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Abstract

Background: Hand hygiene is a crucial and cost-effective method to prevent health care–associated infections, and in 2009,
the World Health Organization (WHO) issued guidelines to encourage and standardize hand hygiene procedures. However, a
common challenge in health care settings is low adherence, leading to low handwashing quality. Recent advances in machine
learning and wearable sensing have made it possible to accurately measure handwashing quality for the purposes of training,
feedback, or accreditation.

Objective: We measured the accuracy of a sensor armband (Myo armband) in detecting the steps and duration of the WHO
procedures for handwashing and handrubbing.

Methods: We recruited 20 participants (10 females; mean age 26.5 years, SD 3.3). In a semistructured environment, we collected
armband data (acceleration, gyroscope, orientation, and surface electromyography data) and video data from each participant
during 15 handrub and 15 handwash sessions. We evaluated the detection accuracy for different armband placements, sensor
configurations, user-dependent vs user-independent models, and the use of bootstrapping.

Results: Using a single armband, the accuracy was 96% (SD 0.01) for the user-dependent model and 82% (SD 0.08) for the
user-independent model. This increased when using two armbands to 97% (SD 0.01) and 91% (SD 0.04), respectively. Performance
increased when the armband was placed on the forearm (user dependent: 97%, SD 0.01; and user independent: 91%, SD 0.04)
and decreased when placed on the arm (user dependent: 96%, SD 0.01; and user independent: 80%, SD 0.06). In terms of
bootstrapping, user-dependent models can achieve more than 80% accuracy after six training sessions and 90% with 16 sessions.
Finally, we found that the combination of accelerometer and gyroscope minimizes power consumption and cost while maximizing
performance.

Conclusions: A sensor armband can be used to measure hand hygiene quality relatively accurately, in terms of both handwashing
and handrubbing. The performance is acceptable using a single armband worn in the upper arm but can substantially improve by
placing the armband on the forearm or by using two armbands.

(JMIR Mhealth Uhealth 2020;8(3):e17001) doi: 10.2196/17001
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Introduction

Background
Health care workers’ (HCWs’) hands play a pivotal role in
spreading microorganisms in health care environments and pose

a direct clinical threat to patients [1-3]. Health care–associated
infections (HAIs), also known as nosocomial infections, are the
most common causes of morbidity and mortality in hospitals
around the world [4]. The average prevalence of HAIs varies
from 4.0% to 15.5% in different countries and regions [5-8].
De Angelis et al [9] estimated that patients with HAIs spent
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approximately 2.5 times more time in hospital and incurred
costs that were 2.8 times higher than those for patients free from
infection. Moreover, HAIs put a considerable financial burden
on the health system: in France alone, nearly 3% of surgical
procedures performed in 2010 resulted in infections creating
annual costs of €58 million (US $64.5 million) [10], whereas
in the United States, the estimated annual costs range from US
$28 billion to US $45 billion [11]. Hand hygiene is a simple
and cost-effective intervention to prevent HAIs and reduce their
transmission [1,12].

In 2009, the World Health Organization (WHO) issued
guidelines on Hand Hygiene in Health Care to provide a
thorough review of evidence on hand hygiene and
recommendations to promote hand hygiene in health care
environments [3,13]. The guidelines summarize the key
moments for hand hygiene for HCWs as My 5 Moments For
Hand Hygiene, which have since been the focus of much work
on automated technologies [14]. Previous work has reported
that the compliance rate of hand hygiene is unacceptably poor
[15], with a meta-analysis of 96 empirical studies showing a
median compliance rate of 40% among HCWs [16]. A variety
of technologies have been developed to increase compliance
with the 5 moments for hand hygiene, such as monitoring staff
movement [17], using radio-frequency identification or
Bluetooth beacons [14,18,19], and a range of commercial
products, such as BioVigil (BioVigil Healthcare Systems, Inc)
and SwipeSense (SwipeSense, Inc).

However, the WHO guidelines also introduced procedures for
alcohol-based handrub and handwash with soap and water
(shown in Figure 1 [3,20]). These guidelines aim to improve
hand hygiene by decreasing colonization with transient flora
[12,13]. Especially, alcohol-based handrub is preferred for
routine decontamination of hands for all clinical indications,
whereas handwash with soap and water is recommended for
visibly soiled hands [3]. Different from the compliance rate of
hand hygiene, which focuses on whether HCWs perform hand
hygiene on time, the compliance with the WHO hand hygiene
routines ensures that HCWs achieve adequate coverage of all
surfaces of their hands with hand hygiene products [3].

Owing to the technical challenge of monitoring compliance
with this set of guidelines, previous work measured compliance
with this set of guidelines based on direct observation by trained
auditors [21-23]. Yet, compliance with this set of WHO
guidelines has been reported to be approximately 8.5% [23].
Crucially, in a large-scale assessment of hand hygiene quality
conducted in Singapore, only 72% of HCWs could achieve
adequate coverage of all hand surfaces immediately after hand
hygiene training [24]. These findings suggest that it is important
to develop reliable instruments for monitoring the quality of
hand hygiene in health care settings by measuring adherence to
the WHO handrub and handwash procedures.

Although a wide range of technologies have been developed to
measure hand hygiene compliance rate, this is not the case for
hand hygiene quality. Most work on quality monitoring has so
far relied on cameras. Llorca et al [25] mounted a red green
blue camera above a sink to collect hand hygiene practices
among HCWs. After performing analysis on color and motion,
their system used support vector machine (SVM) to classify six
steps of a standard hand hygiene procedure. Similarly, Xia et
al [26] collected hand hygiene videos through a red green blue
and depth camera. By applying SVM, random forest, and linear
discriminant analysis to the collected videos, their system could
determine 12 steps of a hand hygiene procedure at the level of
a single frame or a single video. A commercially available
system is SureWash (Glanta Ltd), which can detect HCWs’
hand motion and provide reminders for the upcoming steps,
according to the standard WHO hand hygiene procedure. There
has also been some work on hand hygiene–monitoring systems
that provide assistance for people with dementia [27]. However,
a major concern for camera-based systems to monitor hand
hygiene quality is privacy, as those systems inevitably require
the installation of cameras in toilets and patient care areas.
Furthermore, cameras can only be used in certain environments,
and camera-based monitoring systems may not provide
actionable data on all hand hygiene events [28]. An additional
challenge is that installed cameras cannot be easily moved
should the need arise. Especially, cameras are not suitable for
monitoring handrub because it tends to happen on the move,
although a camera has a fixed field of view. Another concern
is that the costs associated with the installation and maintenance
of camera systems can be substantial [14].

An alternative to using camera-based systems is to use wearable
sensors [29-32]. A common practice in literature is through the
use of wristbands [30-32]. Yet, because of hygiene concerns,
the WHO recommends removing rings, wristwatches, and
bracelets before beginning surgical hand preparation [3,13].
Therefore, it is challenging to use wristbands to monitor hand
hygiene procedure compliance, as it can possibly defeat the
purpose of hand hygiene. Another limitation with previous
studies is the use of Hidden Markov Model (HMM) to classify
the steps of the hand hygiene procedure from feature vectors
[30] or smooth classification results [29], which assumes HCWs
will perform hand hygiene procedures according to the
predefined orders. However, once that assumption is relaxed,
the performance of these systems dramatically drops, for
example, from 85% to 69% [30]. Similarly, previous studies
make assumptions about the duration of hand hygiene steps
and, for example, collect each step of the hand hygiene
procedure individually with, say, a 5-second window [29].
Nonetheless, hand hygiene steps can actually vary rather
substantially in duration, from 20 to 30 seconds for handwash
to 40 to 60 seconds for handrub [3].
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Figure 1. Standard World Health Organization procedures of alcohol-based handrub and handwash with soap and water. Source: World Health
Organization. How to Handrub? / How to Handwash? [20]

Objectives
In this paper, we evaluated the accuracy of a sensor armband
in measuring compliance with the WHO handrub and handwash
guidelines. We used the Myo armband (North Inc) worn on
participants’ forearm or arm and evaluated a machine learning
classifier that uses eXtreme Gradient Boosting (XGBoost) and
E.Divisive [33] to identify each step of the standard WHO
handwash or handrub procedures. The analysis evaluated eight
different armband placements, six sensor configurations,
user-dependent vs user-independent models, and bootstrapping
performance.

The contributions of this paper are as follows: (1) unified
model—although most previous work focuses on either handrub

or handwash [30,34], our work combines these two common
activities to create a unified hand hygiene model. Our model
can detect each step of the respective WHO procedures. (2)
Flexible detection—previous work assumes that HCWs perform
hand hygiene according to the expected step order and duration
[29,30]. Our model can detect each step individually, regardless
of its order, timing, or duration, and can thus provide granular
and detailed feedback. (3) Placement recommendations—by
analyzing the rich data collected in our study, we can quantify
the trade-off between classification accuracy and sensor
placement and provide placement recommendations. (4) Sensor
recommendations—as the Myo armband consists of a nine-axis
inertial measurement unit (IMU) and eight electromyographic
electrodes, we were able to collect acceleration, gyroscope,
orientation, and surface electromyography (sEMG) data
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simultaneously [35]. By evaluating different sensor data
combinations, we were able to quantify the trade-off between
accuracy and sensor types and recommend sensors for future
hand hygiene–monitoring systems.

Methods

Task and Hardware Specification
We adopted the procedures for alcohol-based handrub and
handwash with soap and water (Figure 1 [20]) recommended
by the WHO guidelines on Hand Hygiene in Health Care [3].
The procedure contains seven steps for handrub and 11 steps

for handwash (shown in Figure 1 [20]). Some of the steps are
repeated for each hand. The guidelines claim that the total
duration of the handrub routine is 20 to 30 seconds on average,
whereas handwash lasts for 40 to 60 seconds.

We summarized all the steps for both procedures in Table 1.
For handwash, we decided to exclude step 0 (wet hands with
water) and step 1 (apply hand hygiene product), as the position
of faucets and hand hygiene dispensers can vary across different
lavatories. Furthermore, as previous work has noted [34], hand
dominance is not crucial to hand hygiene detection because arm
movements are symmetric. For this reason, our analysis does
not consider the hand dominance effect.

Table 1. Steps of the World Health Organization hand hygiene procedures.

Steps of the World Health Organization hand hygiene proceduresStep #

Handwash with soap and waterAlcohol-based handrub

N/AN/Aa0

N/AApply hand hygiene products1

Rub palmRub palm2

Rub dorsum (R)Rub dorsum (R)3 (Rb)

Rub dorsum (L)Rub dorsum (L)3 (Lc)

Interlock fingersInterlock fingers4

Twist knuckles (R)Twist knuckles (R)5 (R)

Twist knuckles (L)Twist knuckles (L)5 (L)

Rub thumb (R)Rub thumb (R)6 (R)

Rub thumb (L)Rub thumb (L)6 (L)

Scrub fingertip (R)Scrub fingertip (R)7 (R)

Scrub fingertip (L)Scrub fingertip (L)7 (L)

Rinse handsN/A8

Dry hands with towelN/A9

Turn off faucet with towelN/A10

aNot available.
bR: right.
cL: left.

The hardware for this study was the Myo armband, which
contains a nine-axis IMU sensor and eight electromyographic
electrodes. Through the nine-axis IMU sensor, the armband
captures acceleration, gyroscope, and orientation data at a
sample rate of 50 Hz. Using the eight surface electromyographic
electrodes, it can also collect sEMG signals to measure users’
muscular activity at a frequency of 200 Hz. Physiological data
were transmitted to a receiver (in our case, a laptop) via the
Bluetooth Low Energy protocol. Data from multiple armbands
were simultaneously collected using the Myo SDK [35] and
modified myo-python library [36] and synchronized using the
algorithm proposed by Wang et al [37].

Experiment Design
Our experimental design had four independent variables:
hygiene mode (handwash vs handrub), instruction mode (video
vs poster), armband placement (above elbow vs below elbow),

and hand (left vs right hand). We measured the time taken to
complete each step of each hygiene procedure and the errors
made by participants when washing their hands. We also
measured the accuracy of the classifier in detecting each step
of the procedure. The experiment followed a within-subjects
design, and all participants completed all conditions in a
counterbalanced manner. The University of Melbourne’s
Engineering Human Ethics Advisory Group approved the study.

We recruited 20 participants through our university’s mailing
lists and snowball recruitment with an equal number of women
and men. All participants were students or staff in our university,
and their ages ranged between 22 and 33 years (mean 26.5 years,
SD 3.31). The majority of participants (18/20, 90%) had not
received formal training in hand hygiene in the last 3 years and
were not familiar with the formal hand hygiene procedures. A
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total of 95% (19/20) of participants reported using their right
hand as their dominant hand and no ambidextrous participants.

On arrival at our laboratory, we briefed participants on the
purpose of the study and obtained their written consent agreeing

to participate in our experiment. Then, we asked our participants
to wear four Myo armbands on their forearms and arms, as
shown in Figure 2. Thus, each participant had an armband in
their upper and lower left arm and upper and lower right arm.

Figure 2. Handwash with soap and water (left) and alcohol-based handrub (right).

We subsequently provided training to our participants. We
instructed them on how to perform the handwash and handrub
procedures. To achieve this, we first explained to them the
procedure steps using an instructional poster (Multimedia
Appendices 1 and 2) [3]. We then asked participants to watch
an instructional video five times while they perform the
procedure. We ran this process twice: once for handrub [38]
and once for handwash with soap and water [39] in a
counterbalanced manner.

After training, we initiated the main experimental task, during
which we collected data from the four armbands that participants
wore, and we also videotaped participants’ hands as a way of

capturing the ground truth (Figure 3). Each participant
performed 30 sessions: five handwash sessions where they could
follow the instructional video, 10 handwash sessions
accompanied with the instructional poster, five handrub sessions
with the instructional video, and 10 handrub sessions with the
instructional poster. We counter balanced the order of the
conditions to avoid order effects. Handrub was performed in
our laboratory, and handwash was performed at an adjoining
lavatory (Figure 2). The overall duration for each participant
was approximately 70 min. Each participant was rewarded with
an AUD $20 (US $13.4) gift card regardless of their
performance.

Figure 3. Screenshots of the video records of handwash with soap and water (left) and alcohol-based handrub (right). The frame number (top left) is
used to synchronize video data to the armband data.

Data Analysis
Our first step was to annotate the video recordings manually:
we visually inspected all recordings (493 min in total) and
annotated each video frame as belonging to one of the 14
handwash steps. All the video recordings were inspected by
two data annotators (annotator 1: 16 participants and annotator

2: 4 participants), and annotator 1 checked the annotations made
by annotator 2. The interrater reliability was 1.0 for those
samples with two annotators. In total, we made 7180 manual
annotations, which represented our ground truth. Using these
annotations, along with the frame numbers of the video
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recordings, we then annotated the armband data with the relevant
hand hygiene step label.

Next, we were able to measure the accuracy of the algorithm
for classifying the steps of the hand hygiene procedures, which
operates as follows: (1) preprocessing, (2) feature extraction,
(3) classification, (4) postprocessing, and (5) evaluation.

Preprocessing
Owing to the different frequencies of IMU (50 Hz) and sEMG
(200 Hz) data, we downsampled both types of sensor data to
25 Hz. We then normalized the downsampled data by applying
z-score normalization and applied a sliding window procedure
with a 0.2-second time window with 75% overlap. We also
measured the classification accuracy for different sliding
window parameters, ranging from 0.1 seconds to 0.4 seconds
and from 50% overlapping to 75% overlapping, and found the

sliding window with a 0.2-second time window and 75% overlap
gave the best classification accuracy.

Feature Extraction
Features extracted from the time domain and the frequency
domain are widely used in activity recognition tasks. By
summarizing previous work [40-43], we calculated all the
selected features for the collected IMU and sEMG data. Table
2 shows the extracted features, and Multimedia Appendix 3
provides the details of features. The dimensionality of the feature
vector can vary on different configurations (eg, the number of
armbands and sensors). Then, to minimize the required
computational power and computation time for the activity
recognition task, we used boosting algorithms to select
discriminative features [44]. In particular, we used XGBoost
[45] to choose the most discriminative subset (top 100) of
features according to occurrences of the features in splits; hence,
the final feature vector had a dimensionality of 100.

Table 2. Features are extracted from acceleration, gyroscope, orientation, and surface electromyography data.

Study authorsFeatures

McIntosh et al [40]CSD, peak (positive), peak (negative), RMS

Munguia Tapia et al
[41]

ACAbsArea, ACAbsCV, ACAbsMean, ACEntropy, ACIQR, ACKur, ACQ1, ACQ3, ACRange, ACSkew, ACVar, DCArea,
DCMean, DCPostureDist, DCTotalMean

Xie et al [42]|AL|, |∆AL|, |∆AR|, |∆AR|, |∆MAV|, AJ, AL, AR, RAJ, RMAV, SAJ, SDAL, SDAR, SRAJ

Zhang et al [43]meanPKT, meanPSD, medainS, medianPKT, medianPSD, stdPKT, stdPSD, stdS

Classification
We fed the generated feature vectors and the ground truth labels
to XGBoost to classify the steps of the WHO hand hygiene
procedures shown in Table 1 because XGBoost is also widely
used in human activity recognition tasks [46,47]. Other
techniques were considered and tested during the pilot study,
including random forest and SVM, but they performed worse
than XGBoost as same as previous studies [46,47]. XGBoost
has been shown to have several other advantages, including
high efficiency, low computational cost, supporting
parallelization, and robustness to overfitting [47]. For these
reasons, we focused on applying XGBoost to recognize the
steps of hand hygiene procedures.

Postprocessing
A final step of the data analysis pipeline in our study was
smoothing the stream of predictions to remove classification
errors because switching from one gesture to another gesture
several times per second was not realistic. Instead of HMM
used in previous studies, we smoothed the prediction stream
through a combination of E.Divisive [33] and majority vote.
E.Divisive is a nonparametric multiple change point analysis
approach based on hierarchical clustering, which can detect
distributional changes from a sequence of data [33]. By fitting
the prediction stream into E.Divisive using the ecp library [48],
we could estimate the location of the change points and use the
change points to segment the prediction stream. Finally, the
class of each segment was determined by a majority vote over
the predictions in the segment.

Evaluation
We measured the accuracy of both a user-independent model
(one model to classify data for all participants) and
user-dependent models (one model tuned to each participant).
To measure the accuracy of models, we used
leave-one-session-out (LOSO) cross-validation for the
user-dependent model and leave-one-participant-out (LOPO)
cross-validation for the user-independent models, as suggested
in the literature [30].

In LOSO cross-validation, we considered 29 hand hygiene
sessions from one participant for training and tested the model
on the holdout session. We performed this protocol 30 times
per participant (thus, each session became the holdout session
once) and calculated the average accuracy per participant. We
then repeated this procedure for each participant independently.

To evaluate the user-independent model, we used 19
participants’ hand hygiene data to train the model and tested
the model on the remaining participant. We repeated the
cross-validation for every participant in our database and then
averaged the results across the 20 runs.

Results

Throughout our results, we make an explicit distinction between
the user-independent and the user-dependent models. This is
because of the practical implications of choosing one approach
over the other. A user-independent model works for all users
and can be used by an HCW without prior training. A
user-dependent model needs to be trained and tuned to each
HCW individually. The benefit of the former is that it does not
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require further training (also known as bootstrapping), whereas
the latter attains improved performance.

Participant Performance
We first considered the participants’ performance in terms of
hand hygiene quality, and, specifically, we were interested in
measuring any variations to their performance. As we gave
identical and considerable training to each participant, we expect
that their hand hygiene quality is high and consistent. By
analyzing our annotations of the recorded videos, we can achieve
the following:

• Measure the exact duration of hand hygiene sessions and
steps in those sessions and how they vary across conditions;

• Identify the order in which participants actually performed
hand hygiene and whether they missed or skipped steps or
performed steps incorrectly; and

• Investigate the presence of possible learning or fatigue
effects in the study.

Time to Complete Hand Hygiene
By summarizing the duration of hand hygiene sessions in the
top of Figure 4, we observe that duration varies considerably
across different conditions as follows: handwash with the
instructional video (mean 53.4 seconds, SD 1.1) or poster (mean
47.9 seconds, SD 8.3) and handrub with the video (mean 37.1
seconds, SD 1.4) or poster (mean 32.6 seconds, SD 5.3). We
observed this effect for overall timings and the duration of each
specific step. A one-way analysis of variance (ANOVA) showed
a statistically significant effect of the different conditions on
the duration of hand hygiene sessions (F3,596=402.83; P<.001).
The post hoc Tukey’s honestly significant difference test
indicated that the duration of the video sessions is longer than
that of the poster sessions, and the duration of the handwash
sessions is longer than that of the handrub sessions.

Furthermore, we observed that participants’ time hygiene varied
considerably more (higher standard deviation) in the poster
conditions as opposed to the corresponding video conditions.
This is not surprising, as the video imposes a certain pace on
participants, whereas in the poster condition, participants are
free to set their own pace.
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Figure 4. Duration of hand hygiene sessions and inner steps. x-axis: duration (seconds); y-axis: density. L: left; R: right.

Step Sequence Accuracy
By observing the recorded hand hygiene sessions, we noticed
that participants did deviate from the defined procedure and had
an overall accuracy of 91% (SD 0.16) in terms of complying
with the protocol. As shown in Figure 5, we calculated the
average participant accuracy as a measure of their compliance

for each of the protocol steps. Participants tended to swap those
steps that need to be repeated symmetrically with different
leading hands, including step 3(R)/3(L), step 5(R)/5(L), step
6(R)/6(L), and step 7(R)/7(L). We also observed that on some
occasions, participants missed a step (denoted as rightmost
column Missed in Figure 5).
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Figure 5. Confusion matrix showing the order of steps in hand hygiene sessions: all participants (left) and participant 8 (right). x-axis: performed step;
y-axis: excepted step. L: left; R: right.

On the right of Figure 5, we show exemplary data collected
from participant 8, who swapped the order of steps 6(R) and
6(L). We noted that this participant was right-handed. Overall,
we observe that participants are able to follow the standard
WHO hand hygiene procedures to a great extent, although
participants may accidentally miss some steps or swap some
symmetrical steps. We highlight that although these errors were
made by participants, they do not affect the accuracy of our
classifier. This is because we manually inspected and labeled
our video recordings, and therefore, any missed or swapped
steps are assigned the correct ground truth label.

Learning and Fatigue Effects
To quantify the existence of any potential learning or fatigue
effects, we calculated participants’average accuracy after having
completed one procedure, two, three, and so on until 30. The
results are shown in Figure 6. The average accuracy remained
at around 90% across the range of 1 to 30 completed sessions.
A one-way ANOVA showed no statistically significant effect
of the number of experiments on the average accuracy
(F29,570=0.10; P>.99). This indicates that participants did not
have a significant increase or decline in performance, which
would be suggestive of learning or fatigue, respectively.

Figure 6. Average participant accuracy, according to the number of completed hand hygiene sessions.
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Armband Performance

Placement of Armbands
To investigate the performance of the armband, we calculated
the accuracy for eight distinct combinations of armband
positions: four combinations of two armbands (left arm+right
arm, left forearm+right forearm, right arm+right forearm, and
left arm+left forearm) and four positions of one armband (right
arm, left arm, right forearm, and left forearm). We separately
calculated the average accuracy for the classification results
(XGBoost) and the smoothed classification results
(XGBoost+E.Divisive). At this point, the results are derived
using a fusion of all available sensor data (acceleration,
gyroscope, orientation, and sEMG) and are shown in Figure 7
(user-dependent models) and Figure 8 (user-independent model).
As noted earlier, we used LOSO cross-validation for the
user-dependent models and LOPO cross-validation for the
user-independent model.

For the user-dependent model, Figure 7 shows the best
performance was achieved when using the data from both left
forearm and right forearm (XGBoost: mean 95.9%, SD 0.01;
and XGBoost+E.Divisive: mean 96.9%, SD 0.01). For situations
where only one armband is desirable or available, the best model
uses data from the right forearm (XGBoost: mean 93.0%, SD
0.02; and XGBoost+E.Divisive: mean 96.1%, SD 0.01).

Similar result trends were observed in the user-independent
model as well, although the user-independent model lags in
performance as expected. In Figure 8, the model using the data
from both the left forearm and right forearm (XGBoost: mean

85.5%, SD 0.05; and XGBoost+E.Divisive: mean 90.9%, SD
0.04) outperformed other placement combinations. When
considering only one armband, the highest classification
accuracy was also achieved by the model using the data from
the right forearm (XGBoost: mean 72.6%, SD 0.07; and
XGBoost+E.Divisive: mean 82.4%, SD 0.08).

Although we observed that the overall classification accuracy
of the user-independent model is lower than that of the
user-dependent models, we found that the user-independent
model using the data from two armbands is able to achieve more
than 80% accuracy.

There were several similarities between the results for the
user-dependent models and the user-independent model, lending
higher robustness to our results. We observed that the
classification accuracy increases after smoothing in all cases,
shown in Figures 7 and 8 with a two-way ANOVA showing a
significant improvement with smoothing (user-dependent model:
F1,311=197.81; P<.001; and user-independent model:
F1,311=111.40; P<.001). Figure 9 illustrates how the E.Divisive
smoothing algorithm improves the data quality by reducing
classification errors. Figure 9 also demonstrates how the
classifier can detect steps that are out of order (steps 6(R) and
6(L) were performed in reverse order by the participant), deal
with missed steps (step 5(L) was skipped), and detect steps with
varying duration. Furthermore, Multimedia Appendices 4 and
5 show the confusion matrices of recognition rates from
user-dependent models and user-independent models,
respectively.

Figure 7. Classification accuracy of different combinations of armband positions: user-dependent models.
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Figure 8. Classification accuracy of different combinations of armband positions: user-independent model.

Figure 9. Visualization of how classification and smoothing work for handrub (top) and handwash (bottom). The steps are in accordance with Table
1.

Bootstrapping User-Dependent Models
The results have shown that in scenarios where only one
armband is placed on the arm, the performance of the
user-independent model drops to below 70% (Figure 8).
Considering the low accuracy associated with user-independent
models, it would be desirable to use a user-dependent model
that can achieve higher classification accuracy of about 95%
(Figure 7). However, this requires training data from the
individual user, and therefore, the model cannot perform well
immediately [49]. This can pose an additional burden on HCWs
who need to train the model before it performs well. For this
reason, we quantified the amount of training data that is required
to achieve a reasonable classification accuracy.

We did this by randomizing the order of both 15 handrub and
15 handwash sessions for each participant, pick 1, 2, ..., N hand
hygiene sessions as the training set, and test the model on the
remaining hand hygiene sessions for that participant. We
repeated this process for every participant and calculated the
average classification accuracy for each N. The results are shown
in Figure 10 and illustrate that classification accuracy rapidly
increases as the number of training sessions grows from 1 to 6.
With six hand hygiene sessions as the training set, the models
with one armband placed on participants’ arm achieve around
80% accuracy. After 16 hand hygiene sessions, the accuracy of
the models solely based on the arm is higher than 90%.
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Figure 10. Classification accuracy of user-dependent models using N hand hygiene sessions as the training set.

Sensor Importance
It is crucial to minimize the interruptions of HCWs when using
wearable technology such as the armbands in our study, for
example, to recharge the armband. Therefore, one approach is
to minimize the number of sensors on the armband and therefore
increase the battery lifetime but reduce the classification
accuracy. For this reason, we quantified the trade-off between
the power consumption and classification accuracy of the
wearable sensors. In addition, one of the major concerns of
electronic hand hygiene–monitoring systems is the cost
associated with the wearable sensors and corresponding
receivers, and therefore, reducing the sensors can reduce the
associated costs. Furthermore, another concern is HCWs’
acceptance and compliance with hospital regulations (eg, not
wearing wristbands or watches), and thus, we expected to
minimize the number of sensors and the size of sensor armbands
to reduce their impediments and increase HCWs’ acceptance.

To quantify this energy vs performance trade-off, we fed the
user-independent model with the data from different
combinations of sensors in line with the widely used wearable
devices. Specifically, we examined the performance of the

user-independent model with six different combinations of
sensors through LOPO cross-validation. The six combinations
are as follows: three-axis accelerometer, three-axis gyroscope,
eight sEMG electrodes, six-axis IMU (accelerometer and
gyroscope), nine-axis IMU (accelerometer, gyroscope, and
magnetometer), and nine-axis IMU + eight sEMG electrodes.
Effectively, these are all subsets of the full dataset we collected,
and that is why this analysis is possible. The classification
accuracy when using different sensor combinations, with
different sensor placement, is shown in Figure 11.

Figure 11 shows that, in general, performance suffers when the
available data are only a three-axis accelerometer, or a three-axis
gyroscope, or eight sEMG electrodes. This finding holds across
all armband placements for both one- and two-armband
scenarios. The results also showed that if only one sensor is
available, then a three-axis accelerometer would be preferable,
as it outperforms the others. However, we also observe in Figure
11 a substantial performance gain when a six-axis accelerometer
is used—effectively when an accelerometer and gyroscope are
combined. Further adding a magnetometer (ie, nine-axis IMU),
and subsequently adding the sEMG data, provides mostly
marginal performance gains.
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Figure 11. Classification accuracy of the user-independent model for different combinations of sensors and different placement. IMU: inertial
measurement unit; sEMG: surface electromyography.

Discussion

Flexible Detection
To mimic the real-life scenarios in health care settings, we did
not place restrictions on the completion time in our experiments.
As a result, we observed that the duration of hand hygiene
performance varied considerably when the sessions were
accompanied by the instructional poster. Interestingly,
performing hand hygiene with posters is common practice in
hospitals, and Multimedia Appendices 1 and 2 have been widely
used as an approach to promote hand hygiene [50]. In addition,
the suggested duration of handwash and handrub from the WHO
also varies from 20 to 30 seconds and from 40 to 60 seconds,
respectively [3]. Hence, to detect the steps of hand hygiene
procedures in realistic scenarios, the system should be adaptive
to the varying duration.

Our study also shows that participants did deviate from the
defined procedure, especially for the steps that need to be
repeated symmetrically with different leading hands. Meanwhile,
some participants accidentally missed some of the steps, which
is more prevalent in health care settings. For example,
Tschudin-Sutter et al [23] reported a compliance rate of only
8.5% for completing all steps of the WHO hand hygiene
procedures. Furthermore, the researchers do not have a
consensus on the correct order of the hand hygiene procedure
steps [51]. Pires et al [51] suggested that HCWs should rub the
fingertips first to reduce the probability of contamination. Hence,
to monitor the quality of hand hygiene, the system should
provide the flexibility of detecting the individual steps within
the hand hygiene procedures.

Previous studies adopted HMM to classify the steps of the hand
hygiene procedure from feature vectors or smooth classification
results [29,30], which assumes that HCWs will perform hand
hygiene within a specific time frame and with a predefined
sequence. Instead, we smoothed the prediction results through

a combination of E.Divisive and majority vote. The results
indicated that the classification accuracy increases after
smoothing (user-dependent model: F1,311=197.81; P<.001; and
user-independent model: F1,311=111.40; P<.001; see Figures 7
and 8). Our approach can deliver flexibility for detecting hand
hygiene in real-life scenarios without assuming that the HCWs
follow a predefined sequence within a specific time limit.

Placement Recommendations
To investigate the relationship between the performance of our
proposed models and the placement of the armbands, we tested
the models with eight placement combinations. For a scenario
with two armbands, the model using the data from both the left
forearm and the right forearm exhibits the highest classification
accuracy (user-dependent model: 96.9% and user-independent
model: 90.9%). When using the data from both the right arm
and the left arm, the performance decreases to 93.8% and 80%,
respectively. However, it can be argued that placing the
armbands on the forearm is less hygienic that placing them on
the arm.

When only one armband is available, the performance of the
user-dependent model still reaches more than 93.3% accuracy
regardless of the position of the device (eg, on the lower or
upper arm). However, for the user-independent models, the
performance drops below 70% when the armband is located on
the upper arm (80% accuracy for the lower arm). Thus, a
user-dependent model is preferred when only using the data
from one armband.

Furthermore, to reduce the costs of data collection, we measured
the amount of training data that is required to achieve a
reasonable classification accuracy. With six hand hygiene
sessions as the training set, the models in the one armband
scenario placed on participants’ arm achieve around 80%
accuracy for the user-dependent model. After 16 hand hygiene
sessions, the accuracy of the models is higher than 90%.
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However, these models need manually annotated personal
training data, which might require considerable costs associated
with personnel time and resources.

Overall, for the scenarios allowing HCWs to wear armbands
on their forearms, the user-independent models can achieve
acceptable classification accuracy (one armband: more than
80% and two armbands: 90.9%). When the hygiene protocol
enforces restrictions on HCWs’ forearms (eg, the armband is
not allowed on the forearm), the user-independent model needs
data from both the left arm and right arm because the
performance of the user-independent models using one armband
is lower than 70%. Owing to this, user-dependent models are
necessary and should be trained by six annotated hand hygiene
sessions at least to achieve reasonable classification accuracy.

Sensor Recommendations
To minimize the interruptions caused by the wearable sensors
(eg, recharge the armbands), one can aim to reduce the number
of sensors on the armband so as to increase the battery lifetime.
Therefore, we quantified the trade-off between the number of
wearable sensors and the corresponding classification accuracy.
Our results showed that if only one sensor is available, then a
three-axis accelerometer would be preferable, as it outperforms
the other sensors. After combining an accelerometer and a
gyroscope, the model shows a substantial increase. Further
adding a magnetometer (ie, nine-axis IMU), and subsequently
adding the sEMG data, provides marginal performance gains
at the cost of substantial power consumption. Other studies also
showed that after adding sEMG data, the performance of
user-independent models does not exhibit a considerable
increase [52,53].

These results point to two sensor combinations that appear to
minimize power consumption and cost while maximizing
performance. For a single-sensor configuration, a three-axis
accelerometer is preferable. For multisensor configurations, a
six-axis IMU (ie, accelerometer+gyroscope) is the parsimonious
combination of choice. We also observed that for
single-armband scenarios, the classification accuracy with
single-sensor data is largely below 60%, and therefore, a
multisensor configuration is appropriate where only one
armband is available.

Feedback
One of the key steps for medical students and HCWs to acquire
the clinical techniques is providing feedback on their
performance in given activities [54]. Before receiving feedback
regarding their performance of hand hygiene, the first step
should be to reveal the gap between the optimal and actual
performance.

In practice, the duration of a hand hygiene procedure is
considered as the key indicator of quality [22,55]. Meantime,
as mentioned by Arias et al [21] and Tschudin-Sutter et al [23],
the noncompliance with all steps of hand hygiene procedures
results in failure to cover all skin surfaces; hence, an automated
monitoring approach should also provide information about the
sequence of hand hygiene steps actually followed. Owing to
the flexibility of our system, we can detect a hand hygiene
procedure with different duration and orders. Therefore, we can

provide feedback to medical students and HCWs on the duration
of hand hygiene procedure (eg, which steps are performed, how
much time they spent on the specific steps, and whether they
should prolong the duration of the specific step) and the
sequence of hand hygiene procedures (eg, whether there is any
missed step and whether performed steps are in the correct
order).

Through instructional applications, such feedback can be based
on the individual performance of hand hygiene so that the
trainees can receive more detailed and personalized instructions
during the training period. This approach can be used to
investigate the performance of HCWs’ daily hand hygiene
events. HCWs can further improve their hand hygiene
techniques through timely and periodic feedback. Similarly,
administrators can also have summarized information to help
them quantify hand hygiene quality.

Limitations
In this study, we recruited participants through our university’s
mailing list and collected data in a controlled laboratory setting
and did not conduct a field study in health care settings.
However, it was necessary to conduct a laboratory study first
to provide a semicontrolled setting for instrument validation.
We also provided substantial training to participants, and we
did observe their performance to be higher than 90%, suggesting
that our training was effective in ensuring they follow the WHO
guidelines during the study.

Another limitation is that we did not measure the effect of
handedness on classifier performance because of the small
number of left-handed participants (1/20, 5% participants).
However, as mentioned by Galluzzi et al [34], hand dominance
is not crucial to hand hygiene detection because of symmetric
arm movements.

In addition, we limited our approach to measuring the
performance of hand hygiene quality to Myo armbands, which
have officially ended as of October 2018. Nevertheless, we
argue that a similar approach should be applicable with other
wearable devices that bear IMU + electromyography sensors,
so long as our proposed analysis is adopted.

Conclusions
In this paper, we evaluated the feasibility of using sensor
armbands (Myo armband) to assess the HCWs’ compliance
with the WHO hand hygiene guidelines, which are considered
as the proxy measures of the quality of hand hygiene. Our results
showed the classification performance of 97% average accuracy
for the user-dependent model and 91% average accuracy for
the user-independent model. In addition, by investigating the
performance of individual models with different sizes of training
data, we found that training the user-dependent model with six
annotated hand hygiene events can provide more than 80%
accuracy with the data from one armband placed on the users’
upper arms. We also investigated the performance of different
sensor combinations and found that the combination of an
accelerometer and a gyroscope achieves the balance between
the classification performance, power consumption, and cost.
Our findings contribute to building mechanisms to quantify the
quality of hand hygiene procedures using a sensor armband.
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