systematically
and accurately monitor dietary intake on a large scale.

In conclusion, this study evaluated the accuracy of a novel
smartphone app with integrated depth sensing and found a high
level of accuracy in volumetric macronutrient and energy
estimation across a broad set of meals in a real-life setting. In
addition, the system demonstrated high segmentation
performance and low processing time, highlighting its usability.
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