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Abstract

Background: Approximately 90% of global cervical cancer (CC) is mostly found in low- and middle-income countries. In most
cases, CC can be detected early through routine screening programs, including a cytology-based test. However, it is logistically
difficult to offer this program in low-resource settings due to limited resources and infrastructure, and few trained experts. A
visual inspection following the application of acetic acid (VIA) has been widely promoted and is routinely recommended as a
viable form of CC screening in resource-constrained countries. Digital images of the cervix have been acquired during VIA
procedure with better quality assurance and visualization, leading to higher diagnostic accuracy and reduction of the variability
of detection rate. However, a colposcope is bulky, expensive, electricity-dependent, and needs routine maintenance, and to confirm
the grade of abnormality through its images, a specialist must be present. Recently, smartphone-based imaging systems have
made a significant impact on the practice of medicine by offering a cost-effective, rapid, and noninvasive method of evaluation.
Furthermore, computer-aided analyses, including image processing–based methods and machine learning techniques, have also
shown great potential for a high impact on medicinal evaluations.

Objective: In this study, we demonstrate a new quantitative CC screening technique and implement a machine learning algorithm
for smartphone-based endoscopic VIA. We also evaluated the diagnostic performance and practicability of the approach based
on the results compared to the gold standard and from physicians’ interpretation.

Methods: A smartphone-based endoscope system was developed and applied to the VIA screening. A total of 20 patients were
recruited for this study to evaluate the system. Overall, five were healthy, and 15 were patients who had shown a low to high
grade of cervical intraepithelial neoplasia (CIN) from both colposcopy and cytology tests. Endoscopic VIA images were obtained
before a loop electrosurgical excision procedure for patients with abnormal tissues, and their histology tissues were collected.
Endoscopic VIA images were assessed by four expert physicians relative to the gold standard of histopathology. Also, VIA
features were extracted from multiple steps of image processing techniques to find the differences between abnormal (CIN2+)
and normal (≤CIN1). By using the extracted features, the performance of different machine learning classifiers, such as k-nearest

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 3 | e16467 | p. 1http://mhealth.jmir.org/2020/3/e16467/
(page number not for citation purposes)

Bae et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

mailto:wgjung@unist.ac.kr
http://www.w3.org/Style/XSL
http://www.renderx.com/


neighbors (KNN), support vector machine, and decision tree (DT), were compared to find the best algorithm for VIA. After
determining the best performing classifying model, it was used to evaluate the screening performance of VIA.

Results: An average accuracy of 78%, with a Cohen kappa of 0.571, was observed for the evaluation of the system by four
physicians. Through image processing, 240 sliced images were obtained from the cervicogram at each clock position, and five
features of VIA were extracted. Among the three models, KNN showed the best performance for finding VIA within holdout
10-fold cross-validation, with an accuracy of 78.3%, area under the curve of 0.807, a specificity of 80.3%, and a sensitivity of
75.0%, respectively. The trained model performed using an unprovided data set resulted in an accuracy of 80.8%, specificity of
84.1%, and sensitivity of 71.9%. Predictions were visualized with intuitive color labels, indicating the normal/abnormal tissue
using a circular clock-type segmentation. Calculating the overlapped abnormal tissues between the gold standard and predicted
value, the KNN model overperformed the average assessments of physicians for finding VIA.

Conclusions: We explored the potential of the smartphone-based endoscopic VIA as an evaluation technique and used the
cervicogram to evaluate normal/abnormal tissue using machine learning techniques. The results of this study demonstrate its
potential as a screening tool in low-resource settings.

(JMIR Mhealth Uhealth 2020;8(3):e16467) doi: 10.2196/16467
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Introduction

According to the International Agency for Research on Cancer
and GLOBOCAN 2018, cervical cancer (CC) is the fourth most
frequent cancer in women worldwide [1], and approximately
90% of the global cervical cancer deaths in 2015 occurred in
low- and middle-income countries [2,3]. Although CC is
regarded as a highly preventable and curable cancer, it is still
one of the leading causes of mortality in low-resource settings
and developing countries due to their lack of sustainable
screening programs and limited infrastructure [3-5]. CC can be
readily managed when it is found in the precancerous stages
through routine screening methods, such as a cytology-based
test. The most popular and affordable method for CC screening
in low-resource countries is the use of visual inspection with
acetic acid (VIA). Since VIA offers relatively simple,
cost-effective visual feedback, it can even provide treatment on
the same day of a screening visit [4-7]. In VIA, the topical
application of 4-5% acetic acid to the cervix transforms
abnormal squamous epithelium to a dense white color, while
normal epithelium presents as a light pink color. Despite its
simplicity, VIA provides sufficient sensitivity and specificity
to identify the cancerous lesion; thus, it has been widely
promoted and recommended as an alternative to the conventional
cytology test (ie, the Pap smear) [4-8]. Nonetheless, visual
inspection methods have been found to be subjective and the
range of diagnostic performance varies widely, with significantly
better results obtained by physicians than by nurses [8].
Unfortunately, in many developing countries, trained physicians
who can interpret VIA correctly may not be readily available
[5,7,8].

Digital images of the cervix after application of acetic acid, or
digital cervicography, have been significantly important for
improving quality control. It is a very efficient way of
minimizing interpreters’ subjectivity by capturing higher
resolution images for post-screening analysis [9-13]. Moreover,
digital images can be transmitted or shared through the internet
with long-distance experts, thus closing the gap in human
resources [13]. Recent advances in smartphone technologies

have opened new possibilities for cervical screening in
low-resource settings, thus overcoming the limitations of
colposcopy, including the device’s bulkiness, high-cost,
electricity dependency, and constant maintenance need [14-20].

The smartphone is a highly integrated platform that includes
various functionalities, easy accessibility, a user-friendly
interface, ubiquitous internet, and communication technologies
[21]. The high-definition camera in a smartphone has especially
made an impact on the practice of medicine by offering
cost-effective, rapid, and noninvasive imaging capabilities
[21-25]. Smartphone-based cervical screening has been proven
feasible and validated for quality assurance in low resource
settings [14-20]. Smartphone-based digital visual inspection
following application of acetic acid has been demonstrated for
higher diagnostic accuracy and reduction of the variability of
detection rate. Although digital images are very effective in
various ways [5], implementation of remote expert consultation
is still challenging due to the lack of reliable broadband
connections in remote areas [19].

On the other hand, automated interpretation of data and
classification of cervical images for instant diagnostic
conclusions will enable on-site treatments to be delivered
without delays [26-31]. To date, various image processing and
interpretation methods have been successfully applied to VIA
using such features as aceto-whitening, blood vessel formation,
and texture of the surface [29-31]. Previous works have shown
that automated classification of VIA can perform as well as
experts’ qualitative assessment of colposcopic images [26-28].
Also, auxiliary processing methods, such as elimination of
speculum reflection and determination of the region of interest
(ROI), can further improve the overall performance of image
processing outcomes [31]. Automated quantification of VIA
based on modern image processing and machine learning
techniques could be a very promising platform for cervical
screening in low-resource settings. However, a fully automated
diagnostic performance using smartphone-based cervical images
has not been introduced, despite a clear need and potential.
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In this study, we demonstrate a new quantitative CC screening
technique by implementing a machine learning algorithm for
smartphone-based endoscopic VIA. Our method can provide
digital images as well as an automated diagnostic classification
for comprehensive and intuitive feedback to a clinician. We
have evaluated the diagnostic performance of the system through
quantitative comparison to the gold standard of cytology and
physicians’ interpretation of the digital images. This approach
would extend cervical cancer screening to remote populations
who do not have access to experienced colposcopists.

Methods

Smartphone-Based Endoscope System
We developed a miniaturized endoscope system by assembling
an endoscopic probe and smartphone with customized ancillary
components, as reported previously [25]. The smartphone-based
endoscope system and its components are illustrated in Figure
1. The system is composed of 3 major components: (1)
Customized coupler for universal attachment of endoscopic
probes, generated by three-dimensional (3D) printer (Stratasys,
Objet260 Connex2); (2) smartphone case, also generated by 3D
printer; and (3) an optical adapter used for magnification, which
is placed between the endoscopic probe and the smartphone
camera, as shown in Figure 1, part (a). Incorporating achromatic

and aspherized achromatic lenses that had 40-millimeter and
14-millimeter focal lengths (Figure 1, part [b]), respectively,
we obtained approximately 4× optical magnification. The image
can be further magnified up to approximately 12× with a
smartphone’s digital zoom feature. A portable light source was
attached to the illumination port of an endoscopic probe. Images
were acquired with the home-built android application that
features control functions such as compensation of the rotated
images caused by the lens, camera controls, including zoom,
ISO sensitivity, white balance, resolution size, and exposure
adjustments, and the option to save files.

Optical elements of the adapter significantly improved the cervix
image captured with a smartphone camera alone. Images of the
central part of the Unites States air force (USAF) resolution
target were captured with/without a smartphone endoscope
(Figure 1, part [c]). The device was placed at 150 millimeters
and 300 millimeters away from the target, where prior
smartphone-based VIA [14,19] and routine colposcopy [32] are
conducted. For the endoscope system, we placed the distal end
of the probe at 20 millimeters away from the target, where the
whole ectocervix was well defined in the field of view. As
shown in Figure 1, part (d), smartphone-based endoscopy
achieved the best resolution from a line plot representing Group
2, Element 4, from part (c), in the resolution target.

Figure 1. Schematic of the system. (a) 3D modeling of the smartphone-based endoscope system. (b) Optics of the customized zoom lens. (c) Images
of the resolution target taken without any optics adapter and our system, respectively. (d) Group 2, element 4 from each image was described as a line
plot. 3D: three-dimensional; AU: arbitrary unit.

Image Acquisition From Clinic
Following a protocol approved by the Ulsan University Hospital
Institutional Review Board, we collected smartphone-based
VIA images using an endoscope in human subjects. In Ulsan
University Hospital, VIA was routinely performed to visualize

the margin of the suspicious tissue before loop electrosurgical
excision procedure (LEEP). Therefore, each imaging session
was conducted before LEEP, in an operating room. A rigid
endoscopic probe (Medstar, Otoscope, 0°, Ø4, and 50 mm
length) was inserted inside a subject’s vagina where speculum
had already been placed. Since the endoscope is thin,
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smartphone-based endoscopic VIA imaging was performed in
a noninvasive and noncontact manner. All patients who
underwent LEEP had already been potential candidates to have
cervical intraepithelial neoplasia (CIN2+), which was
determined by previous cytology-based tests and colposcopy.
A typical procedure in this study took less than five minutes
without causing undue burden on volunteers and delaying the
treatment. First, one minute was used to take images before the
application of the acetic acid, then the next 1-2 minutes was
used to apply the 3-5% acetic acid, then another minute for
waiting, and then the last minute was used to take VIA images.
Figure 2, parts (a) and (b), show representative images of the
smartphone-based endoscopic VIA. For patients who underwent
LEEP, 12 tissue sections were collected at each clock position
from the excised ectocervix. For this study, physicians labeled
the CIN grades in colors, as shown Figure 2, parts (c)-(e). A
total of 20 patients aged 20 years old or older participated in

this study. Among them, five volunteers were normal (CIN1-),
and 15 were confirmed abnormal (CIN1+) using the gold
standard cytology test. Normal cervix status of the five subjects
was verified as such by cytology test and colposcopy, so no
LEEP was performed and no tissues were collected from them.

All captured images, including before and after application of
the acetic acid, were sent to expert physicians for review. A
total of four experts with professional experience, ranging from
12-20 years, participated and were kept blind to the results of
the machine learning and the cytology. Physicians’
interpretations were based only on VIA features without any
additional information given to them. During the image reviews,
physicians labeled the directional information of the tissue
region that contained suspicious abnormal features (Figure 2).
In this study, tissues, including normal and CIN1, were
considered to be normal, and CIN2+ was considered to be
abnormal because only CIN2+ requires treatment [26].

Figure 2. Smartphone-based endoscopic cervicogram. (a) Cervicogram of before acetic acid application. (b) Cervicogram of after acetic acid application.
(c) VIA- patient (d-e) VIA+ patients with predictions from best among four physicians. Prediction labeled the precancerous regions with colors at each
clock position. VIA: Visual inspection with acetic acid.

Preimage Processing
Images from smartphone-based endoscopic VIA contain
unnecessary features, such as vaginal walls, speculum, and
specular reflections of light, as commonly found in typical

cervicograms [28,31]. As these features may affect overall
classification accuracy, we performed multi-step image
processing to reduce their influence on data analysis (See Figure
3a).
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Figure 3. Block diagram of image processing and classification. (a) Preimage processing method, (b) Feature analysis and classification. SR: speculum
reflection; ROI: region of interest; RGB: red, green, blue; CIE: Commission Internationale de l'Eclairage; HSV: hue, saturation, value; CV: cross-validation;
KNN: K-nearest neighbor; SVM: supportive vector machine; DT: decision tree.

Next, ROI was defined to segment the major cervix region. The
major cervix region in images both before and after the
application of acetic acid contains high red-channel values [27].
For ROI detection, the red-channel image was transferred to
grayscale and separated into multilevel binary images. Here,
the 8-bit grayscale of the red-channel image was sliced into
eight planes ranging from the least significant bit, 0, to the most
significant bit, 7. Most of the seventh and eighth bit-planes
represent the major ectocervix regions, so we used these features
to generate the mask for ROI segmentation. Due to the slight
differences of the cervix images between pre– and post–acetic
acid application, we performed an ‘AND’ operator to segment
the overlapping regions.

Before VIA features extraction and classification, image pairs
for pre– and post–acetic acid application had to be properly
registered. As shown in Multimedia Appendix 1, we manually
provided three points as fiducials on each image to locate the
center of the cervix (red dot) and both ends of the cervical os
(2 black dots). Utilizing the center point, we correctly registered
the center of the cervix for every image pair. We also drew a
line penetrating the other two points and found the angle of the
line from each image. We made this line horizontal by rotating
images with respect to the given center point. Further, we
cropped the images into 12 pieces, as sectioned in histology. In
this image processing method, we used a total of 20 image pairs
acquired from volunteers as initial input (ni=40) and obtained
240 pieces of images that have directional information for both
before (ncb=240) and after (nca=240) acetic acid application. All
detailed procedures with representative images for each step
can be found in Multimedia Appendix 1.

Feature Analysis and Selection
After the preprocessing of images, VIA features were analyzed
to identify the images containing the suspicious lesions. To

extract the abnormal features, we inspected RGB color intensity,
values in extended color space, and Haralick’s texture features
[33]. The application of the acetic acid on squamous epithelial
areas coagulates the cellular protein and dehydrates the
cytoplasm. Images of VIA– cervix, thus, generally showed light
pink or very thin white appearances due to the reflection of light
from the underlying stroma. On the other hand, VIA+ tissues
that are rich in cellular proteins were presented with thick white
features which blocked the colors of the stroma. Due to this
reason, VIA+ incorporates larger, thick, white areas in images
that would exhibit more green and blue intensities in color space
[26,34]. From there, we computed the green-to-red and
blue-to-red intensity ratio and found the separation between
histogram distributions of pre– and post–acetic acid application
images. This approach would properly quantify changes in green
and blue intensities independent of device variation and level
of illumination. The differences of histogram distribution of
average (Dave), green-to-red (DG/R), blue-to-red (DB/R), and
average histogram differences of green-to-red and blue-to-red
(Dave) can then be defined as Standalone Equation 1, where
I(mode) is intensity level or index at mode in histogram.

The standard deviations of the green and blue channels are
another important extracted feature. Aceto-white features with
higher green and blue channel intensities also exhibited higher
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standard deviations, which means more green and blue
intensities are widely distributed in the histogram. Different
color space was also utilized to find the features of VIA.
Commission Internationale de l'Eclairage (CIE)*Lab color space
was computed to achieve perceptual uniform color space, which
is useful to quantitatively distinguish between the colors of an
image. The great advantage of CIE*Lab is that it is independent
of device and illumination [26].

In this study, the major color included on the cervix was defined
by calculating the average of a* channels from each post-acetic
application. Due to abnormal vascular formation, such as
mosaicism and punctuation, visualization of the uneven surface
of the ectocervix was another contrasting feature. Computation
of Haralick’s texture feature using gray-level cooccurrence
matrix (GLCM) may quantify the spatial variation of gray
intensity values related to the texture of an image. GLCM
measures the probability distributions of different combinations
of pixel values. Utilizing the GLCM, several pieces of statistical
information, such as contrast, correlation, energy, and
homogeneity, can be derived quantitatively to exhibit the texture
of the image [35,36]. Here, the GLCM was calculated at four
different angles (0°, 45°, 90°, 135°) with an interpixel distance
of 5 for the difference of the S channel (HSV color space) from
pre– to post–acetic acid images. Different angles measure the
features of interest in every direction. Therefore, all four GLCMs
were summed before texture calculation.

In this study, we specifically utilized correlation statistics, which
provide the extent of correlation between a pixel to its neighbor
pixel over the whole image [35]. The correlation statistics (mean
difference=0.248; P<.001) exhibited a significant difference in
the VIA+/– images, yet other texture statistics had shown a very
small difference, down to third and fourth decimal points in
mean difference (contrast: P=.066; homogeneity: P=.308;
energy: P=.249). Therefore, five VIA features were analyzed
and selected as potentially useful for diagnostic classification:
(1) Average difference of green/blue-to-red histogram index;
(2) SD of green channel from post–acetic acid images; (3) SD
of blue channel from post-acetic acid images; (4) average value
of a* channel; and (5) correlation values of Haralick’s texture
features from S channel information.

Classification Training and Validation
Using selected features of VIA as predictors, we interpreted the
tissue abnormality of a localized region for classification.
Machine learning techniques have been widely used and
successfully supervised for VIA classification [25,31]. In this
work, we examined and selected an appropriate classifier by
analyzing three different classifying methods. We performed
holdout k-fold cross-validation (k=10), not only to optimize the

hyperparameter to avoid overfitting/underfitting problems, but
also to select the best performing model. Thus, we randomized
the order of the images and used half (ntraining=120) for training
classifiers. The other half of the data, an untrained image set
(ntesting=120), was used as the testing set after the optimization
of classification models.

While in training, classifiers are validated using k-fold
cross-validation (k=10) with histopathology labels as the ground
truth. In this method, data is evenly divided into k subsamples.
Other k-1 subsamples are then used as training datasets, and
then held-out or excluded subsamples are used for validation.
Algorithms were repeated k times, with each of the subsamples
only utilized once, as the validating data and performance
accuracy were calculated by averaging the results from each
k-fold [37]. We designed k-nearest neighbors (KNN) with five
neighbors based on Euclidian distance, support vector machine
(SVM) with a fourth degree of polynomial kernel function
(cost=3; gamma=2.2), and decision tree (DT) with a limit of a
maximum of 20 nodes, based on Gini's diversity split criterion.
These parameters, or hyperparameters, in each classifying
method were optimized through the grid-search technique. All
predictors were standardized using their corresponding weighted
means and weighted standard deviations [28]. By using a
validation result in training, receiver operating characteristic
(ROC) curves with area under the curve (AUC), accuracy,
sensitivity, and specificity of each trained classifier were
computed and compared for selecting the best classifiers.
Throughout the classifiers, each image was interpreted to either
VIA+ or VIA–. The classification process is illustrated in Figure
3.

Results

Direct Evaluation of Smartphone-Based Endoscopic
VIA
To determine the feasibility of the smartphone-based endoscope
system for the VIA application, four physicians participated
and reviewed the image sets (n=20). In these 20 cases, both
clinically normal and low-grade squamous intraepithelial lesions
(LSILs) were designated as “normal,” and high-grade squamous
intraepithelial lesions (HSILs) was designated as “abnormal,”
resulting in 8 normal and 12 abnormal cases for this study. The
diagnostic performance assessed by pathologists is summarized
in Table 1. Sensitivity ranged from 33.3-83.3%, and specificity
was 100% for four physicians. Accuracy of the assessment
ranged from 60.0%, with a Cohen kappa of 0.286 (P=.068), to
90.0%, with a Cohen kappa of 0.800 (P<.001). Overall, an
average accuracy of 78%, with Cohen kappa of 0.571 (P<.001),
was observed for the evaluation of the system.
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Table 1. Sensitivity, specificity, Cohen kappa value, and P value for smartphone-based endoscopic VIA among all observers (n=20).

P valueCohen KappaAccuracy, %Specificity, %Sensitivity, %Physicians

.0010.70685.0100.075.0Physician 1

.0680.28660.0100.033.3Physician 2

<.0010.80090.0100.083.3Physician 3

.0070.52875.0100.058.3Physician 4

<.0010.57177.5100.062.5Average

Result of Image Processing
Figure 4 shows the representative images from each image
processing step. Specular reflections on the surface of the cervix
are removed while preserving visually natural or smooth
features. All areas of specular reflection with saturated intensity
are correctly localized for all 20 image pairs, including both
pre– and post–acetic acid application images. The intensity
threshold of 60% for specular reflection removal was effective,
as the reflections on the ectocervix regions were identified
clearly while minimally affecting general backgrounds. This
was feasible because more reflection intensity was obtained in
the focal plane compared to that of the unfocused regions. Next,
the major cervical region was selected as the ROI and was
segmented by applying the seventh and eighth bit-planes of the

red channel image as the primary mask. Although most of the
artifacts, such as unfocused background and speculum, were
successfully eliminated, some images still contained portions
of the vaginal wall. These results were likely found when the
cervix and vaginal wall adjoined each other, or strong intensities
appeared on the vaginal area by reflections. Through a
semiautomated registration algorithm, images were centered,
aligned, and rotated, as shown in the fourth column of Figure
4. Additional segmentation was conducted using overlapped
regions of pre– and post–acetic acid application images as a
secondary ROI mask. Furthermore, ROI images were sliced
based on their clock positions as they were collected for
histopathology. Each slice was then used to calculate color
distribution histogram, CIE*Lab, and HSV-based Haralick’s
texture features for VIA.

Figure 4. Result of image processing result. SR: speculum reflection; ROI: region of interest.

Feature Extraction
In Figure 5 (a1, a5), representative images of the sliced image
are shown for VIA– and VIA+, respectively. Figure 5 (a2, a6)
represents a* channel images using post–acetic acid images.
Due to aceto-whitening areas, VIA+ showed significantly lower
average values in the a* channel from CIE*Lab color space,
which represents lower for green and higher for magenta colors.
Primarily, lower values are localized in the area where
aceto-white exists. In Figure 5 (a3, a7), the images of the

difference of saturation channel from pre– to post–acetic acid
application are shown. Higher values of saturation were obtained
in aceto-whitening regions with VIA+ relative to those with
VIA–, where no aceto-whitening regions exist. Using images
in Figure 5 (a3, a7), correlation values were computed from
Haralick’s texture feature and visualized in Figure 5 (a4,8).
Contrary to expectation, higher correlation was found in VIA+
compared to VIA– (0-1, usually 1 for higher correlation);
however, a significant difference was observed, with a good
trend for distinguishing the feature.
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Figure 5. Result of feature extraction. (a) Extracted VIA features from sliced VIA-/VIA+ images, showing graphical information in different color
spaces. In addition, correlation map was calculated form Haralick’s texture feature. (b,c) Representative histogram of green-to-red ratio in VIA-/VIA+.
VIA: Visual inspection with acetic acid.

Among the five different features, representative data for the
green-to-red ratio were illustrated in Figure 5, part (b) and part
(c). There was a relatively small effect from the acetic acid
application observed in the green-to-red ratio in the VIA–
images, and the histogram of the green-to-red ratio in VIA–
shows little change between pre– and post–acetic acid
application in terms of distribution and mode. However, the
green-to-red ratio increased for VIA+ following application of
acetic acid, as shown in the histogram in Figure 5, part (c).
Following the application of acetic acid, the distribution of the

green intensity histogram broadened along with an increase in
intensity. Collecting all the statistical data, we derived the
average difference of intensity level in green/blue-to-red ratio
and the values of a* channels following application of acetic
acid. The standard deviation of green and blue intensity and
correlation of Haralick’s texture feature were also calculated
from the images after the application of acetic acid. Figure 6
summarizes these features with all predictors in abnormal tissues
having greater values than those from normal tissues, except
for a* values.
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Figure 6. Summarization of selected features as predictors for classifying model. VIA: Visual inspection with acetic acid; AU: arbitrary unit.

Classification Comparison
By using all the extracted values from 120 sliced image sets,
three different types of machine learning classifiers were trained
and analyzed. As shown in Figure 7, part (a), KNN yielded the
best performance in 10-fold cross-validation. KNN had the best
accuracy at 78.3%. with a sensitivity of 75.0%, a specificity of
80.3%, and a Cohen kappa of 0.5423 from 10-fold
cross-validation. The second most accurate classifier was DT,
with an accuracy of 75.8%, a sensitivity of 63.6%, specificity
of 82.9%, and Cohen kappa of 0.4721. SVM’s performance was
like DT but had the least accuracy for smartphone-based
endoscopic VIA, with an accuracy of 74.2%, sensitivity of
72.7%, specificity of 75.0%, and Cohen kappa of 0.4618. In the
ROC curve shown in Figure 7, part (b), KNN, DT, and SVM
showed an AUC of 0.805, 0.767, and 0.744, respectively. Figure
7, part (c), illustrates the result of prediction scores from each
classification on k-fold validation, indicating the probability of

an image belonging to either the negative or positive class. From
the box plot, separations of the scores of the abnormal and
normal data were distinguishable in the KNN model when
compared to that of DT and SVM. Most of the abnormal data
were distributed over 0.5, but those of normal data were shown
under 0.5 in the KNN and DT models. In the SVM model,
normal and abnormal data were separated into positive and
negative, respectively. As the best performing classifier in our
study, the KNN model was selected to evaluate the diagnostic
accuracy of VIA.

The confusion matrix for KNN in the validation and test sets is
illustrated in Figure 7, parts (d) and (e). The trained KNN model
produced similar accuracy for test data to that for validation
data, with an accuracy of 80.8%. The sensitivity of 71.9% in
the testing data was somewhat lower than that of validation
data; however, the specificity of 84.1% was slightly higher than
that of the training data.
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Figure 7. Comparison &amp; selection of classification model. (a) Performance of 10-fold cross validation in training set comparing the VIA results
from each classifier. (b) ROC curves comparing the VIA+ performances. (c) Box plots of prediction scores for each classifying method. (d) Confusion
map of validation in training set for KNN model. (e) Confusion map of separated test set for selected KNN model. VIA: visual inspection with acetic
acid; ROC: receiver operating characteristic; KNN: k-nearest neighbors.

Analysis of the KNN Classification for
Smartphone-Based Endoscopic VIA
Figure 8 illustrates the result of the classification with
smartphone-based endoscopic VIA images for ten patients that
were used for the testing set. By using all the prediction results
from the testing data, the locations of abnormal tissue were
visualized as a segmented annulus outside of each endoscopic
image. The red and blue segments of the annulus indicated
VIA+ and VIA– at each clock position, respectively. Out of
120 slice images, 32 were positive and 88 were negative,
according to the histopathology. As shown in Figure 8, part (a),
all the results of the gold standard for each patient were denoted
as colored lines inside the annulus and are aligned along each
clock position as a line. Red, green, and blue lines denote
abnormal tissues with HSIL (CIN2+), LSIL (CIN1), and normal
diagnoses, respectively. When the KNN result was confirmed
correctly as VIA+ by the gold standard, segments were labeled

yellow on the perimeter of the annulus for each patient. A total
of 23 sliced regions were matched correctly for VIA+.

Moreover, a patient was estimated to have an HSIL lesion if
there was at least one VIA+ segment included among the 12
locations. Out of a total of 10 patients, six patients were
predicted to have HSIL through KNN prediction. Among them,
six patients were correctly estimated as VIA+ (true positive).
Among the four patients confirmed as VIA–, KNN identified
three patients correctly (true negative). However, there were no
false negatives predicted by KNN for ten patients. Figure 8,
part (b), shows the agreement between the classification
algorithm and an individual physician’s interpretation for each
clock position. The classification algorithm shows a moderate
overall agreement ranging from 70.8-75.0%. For binary
classifications of patients, the algorithm provides more accurate
interpretations, as shown in Figure 8, part (c). The algorithm
yielded an accuracy of 90%, and the average accuracy for the
physician-achieved accuracy was 68% for ten patients.
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Figure 8. Analysis of KNN for smartphone-based endoscopic VIA. (a) Visualization of KNN classifying result for 10 patients with VIA+/VIA-. Lines
inside of annulus ring indicate the results of the golden standard for each clock position. Annulus ring presents the result of KNN classification according
to each clock position. Outer yellow mark represents the position where both the golden standard and prediction results are matched. (b) Graph presenting
the agreement of KNN to each physician. (c) Graph comparing the screening performance for 10 patients interpreted by KNN and physicians. VIA:
Visual inspection with acetic acid; KNN: k-nearest neighbors.

Discussion

Principal Results
The findings of this study suggest that the novel
smartphone-based approach for VIA with endoscopy and
machine learning techniques could potentially be a useful tool
for screening cervical cancer in low- and middle-income
countries. A smartphone-based endoscope system is a simple
and robust screening method that could be performed outside
of the office without cost, mobility, and electricity limitations.
Here, a moderate overall agreement (Cohen kappa=0.571) was
achieved between the interpretations of the smartphone-based
endoscopic cervicogram by physicians and the histopathologic
results. With the support of machine learning and image
processing techniques, the diagnostic performance was evaluated
for classifying VIA– or VIA+ patients. We explored three
different types of classifiers and selected the KNN algorithm
for this study due to its classification performance, and its AUC
of 0.805. Both hardware and machine-learned algorithms, based
on the gold standard, overperformed compared to the
conventional VIA. This was possible because our approach
increased the sampling numbers of prediction for each patient
compared to the gold standard. From the clinical point of view,
finding abnormality in normal tissue is critical, especially in
low-resource settings. The locations of abnormal tissue were
identified and visualized at each clock position for each patient.
With intuitive, perceptual color labels, VIA providers may easily
understand where aceto-whitening has appeared and its degree
of abnormality. Had our algorithm been used to determine the
treatment pathway, the data would effectively assist the VIA
providers with decision making.

To the best of our knowledge, this is the first smartphone-based
endoscopic VIA work. A smartphone-based endoscopic
approach provides some advantages over other
smartphone-based VIA studies [14-20,38,39]. Many studies on
diagnostic performances of smartphone VIAs have shown
promising results, with sufficient accuracy [14-20]. These
methods mostly utilized the tripod, or other hardware supports,
to obtain pictures, which poses a challenge of limited space for
maneuvering during the procedure. Recently, a portable
colposcope device with a unique tampon form called the pocket
colposcope was introduced with a high concordance to the
clinical colposcope. Like our approach, a pocket colposcope
enables us to capture images inside of the vagina. However, a
pocket colposcope requires a wire-connection to a smartphone
as an accessory, with limited hardware variation available
[38,39]. Here, using endoscopic probes within a speculum offers
noncontact, noninvasive imaging capability, minimizing the
cross-contamination risk between patients. Our endoscopic
probe enhances the resolution of the images and can achieve
more details of mosaicism, punctuation, and aceto-white regions.
This could substantially improve the diagnostic accuracy as
well as quality control of VIA.

Moreover, various types of endoscopic probes bring flexibility
to the system. A smartphone-based endoscope is based on
off-the-shelf optics to magnify the images while reducing the
signal-to-noise ratio by avoiding high digital zoom. A simple
modification of optical components can enable additional
functional imaging such as fluorescence, polarization, and
multi-spectral imaging, and thus can further improve the
visualization of the abnormal tissue [24,40-42]. Furthermore,
manipulation of the endoscopic device inside of the vagina is
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very intuitive and easy compared to that of conventional
approaches that are manipulated outside of the vagina. Thus,
neither tripods nor stands are required for acquiring stable
images, which in turn enhances the speed of the imaging session.

Image processing algorithms have been developed to minimize
external sources of error, such as deviations of illumination
power, imaging position, variations of devices, specular
reflections, and ROI of the cervix. Our method of ROI
segmentation is especially unique, as it uses bit-plane separation
and finding overlapped regions to eliminate insufficient
information in smartphone-based endoscopic cervicograms.
VIA features were mostly extracted based on a statistical
calculation of histograms rather than just acquiring the
quantitative pixel information from the raw images. This may
minimize dependencies on the imaging environment and make
image calculation confined to each image, but still afford similar
values of computation results when finding features. Extending
the RGB images to other color space also provides benefits for
calculation. Saturation values from HSV color space afford the
extent of purity of the hue data, which results in more intuitive
perceptual values between pre– and post–acetic acid application.

Moreover, the saturation value is separated from the brightness
value; thus, it is illumination invariant. Empirically, using
images of the difference between pre– and post–acetic acid
application in the saturation channel for GLCM showed a higher
significant difference (P<.001) in correlation values between
VIA– and VIA+. CIE*Lab color space is also very useful for
finding device- or illumination-independent quantitative color
measurements. CIE*Lab also separates the luminance
component (L*) from the color, which makes color information
less sensitive to illumination [28].

Limitations and Future Works
Even though our novel CC screening technique using
smartphone-based endoscopic VIA and machine learning
demonstrated a positive outcome as a pilot study, much
improvement is needed before it can reach its practical potential.
First, the accuracy of our algorithm classifying the patients was
calculated using a small number of samples. No false-negative
data was predicted within a small number of samples. We
believe increasing sampling size could additively provide a
greater number of sliced data for training and testing classifiers,
which could lead to more new cases that eventually lead to
much more reliable classification results. Therefore, the overall
estimation could be different with a larger data set; however, it
will still provide better performance compared to subjective
estimation from physicians. Second, our approach for ROI
segmentation aimed to precisely distinguish the ectocervix area
from the images; however, there are still some portions of
vaginal walls left that led to misclassification.

Moreover, the location and the area of the cervix are
substantially different in each image. For this reason, the image
processing algorithm for registering images of pre– and
post–acetic acid application was done by manually providing
positions of the center and distal ends of the cervical os. Through
image standardization by providing the visual guides in software,
deviation of positioning and working distance can be minimized
and further improve the ROI segmentation performance in an
automated processing algorithm. Lastly, our image
processing–based classification algorithm was performed on a
computer, limiting practical uses in developing countries in its
current form. Due to the computational intensity, the current
algorithm cannot be operated as a standalone in a smartphone.
Recently, Android-based machine learning, as well as image
processing techniques, have been introduced in various fields,
using SVM, KNN, DT, and Deep Convolutional Neural
Networks. As these functions are now available on mobile
phones [43-46], we will embed these Android-based machine
learning techniques to implement our algorithm on a smartphone
alone.

Conclusions
In conclusion, we explored the use of smartphone-based
endoscopic VIA and predicted a cervicogram as
normal/abnormal using machine learning techniques. Herein,
histopathology results, acquired at each clock position on the
excised cervical tissue, were provided as ground truth for
classifications. VIA features were then extracted after image
processing and utilized for training the classifiers. Overall, 120
sliced images obtained from the cervicogram at each clock
position were utilized, and three classifiers, such as KNN, DT,
and SVM, were compared. Approaches using KNN showed the
best performance from holdout 10-fold cross-validation in the
training set, with an accuracy of 78.3%, AUC of 0.807, a
specificity of 80.3%, and sensitivity of 75.0%. To validate the
trained model, we used the other 120 sliced images, achieving
an accuracy of 80.8%, specificity of 84.1%, and sensitivity of
71.9%. Prediction values were visualized with intuitive color
labels, indicating the normal/abnormal tissue at each clock
position for each patient. Calculating the overlapped abnormal
tissues between the gold standard and predicted values, our
KNN model for classifying VIA–/VIA+ patients overperformed
the interpretation results by physicians. Taken together, these
results suggest that the smartphone-based endoscopic VIA and
analysis based on the machine learning techniques would be a
valuable tool for screening VIA in low-resource settings.
Moreover, this approach can potentially minimize human
subjectivity and be particularly useful in areas where experts
or teleconsultations are unavailable.
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Multimedia Appendix 1
Block diagram of image processing and classification. (a) Pre-image processing method, (b) Feature analysis and classification.
[PNG File , 560 KB-Multimedia Appendix 1]

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018 Sep 12;68(6):394-424 [FREE
Full text] [doi: 10.3322/caac.21492] [Medline: 30207593]

2. World Health Organization. 2018. Cervical cancer URL: https://www.who.int/cancer/prevention/diagnosis-screening/
cervical-cancer/en/ [accessed 2019-01-05]

3. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet 2019 Jan 12;393(10167):169-182. [doi:
10.1016/S0140-6736(18)32470-X] [Medline: 30638582]

4. Huy NVQ, Tam LM, Tram NVQ, Thuan DC, Vinh TQ, Thanh CN, et al. The value of visual inspection with acetic acid
and Pap smear in cervical cancer screening program in low resource settings - A population-based study. Gynecol Oncol
Rep 2018 May;24:18-20 [FREE Full text] [doi: 10.1016/j.gore.2018.02.004] [Medline: 29527550]

5. Drummond JL, Were MC, Arrossi S, Wools-Kaloustian K. Cervical cancer data and data systems in limited-resource
settings: Challenges and opportunities. Int J Gynaecol Obstet 2017 Jul;138 Suppl 1:33-40. [doi: 10.1002/ijgo.12192]
[Medline: 28691330]

6. World HO&PAHO. Monitoring national cervical cancer prevention and control programmes: quality control and quality
assurance for visual inspection with acetic acid (VIA)-based programmes. Geneva: WHO; 2013.

7. Denny L, Quinn M, Sankaranarayanan R. Chapter 8: Screening for cervical cancer in developing countries. Vaccine 2006
Aug 31;24:71-77. [doi: 10.1016/j.vaccine.2006.05.121] [Medline: 16950020]

8. Raifu AO, El-Zein M, Sangwa-Lugoma G, Ramanakumar A, Walter SD, Franco EL, Congo Screening Study Group.
Determinants of Cervical Cancer Screening Accuracy for Visual Inspection with Acetic Acid (VIA) and Lugol's Iodine
(VILI) Performed by Nurse and Physician. PLoS One 2017 Jan 20;12(1):e0170631 [FREE Full text] [doi:
10.1371/journal.pone.0170631] [Medline: 28107486]

9. Wright TC. Chapter 10: Cervical cancer screening using visualization techniques. J Natl Cancer Inst Monogr 2003(31):66-71.
[doi: 10.1093/oxfordjournals.jncimonographs.a003485] [Medline: 12807948]

10. Bomfim-Hyppólito S, Franco ES, Franco RGDMM, de Albuquerque CM, Nunes GC. Cervicography as an adjunctive test
to visual inspection with acetic acid in cervical cancer detection screening. Int J Gynaecol Obstet 2006 Jan;92(1):58-63.
[doi: 10.1016/j.ijgo.2005.09.016] [Medline: 16269147]

11. Chen Z, Chen H, Lee T. Use of compact digital cervicography: an adjuvant screening tool for precancerous cervical lesions.
Taiwan J Obstet Gynecol 2008 Jun;47(2):187-191 [FREE Full text] [doi: 10.1016/S1028-4559(08)60078-9] [Medline:
18603504]

12. Firnhaber C, Mao L, Levin S, Faesen M, Lewis DA, Goeieman BJ, et al. Evaluation of a cervicography-based program to
ensure quality of visual inspection of the cervix in HIV-infected women in Johannesburg, South Africa. J Low Genit Tract
Dis 2015 Jan;19(1):7-11 [FREE Full text] [doi: 10.1097/LGT.0000000000000040] [Medline: 24914887]

13. Nam K, Kim S, Sim S, Han S. The performance of tele-cervicography for detection of preinvasive and invasive disease of
the uterine cervix as an adjunctive test to Pap smears. Contemp Oncol (Pozn) 2016;20(5):402-406 [FREE Full text] [doi:
10.5114/wo.2016.64604] [Medline: 28373823]

14. Asgary R, Adongo PB, Nwameme A, Cole HVS, Maya E, Liu M, et al. mHealth to Train Community Health Nurses in
Visual Inspection With Acetic Acid for Cervical Cancer Screening in Ghana. J Low Genit Tract Dis 2016 Jul;20(3):239-242
[FREE Full text] [doi: 10.1097/LGT.0000000000000207] [Medline: 27030884]

15. Ricard-Gauthier D, Wisniak A, Catarino R, van Rossum AF, Meyer-Hamme U, Negulescu R, et al. Use of Smartphones
as Adjuvant Tools for Cervical Cancer Screening in Low-Resource Settings. J Low Genit Tract Dis 2015 Oct;19(4):295-300.
[doi: 10.1097/LGT.0000000000000136] [Medline: 26247260]

16. Tran PL, Benski C, Viviano M, Petignat P, Combescure C, Jinoro J, et al. Performance of smartphone-based digital images
for cervical cancer screening in a low-resource context. Int J Technol Assess Health Care 2018 Jan;34(3):337-342. [doi:
10.1017/S0266462318000260] [Medline: 29921339]

17. Urner E, Delavy M, Catarino R, Viviano M, Meyer-Hamme U, Benski A, et al. A Smartphone-Based Approach for Triage
of Human Papillomavirus-Positive Sub-Saharan African Women: A Prospective Study. JMIR Mhealth Uhealth 2017 May
29;5(5):e72 [FREE Full text] [doi: 10.2196/mhealth.6697] [Medline: 28554879]

18. Bagga R, Suri V, Srinivasan R, Khandelwal N, Keswarpu P, Naik S. Feasibility of using mobile smartphone camera as an
imaging device for screening of cervical cancer in a low-resource setting. J Postgrad Med Educ Res 2016;50(2):69-74.
[doi: 10.5005/jp-journals-10028-1196]

19. Quinley KE, Gormley RH, Ratcliffe SJ, Shih T, Szep Z, Steiner A, et al. Use of mobile telemedicine for cervical cancer
screening. J Telemed Telecare 2011;17(4):203-209 [FREE Full text] [doi: 10.1258/jtt.2011.101008] [Medline: 21551217]

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 3 | e16467 | p. 13http://mhealth.jmir.org/2020/3/e16467/
(page number not for citation purposes)

Bae et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=mhealth_v8i3e16467_app1.png&filename=866079fe935f9ebbcff03aac02fc380d.png
https://jmir.org/api/download?alt_name=mhealth_v8i3e16467_app1.png&filename=866079fe935f9ebbcff03aac02fc380d.png
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30207593&dopt=Abstract
https://www.who.int/cancer/prevention/diagnosis-screening/cervical-cancer/en/
https://www.who.int/cancer/prevention/diagnosis-screening/cervical-cancer/en/
http://dx.doi.org/10.1016/S0140-6736(18)32470-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30638582&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2352-5789(18)30015-8
http://dx.doi.org/10.1016/j.gore.2018.02.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29527550&dopt=Abstract
http://dx.doi.org/10.1002/ijgo.12192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28691330&dopt=Abstract
http://dx.doi.org/10.1016/j.vaccine.2006.05.121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16950020&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0170631
http://dx.doi.org/10.1371/journal.pone.0170631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28107486&dopt=Abstract
http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a003485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12807948&dopt=Abstract
http://dx.doi.org/10.1016/j.ijgo.2005.09.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16269147&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1028-4559(08)60078-9
http://dx.doi.org/10.1016/S1028-4559(08)60078-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18603504&dopt=Abstract
http://europepmc.org/abstract/MED/24914887
http://dx.doi.org/10.1097/LGT.0000000000000040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24914887&dopt=Abstract
http://europepmc.org/abstract/MED/28373823
http://dx.doi.org/10.5114/wo.2016.64604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28373823&dopt=Abstract
http://europepmc.org/abstract/MED/27030884
http://dx.doi.org/10.1097/LGT.0000000000000207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27030884&dopt=Abstract
http://dx.doi.org/10.1097/LGT.0000000000000136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26247260&dopt=Abstract
http://dx.doi.org/10.1017/S0266462318000260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29921339&dopt=Abstract
https://mhealth.jmir.org/2017/5/e72/
http://dx.doi.org/10.2196/mhealth.6697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28554879&dopt=Abstract
http://dx.doi.org/10.5005/jp-journals-10028-1196
http://europepmc.org/abstract/MED/21551217
http://dx.doi.org/10.1258/jtt.2011.101008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21551217&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


20. Catarino R, Vassilakos P, Scaringella S, Undurraga-Malinverno M, Meyer-Hamme U, Ricard-Gauthier D, et al. Smartphone
Use for Cervical Cancer Screening in Low-Resource Countries: A Pilot Study Conducted in Madagascar. PLoS One
2015;10(7):e0134309 [FREE Full text] [doi: 10.1371/journal.pone.0134309] [Medline: 26222772]

21. Xu X, Akay A, Wei H, Wang S, Pingguan-Murphy B, Erlandsson B, et al. Advances in Smartphone-Based Point-of-Care
Diagnostics. Proc. IEEE 2015 Feb;103(2):236-247. [doi: 10.1109/JPROC.2014.2378776]

22. Liu J, Geng Z, Fan Z, Liu J, Chen H. Point-of-care testing based on smartphone: The current state-of-the-art (2017-2018).
Biosens Bioelectron 2019 May 01;132:17-37. [doi: 10.1016/j.bios.2019.01.068] [Medline: 30851493]

23. Im H, Castro CM, Shao H, Liong M, Song J, Pathania D, et al. Digital diffraction analysis enables low-cost molecular
diagnostics on a smartphone. Proc Natl Acad Sci U S A 2015 May 05;112(18):5613-5618 [FREE Full text] [doi:
10.1073/pnas.1501815112] [Medline: 25870273]

24. Grant BD, Quang T, Possati-Resende JC, Scapulatempo-Neto C, de Macedo Matsushita G, Mauad EC, et al. A mobile-phone
based high-resolution microendoscope to image cervical precancer. PLoS One 2019;14(2):e0211045 [FREE Full text] [doi:
10.1371/journal.pone.0211045] [Medline: 30726252]

25. Bae JK, Vavilin A, You JS, Kim H, Ryu SY, Jang JH, et al. Smartphone-Based Endoscope System for Advanced Point-of-Care
Diagnostics: Feasibility Study. JMIR Mhealth Uhealth 2017 Jul 27;5(7):e99 [FREE Full text] [doi: 10.2196/mhealth.7232]
[Medline: 28751302]

26. Park SY, Follen M, Milbourne A, Rhodes H, Malpica A, MacKinnon N, et al. Automated image analysis of digital colposcopy
for the detection of cervical neoplasia. J Biomed Opt 2008;13(1):014029 [FREE Full text] [doi: 10.1117/1.2830654]
[Medline: 18315387]

27. Ramapraba PS, Chitra MP, Prem Kumar M. Effective lesion detection of colposcopic images using active contour method.
Biomed Res 2017 Feb 23;28:S255-S264 [FREE Full text]

28. Asiedu MN, Simhal A, Chaudhary U, Mueller JL, Lam CT, Schmitt JW, et al. Development of Algorithms for Automated
Detection of Cervical Pre-Cancers With a Low-Cost, Point-of-Care, Pocket Colposcope. IEEE Trans Biomed Eng 2019
Aug;66(8):2306-2318 [FREE Full text] [doi: 10.1109/TBME.2018.2887208] [Medline: 30575526]

29. Li W, Van Raad V, Gu J, Hansson U, Hakansson J, Lange H. Computer-Aided Diagnosis (CAD) for cervical cancer
screening and diagnosis: A new system design in medical image processing. : Springer-Verlag; 2005 Presented at: Proceedings
of the First international conference on Computer Vision for Biomedical Image Applications; 21 Oct; Beijing, China p.
240-250. [doi: 10.1007/11569541_25]

30. Liu J, Peng Y, Zhang Y. A Fuzzy Reasoning Model for Cervical Intraepithelial Neoplasia Classification Using Temporal
Grayscale Change and Textures of Cervical Images During Acetic Acid Tests. IEEE Access 2019;7:13536-13545. [doi:
10.1109/access.2019.2893357]

31. Fernandes K, Cardoso JS, Fernandes J. Automated Methods for the Decision Support of Cervical Cancer Screening Using
Digital Colposcopies. IEEE Access 2018;6:33910-33927. [doi: 10.1109/access.2018.2839338]

32. Ohri N, Kapoor C, Mohemmed RP, Vaidya S. An update on intraoral application of colposcopy. J Oral Maxillofac Pathol
2014;18(3):403-410 [FREE Full text] [doi: 10.4103/0973-029X.151328] [Medline: 25948996]

33. Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Trans. Syst., Man, Cybern 1973
Nov;SMC-3(6):610-621. [doi: 10.1109/tsmc.1973.4309314]

34. Sankaranarayanan R, Wesley R. A Practical Manual on Visual Screening for Cervical Neoplasia. IARC Technical Publication,
No. 41. Lyon, France: IARC Press; 2003.

35. Selvarajah S, Kodituwakku SR. Analysis and comparison of texture features for content based image retrieval. Int J Latest
Trends Comput 2011 Mar;2(1):108-113 [FREE Full text]

36. Albregtsen F. Statistical Texture Measures Computed from Gray Level Cooccurrence Matrices. In: Image Processing
Laboratory. University of Oslo: Department of Informatics; 1995:1-14.

37. Refaeilzadeh P, Tang L, Liu H. Cross-validation. In: Encyclopedia of Database Systems. Boston, MA: Springer;
2009:532-538.

38. Lam CT, Mueller J, Asma B, Asiedu M, Krieger MS, Chitalia R, et al. An integrated strategy for improving contrast,
durability, and portability of a Pocket Colposcope for cervical cancer screening and diagnosis. PLoS One 2018;13(2):e0192530
[FREE Full text] [doi: 10.1371/journal.pone.0192530] [Medline: 29425225]

39. Mueller JL, Asma E, Lam CT, Krieger MS, Gallagher JE, Erkanli A, et al. International Image Concordance Study to
Compare a Point-of-Care Tampon Colposcope With a Standard-of-Care Colposcope. J Low Genit Tract Dis 2017
Apr;21(2):112-119 [FREE Full text] [doi: 10.1097/LGT.0000000000000306] [Medline: 28263237]

40. Ren W, Qu Y, Pei J, Xiao L, Zhang S, Chang S. Development of a multimodal colposcopy for characterization of cervical
intraepithelial neoplasia. ASME J Med Devices 2017 Sep;11(3):031005. [doi: 10.1115/1.4036335]

41. Meena BL, Singh P, Sah AN, Pandey K, Agarwal A, Pantola C, et al. Intrinsic fluorescence for cervical precancer detection
using polarized light based in-house fabricated portable device. J Biomed Opt 2018 Jan;23(1):1-7 [FREE Full text] [doi:
10.1117/1.JBO.23.1.015005] [Medline: 29341542]

42. Vizet J, Rehbinder J, Deby S, Roussel S, Nazac A, Soufan R, et al. In vivo imaging of uterine cervix with a Mueller
polarimetric colposcope. Sci Rep 2017 Jun 01;7(1):2471-2412 [FREE Full text] [doi: 10.1038/s41598-017-02645-9]
[Medline: 28572602]

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 3 | e16467 | p. 14http://mhealth.jmir.org/2020/3/e16467/
(page number not for citation purposes)

Bae et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.plos.org/10.1371/journal.pone.0134309
http://dx.doi.org/10.1371/journal.pone.0134309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26222772&dopt=Abstract
http://dx.doi.org/10.1109/JPROC.2014.2378776
http://dx.doi.org/10.1016/j.bios.2019.01.068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30851493&dopt=Abstract
http://www.pnas.org/cgi/pmidlookup?view=long&pmid=25870273
http://dx.doi.org/10.1073/pnas.1501815112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25870273&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0211045
http://dx.doi.org/10.1371/journal.pone.0211045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30726252&dopt=Abstract
https://mhealth.jmir.org/2017/7/e99/
http://dx.doi.org/10.2196/mhealth.7232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28751302&dopt=Abstract
https://doi.org/10.1117/1.2830654
http://dx.doi.org/10.1117/1.2830654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18315387&dopt=Abstract
http://www.biomedres.info/biomedical-research/effective-lesion-detection-of-colposcopic-images-using-active-contour-method.pdf
http://europepmc.org/abstract/MED/30575526
http://dx.doi.org/10.1109/TBME.2018.2887208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30575526&dopt=Abstract
http://dx.doi.org/10.1007/11569541_25
http://dx.doi.org/10.1109/access.2019.2893357
http://dx.doi.org/10.1109/access.2018.2839338
http://www.jomfp.in/article.asp?issn=0973-029X;year=2014;volume=18;issue=3;spage=403;epage=410;aulast=Ohri
http://dx.doi.org/10.4103/0973-029X.151328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25948996&dopt=Abstract
http://dx.doi.org/10.1109/tsmc.1973.4309314
https://s3.amazonaws.com/academia.edu.documents/2916201/Texture_IJLTC.pdf?response-content-disposition=inline%3B%20filename%3DAnalysis_and_Comparison_of_Texture_Featu.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20200227%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20200227T211601Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=40fcb46fa46d7479b9d0649db0e4af92a6912d93d75cf4dcac6d826c342760d7
http://dx.plos.org/10.1371/journal.pone.0192530
http://dx.doi.org/10.1371/journal.pone.0192530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29425225&dopt=Abstract
http://europepmc.org/abstract/MED/28263237
http://dx.doi.org/10.1097/LGT.0000000000000306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28263237&dopt=Abstract
http://dx.doi.org/10.1115/1.4036335
https://doi.org/10.1117/1.JBO.23.1.015005
http://dx.doi.org/10.1117/1.JBO.23.1.015005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29341542&dopt=Abstract
http://dx.doi.org/10.1038/s41598-017-02645-9
http://dx.doi.org/10.1038/s41598-017-02645-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28572602&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


43. Aleem M, Hameed N, Anjum A. m-Skin Doctor: A Mobile Enabled System for Early Melanoma Skin Cancer Detection
Using Support Vector Machine. In: eHealth 360°: International Summit on eHealth, Budapest, Hungary, 2016 June 14-16,
Revised Selected Papers. Cham, Switzerland: Springer; 2017:468-475.

44. Kim H, Awofeso O, Choi S, Jung Y, Bae E. Colorimetric analysis of saliva–alcohol test strips by smartphone-based
instruments using machine-learning algorithms. Appl. Opt 2016 Dec 23;56(1):84-92. [doi: 10.1364/ao.56.000084]

45. Ramlakhan K, Shang Y. A mobile automated skin lesion classification system. In: Proceedings of the 23rd International
Conference on Tools with Artificial Intelligence. Washington: IEEE; 2011 Presented at: 2011 IEEE; 2011 7-9 Nov; Boca
Raton, FL, USA p. 138-141. [doi: 10.1109/ICTAI.2011.29]

46. Ech-Cherif A, Misbhauddin M, Ech-Cherif M. Deep Neural Network based mobile dermoscopy application for triaging
skin cancer detection. In: 2nd International Conference on Computer Applications & Information Security.: IEEE; 2019
Presented at: ICCAIS; 2019 May 1-3; Riyadh, Saudi Arabia p. 1-6. [doi: 10.1109/CAIS.2019.8769517]

Abbreviations
3D: three-dimensional
AU: arbitrary units
AUC: area under the curve
CC: cervical cancer
CIE: Commission Internationale de l'Eclairage
CIN: cervical intraepithelial neoplasia
CV: cross-validation
DT: Decision tree
GLCM: gray-level cooccurrence matrix
HSIL: high-grade squamous intraepithelial lesion
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