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Abstract

Background: Wearables have been gaining increasing momentum and have enormous potential to provide insights into daily
life behaviors and longitudinal health monitoring. However, to date, there is still a lack of principled algorithmic framework to
facilitate the analysis of actigraphy and objectively characterize day-by-day data patterns, particularly in cohorts with sleep
problems.

Objective: This study aimed to propose a principled algorithmic framework for the assessment of activity, sleep, and circadian
rhythm patterns in people with posttraumatic stress disorder (PTSD), a mental disorder with long-lasting distressing symptoms
such as intrusive memories, avoidance behaviors, and sleep disturbance. In clinical practice, these symptoms are typically assessed
using retrospective self-reports that are prone to recall bias. The aim of this study was to develop objective measures from patients’
everyday lives, which could potentially considerably enhance the understanding of symptoms, behaviors, and treatment effects.

Methods: Using a wrist-worn sensor, we recorded actigraphy, light, and temperature data over 7 consecutive days from three
groups: 42 people diagnosed with PTSD, 43 traumatized controls, and 30 nontraumatized controls. The participants also completed
a daily sleep diary over 7 days and the standardized Pittsburgh Sleep Quality Index questionnaire. We developed a novel approach
to automatically determine sleep onset and offset, which can also capture awakenings that are crucial for assessing sleep quality.
Moreover, we introduced a new intuitive methodology facilitating actigraphy exploration and characterize day-by-day data across
49 activity, sleep, and circadian rhythm patterns.

Results: We demonstrate that the new sleep detection algorithm closely matches the sleep onset and offset against the participants'
sleep diaries consistently outperforming an existing open-access widely used approach. Participants with PTSD exhibited
considerably more fragmented sleep patterns (as indicated by greater nocturnal activity, including awakenings) and greater intraday
variability compared with traumatized and nontraumatized control groups, showing statistically significant (P<.05) and strong
associations (|R|>0.3).

Conclusions: This study lays the foundation for objective assessment of activity, sleep, and circadian rhythm patterns using
passively collected data from a wrist-worn sensor, facilitating large community studies to monitor longitudinally healthy and
pathological cohorts under free-living conditions. These findings may be useful in clinical PTSD assessment and could inform
therapy and monitoring of treatment effects.
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Introduction

Background
Posttraumatic stress disorder (PTSD) is a mental disorder with
lifetime prevalence ranging from 1.9% [1] to 8.8% [2]. However,
these figures are considerably exacerbated in conflict, torture,
and rape survivors [3,4]. PTSD may develop following exposure
to a traumatic event, which is defined as exposure to actual or
threatened death, serious injury, or sexual violence in the
Diagnostic and Statistical Manual of Mental Disorders 5th
edition (DSM-5) [5]. It is characterized by four symptom
categories: (1) re-experiencing symptoms associated with the
trauma, which include intrusive memories of the event, (2)
avoidance of stimuli associated with the trauma, (3) negative
alterations in cognition and mood, and (4) alterations in arousal.

Sleep disturbances have been termed the hallmark of PTSD [6]
but are still poorly understood. They often have a chronic course
and are among the most distressing symptoms [7]; these include
difficulties falling and staying asleep [8] and nightmares [9].
Poor sleep has been associated with daytime PTSD symptom
exacerbation and severity [10,11], indicating a potentially
vicious maintenance cycle between sleep disturbances and PTSD
symptoms [11], and highlights the importance of investigating
sleep to potentially inform targeted treatment [12]. Crucially,
from the perspective of this study, the monitoring environment
for symptom assessment is critical: PTSD patients report
sleeping better in lab settings than at home [13], where problems
are more commonly detected [14,15]. This emphasizes the
importance of conducting community studies under free-living
conditions instead of lab-based assessments. Moreover, given
that PTSD is a chronic condition, it would be desirable to
develop low-cost monitoring systems that could provide insight
into the patient’s daily behaviors longitudinally; ideally, such
systems would require minimum input from participants.

Longitudinal monitoring of mental disorders is typically
achieved using the patient-reported outcome measures (PROMs),
where participants are prompted to complete standardized
validated questionnaires capturing generic or disease-specific
symptoms [16-18]. For example, sleep disturbances are common
in mental disorders such as depression and PTSD and cause
considerable distress and disability. Sleep diaries are
recommended as the gold standard for subjective prospective
sleep monitoring [19]. Sleep diaries are typically completed
over 1 week, asking participants to report the following (among
others): time to bed, how long it took to fall asleep, length and
number of awakenings, wake-up time, and sleep quality [19].
However, sleep diaries are inherently limited by relying on an
individual’s ability to estimate their own sleep times [20];
similar to PROMs, they may be subject to recall bias [21].

Therefore, although self-assessments have merit, they are by
nature subjective and may not be easily comparable across
individuals [22]. On the other hand, objective monitoring of

daily behaviors may offer an additional dimension to
understanding pathologies (here, PTSD) using passively
collected data. In addition to overcoming the aforementioned
problems, sensor data can be streamlined and facilitate direct
comparison across participants. There have been considerable
developments in the wearable sensor market over the last 5
years; in particular, wrist-worn sensors are widely available and
are becoming increasingly affordable. Some have functionalities
such as displaying time and communicating with smartphones
to convey notifications; in short, these devices are becoming
attractive beyond a research exercise, and they are generally
embraced by the public. Although many companies have a
business model where they employ proprietary algorithms and
only offer access to processed data (eg steps, number of stairs,
and sleep characteristics such as sleep onset and sleep offset),
there are some devices that offer access to the raw actigraphy
(3D acceleration) data, often complemented with additional
modalities such as light, temperature, and heart rate. Overall,
the raw signals from the wrist-worn sensor provide a rich source
of information and researchers can develop algorithms tailored
to the application at hand (often fusing different modalities).
For example, actigraphy can be used to objectively quantify
physical activity, which can be used as a biomarker for
well-being [23]. Although it is currently not possible to obtain
accurate estimates of sleep architecture and sleep stages using
actigraphy, it provides a good measure of general sleep
characteristics including sleep efficiency, total sleep time, sleep
onset latency, and awakenings after sleep onset times [24].
Recent work emphasizes participant adherence and the potential
of using wrist-worn accelerometers to collect actigraphy data
in large-scale population studies [25]. Actigraphy has been used
in people with PTSD [10,26] and has shown consistency with
sleep diary reports in a PTSD population [27].

Unfortunately, the research literature discussing algorithmic
tools to process the raw actigraphy data is limited and
fragmented; there is no agreed data-processing protocol and
frequently, actigraphy analysis is completed manually relying
on visual inspection. This is because studies often have very
different focus in terms of applications, for example, to assess
general physical activity [25,28] or sleep timings [29], and it is
still early days for trying to standardize the commonly extracted
features to characterize actigraphy data. Most studies focus on
developing and validating actigraphy algorithms using only
healthy control cohorts. However, it has been shown across a
range of applications that developed algorithms on healthy
controls may fail to generalize sufficiently well in cohorts with
pathologies [30-32].

Objectives
This study offers a principled framework summarizing many
of the known algorithms and introducing new algorithmic
approaches to extract potentially useful information from the
actigraphy data. Although the application of this study is PTSD,
the developed methodology is generic and, in principle,
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applicable to settings where actigraphy data are available. To
the best of our knowledge, this is the first study to investigate
a large set of activity, sleep, and circadian rhythm patterns using
a relatively large number of both healthy controls and a mental
disorders group where participants commonly exhibit severely
fragmented sleep and sleep disturbances.

The aims of this study were to (1) develop an automated
approach to accurately determine sleep onset, sleep offset, and
awakenings from passively collected data using a wrist-worn
sensor targeting a cohort in which sleep is often disturbed,
validating findings against participants’sleep diaries; (2) explore
differences in these sleep characteristics under free-living
conditions between PTSD participants, traumatized controls,
and nontraumatized controls; and (3) methodologically
contribute toward a large set of activity, sleep, and circadian
rhythm patterns to objectively characterize daily behaviors and
develop a simple to use package to facilitate actigraphy analysis
in MATLAB (The MathWorks Inc).

Methods

Study Cohort
The study cohort comprised 115 participants: 30 nontraumatized
controls, 43 trauma-exposed without PTSD, and 42 with PTSD.
Inclusion criteria for all groups were as follows: aged between
18 and 65 years, could read and write in English, had no history
of or current bipolar or psychosis, no current substance or

alcohol dependence, and if they were taking psychotropic
medication they had been on a stable dose for at least two
months. Additional inclusion criteria for the PTSD group were
a traumatic event experience as defined by Criterion A of the
DSM-5 [5] and a current diagnosis of PTSD. Inclusion criteria
for the control group were no experience of a Criterion A
traumatic event and no current mental health problems. Inclusion
criteria for the trauma control group were a Criterion A
traumatic event experience but not meeting the criteria for a
current diagnosis of PTSD. Table 1 summarizes the demographic
characteristics of the study cohort. The groups were age and
gender matched, and among trauma survivors (n=85), there was
no difference in trauma type (interpersonal vs noninterpersonal)
between PTSD and trauma controls.

The study received National Health Service (NHS) ethical
approval from the South-Central Oxford C Research Ethics
Committee (Ref 14/SC/0198). Recruitment began in June 2014
and ended in April 2016. Control and traumatized control
participants were recruited via advertisements within the
University of Oxford on the departmental website and online
community forums in Oxford. The Clinical-Administered PTSD
Scale [33], the gold standard for the assessment of PTSD
symptom severity, was conducted by EW or JS to establish a
PTSD diagnosis according to DSM-5 [5] criteria. All participants
completed a sleep questionnaire at trial onset and, over the
course of a week, wore a wrist-worn device and kept a detailed
sleep diary (see details below).

Table 1. Demographic information for the study participants (N=115).

Posttraumatic stress disorder (n=42)Trauma exposed controls (n=43)Nontraumatized controls (n=30)Demographics

32.51 (9.93)34.02 (14.01)31.17 (10.38)Age (years), mean (SD)

26 (61.9)31 (72.1)23 (76.7)Females, n (%)

Trauma typea, n (%)

20 (47.6)14 (32.6)N/AbInterpersonal

22 (52.4)29 (64.4)N/ANot interpersonal

8.23 (9.71)10.12 (10.18)N/ATime since trauma (years)c, mean
(SD)

aTrauma type and characteristics are only for trauma survivors (n=85).
bN/A: not applicable.
cTime since trauma was calculated as the time (years) from trauma to study participation date.

Sleep Questionnaire: Pittsburgh Sleep Quality Index
Sleep quality was assessed using the standardized Pittsburgh
Sleep Quality Index (PSQI) questionnaire [34]. The PSQI is a
self-report assessment comprising 19 items that are mapped
onto seven components (each scored in the range 0 to 3): (1)
subjective sleep quality, (2) sleep latency, (3) sleep duration,
(4) habitual sleep efficiency, (5) sleep disturbances, (6) use of
sleeping medication, and (7) daytime dysfunction. The sum of
the 7 subscale component scores generates the total score,
known as total PSQI, which has a range of 0 to 21; scoring
above 5 is used as a standard threshold to indicate poor sleep
[34]. The study participants self-assessed the occurrence of
sleep disturbances over the previous month on a scale from 0

(not during the last month) to 3 (3 or more times a week) for
each item. PSQI was collected once in this study and serves as
an overall indication of sleep quality.

Sleep Diary
A sleep diary was used to prospectively monitor participants’
sleep over 7 days. Participants completed the diary in the
morning answering questions about their sleep the previous
night. Specifically, they recorded time they got into bed, time
they started trying to sleep, sleep onset duration and wake-up
time, and number of awakenings (including approximate times),
known as wake after sleep onset (WASO). We clarify that by
sleep onset, we used the time that participants recorded as falling
asleep (ie, time they switched the lights out and started trying
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to sleep plus reported sleep onset latency). The sleep diary
followed recommendations for sleep research [20] and for the
prospective self-monitoring of sleep [19].

Wrist-Worn Device
Participants wore a triaxial accelerometer (Geneactiv,
ActivInsights Ltd) on their nondominant wrist for 7 days,
coinciding with the sleep diary recording. A recent study
endorsed recording at least six nights of standard actigraphy
measurements for a reliable measure of self-reported sleep [35].
The device recorded 3D acceleration data at a sampling rate of
100 Hz with a dynamic range of ±8 g (g is a gravity unit, 1
g=9.81 m/second²) and 12-bit resolution. In addition to triaxial
acceleration, light (Lux) and wrist temperature (°C) were
recorded. We obtained actigraphy data from 113 participants
(the missing data were from 2 PTSD participants).

Methods to Process Data
The following sections describe the methodology used to process
the wrist-worn data and statistical tools to compare cohorts.

Calibration and Data Preprocessing
Accelerometers convert mechanical force into electrical signals;
in practice, they require calibration to ensure that their outputs
are directly comparable. Electrical signals are considered a
linear function of the acceleration, involving an offset and a
gain factor. In some of the older devices, researchers developed
algorithms to compute the calibration values [36]; for the
Geneactiv used in this study, the manufacturer provides the
offset and the gain factor for the 3 axes for each device. We
applied the standard calibration procedure using the
manufacturer provided offset and gain factors.

Subsequently, the data were resampled at 10 Hz to simplify
further processing. Before extracting data patterns, we
automatically detected nonwear times, so that these segments
could be excluded from the analysis. The nonwear times were
determined following a similar process to Zhou et al [37],
marking nonwear periods lasting at least 15 min. The argument
is that shorter nonwear periods are unlikely to have a marked
effect on the results and attempting to determine very short
nonwear times would increase the number of segments
mistakenly assigned to be nonwear times.

Data Visualization and Exploration
We produced three main plot types to facilitate visualization
and exploration of the data: (1) Data summary plot,
simultaneously presenting all the raw signal modalities collected
(3D acceleration, temperature, and light); (2) Actogram, where
stacked plots depict activity over 24 or 48 consecutive hours
(in the latter case, there is a 24-hour overlap between successive
plots) on successive days; (3) Colored actogram, which is like
an actogram, but here we express the average level of activity
on a 10-min window using a color scale to facilitate direct
comparison of activity across days.

A critical intermediate step before further visualization and
processing of the data requires summarizing the raw triaxial
data. Previous research suggests that there are different
approaches but no unique single best way to summarize the
activity [38,39]. Here, we define two simple summary measures

to achieve this, the movement and the xyz variation variables,
which are both expressing activity in 1-min time windows for
time-efficient processing and visualization. The movement
variable is defined as the square root of the sum of the squared
successive differences of the triaxial acceleration data. This is
similar to the standard Euclidean distance using the 3D data,
with the additional twist that successive differences of the raw
acceleration entries are used for each of the 3 axes. We have
found that empirically this led to more visually appealing results
as we are interested more in the changes of position in the 3D
space. The movement variable is used to efficiently summarize
the data and is the key variable we use to succinctly present
activity. We also summarize the raw actigraphy data by
introducing the xyz variation, which we defined as the rolling
10-min median of successive 1-min acceleration differences
with a 90% overlapping window.

We have overlaid the nonwear duration times and sleep duration
time (see the following section for details) with transparent
color in the data summary plot and the actogram. The data
summary plots were further annotated using the sleep diary data
provided by the participants. In all cases, the aim was to identify
trends in the data and develop an intuitive understanding of the
continuity and stability of the emerging patterns.

Automatically Detecting Sleep
Previous research has proposed methods to automatically detect
sleep using actigraphy, but these are typically evaluated only
on healthy controls. Intuitively, we can consider that sleep can
be fundamentally determined using actigraphy data on the basis
of sustained inactivity. Different algorithms proposed in the
literature essentially differ on how inactivity is quantified and
the use of empirical thresholds, for example, see [29,40,41].
We remark that the latter two approaches were developed using
counts, a proprietary device-specific estimate of activity.
Although there has been a relatively recent attempt to provide
backward compatibility with count-based schemes [42], in
principle, it would be better to develop approaches using the
raw actigraphy data as suggested by van Hees et al [29]. van
Hees et al [29] proposed quantifying angular arm movement
and assigning time segments to denote sleep when the angle is
lower than 5 degrees for 5 successive minutes or more.

The sleep detection algorithm proposed in this study is
somewhat more sophisticated. First, we computed the time
segments that are considered sleep candidates on the basis of
the following empirical rules that must be jointly true:

• The rolling 10-min median movement variable is lower
than 0.07.

• The rolling 5-min average xyz variation is lower than 0.1.
• The rolling 5-min average light is lower than 30 Lux.

Subsequently, we used a postprocessing approach where sleep
candidate segments of at least 30 min in duration were joined
if they differed by up to 30 min (to form a continuous sleep
candidate segment). The intervening period was recorded as an
awakening and used to characterize sleep. Finally, all sleep
candidate segments less than 2 hours were removed (the
threshold might be shortened if we were interested in capturing
accurately shorter sleep during the day, at the risk that sedentary
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activity might be mislabeled as sleep). The proposed sleep
detection approach requires the availability of ambient light
data (some older actigraphy devices do not collect ambient
light), but we have found that including this additional modality
overcomes problems with sedentary activity which might
otherwise be mislabeled as sleep.

Evaluation of Sleep Detection Accuracy
Lacking polysomnography (PSG), which is the gold standard
method for thorough assessment in sleep medicine to determine
sleep and sleep architecture [32], we evaluated the accuracy of
the proposed sleep detection algorithm using the participants’
sleep diaries. We aimed to demonstrate its competitiveness
against the algorithm by van Hees et al [29] (which had been
previously validated against PSG). For the algorithm of van
Hees et al [29], we used their implementation in the GGIR
package [43]. In all cases, we report the difference between the
algorithm’s estimate and the ground truth for the purpose of
validation (sleep diary).

Characterizing Activity, Sleep, and Circadian Rhythm
The detailed equations for the computation of the extracted
patterns are provided in Multimedia Appendix 1. The patterns
along with a short description are summarized in Table 2. We
remark that the categorization of the features into three groups
(activity, sleep, and circadian rhythm) is for reporting
convenience, and different categorization approaches or feature
membership into these categories are possible. For example,
M10, L5, RA, IS, and IV characterize diurnal rhythm behaviors
and could be assigned to the circadian rhythm category, as some
previous studies have suggested [44,45]. The computation of
the features can be achieved using any preprocessing approach
that summarizes the raw actigraphy data into a vector. Here, we
used the movement variable. Alternative approaches using other
variables that summarize the 3D actigraphy data would also be
possible; we defer further elaboration regarding preprocessing
for the Discussion.
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Table 2. Summary of activity, sleep, and circadian rhythm patterns used in this study.

DescriptionCategorya and pattern

Activity

Average activity for the 10 most active hoursM10

Start time of 10 most active hoursM10 time

Average activity for the 5 least active hoursL5

Start time of 5 least active hoursL5 time

Relative amplitude of most and least active hoursRA

Mean diurnal activity (rise time to bed time)MDA

Mean nocturnal activityMNA

Mean activity with diurnal and nocturnal componentsMA

Skewness of the probability distribution of diurnal activityDiurnal skewness

5, 25, 50, 75, 95 percentiles of diurnal activityPercentiles diurnal activity

Ratio of nocturnal activity over sum 24-hour activity% nocturnal activity (% NA)

Interday stability using 1-hour windowsIS1

Interday stability using 1-hour windows with 30-min overlapIS2

Intraday variability (24 hours)IV1

Intraday variability (1440 min)IV2

Intraday variability (24 hours with 30-min overlap)IV3

Computing the diurnal activity variability using the Teager-Kaiser Energy Operator
(TKEO)

Activity TKEO diurnal

Ratio of diurnal activity variability against overall activity variability evaluated using
TKEO

Activity ratio TKEO

Computing the diurnal activity variability using the root mean squared successive differ-
ences (RMSSD)

Activity RMSSD

Ratio of diurnal activity variability against overall activity variability evaluated using
RMSSD

Activity ratio RMSSD

Composite multiscale entropy, evaluating the complexity of the time series at 5, 30, 60,
120 min

CMSE

Sleep

Time starting sleepSleep onset

Wake up timeSleep offset

Duration of main (nocturnal) sleepSleep duration

Number of wake-up periods during sleepNumber wake-up

Minutes awake interrupting sleepWake after sleep onset (WASO) minutes

Entropy of the activity during sleep (variability of activity during sleep)Sleep entropy

5, 25, 50, 75, 95 percentiles of activity during sleepPercentiles sleep activity

Total number of minutes awakenings lasted for each automatically detected nocturnal
sleep

Awakenings total minutes

Circadian rhythm

Maximum temperature during sleepSleep temperature zenith

Time of maximum temperature during sleepSleep temperature zenith time

Minimum temperature during sleepSleep temperature nadir

Time of minimum temperature during sleepSleep temperature nadir time

Range of temperature during sleepSleep temperature range

Successive differences in sleep onset timingSleep onset phase
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DescriptionCategorya and pattern

Successive differences in sleep offset timingSleep offset phase

Cosinor model: average measure of rhythmCosinor: MESOR

Cosinor model: amplitude of fitted sinusoidCosinor: Amplitude

Cosinor model: phase of fitted sinusoidCosinor: Phase

aFor algorithmic details, see Multimedia Appendix 1. Overall, we have 49 extracted patterns (counting the percentiles and the CMSE entries separately).
We remark that the categorization of the patterns into the three groups (activity, sleep, and circadian rhythm) is for reporting convenience.

Activity
Accelerometers have been traditionally used to quantify physical
activity, with an increasing number of wearables and smartphone
apps capitalizing on the acceleration signals. There is a growing
body of research literature on characteristics that can be
extracted from raw actigraphy to quantify activity. Further
details regarding the algorithmic expressions for the activity
patterns extracted in this study are found in Multimedia
Appendix 1.

Sleep
We developed a new approach to detect sleep, which was
presented in the section Automatically Detecting Sleep.
Subsequently, we extracted patterns to quantify nocturnal sleep,
including awakenings, disturbances, and periods of excessive
activity during sleep, which are of clinical interest in PTSD.
The algorithmic details for the sleep patterns are presented in
Multimedia Appendix 1.

Circadian Rhythm
Given the reported chronic course of sleep problems and general
long-term effects in daily life, we can use the actigraphy, light,
and temperature data to extract circadian rhythm disturbances,
that is, processes with 24-hour oscillations. The term circadian
rhythm, strictly speaking, refers to endogenous, entrainable
processes; chronobiologists prefer the use of the more general
term diurnal rhythm to describe self-sustained, repeated
processes with 24-hour oscillations when their endogenous
nature cannot be confirmed. Given that we are extracting both
temperature and activity patterns, we will use the former
expression as an umbrella term for simplicity.

A standard approach is to measure core temperature and identify
minimum and maximum values over consecutive days [46].
Here, we only have access to wrist temperature, but we wanted
to test whether there were any intrinsic differences observed in
PTSD. Moreover, we computed differences in terms of the
activity phase and sleep phases over consecutive days.
Algorithmic details of the extracted circadian rhythm patterns
are presented in Multimedia Appendix 1.

Statistical Analysis
This section describes the statistical tools used to visualize and
compare the findings across the three cohorts.

Density Plots and Statistical Hypothesis Testing
We computed the densities of the extracted patterns using
histograms for discrete random variables and using kernel
density estimation with Gaussian kernels for continuous random
variables. For discrete random variables, we used the chi-square
test to determine whether the distributions are statistically
significantly different at P=.05 level. For continuous random
variables, we used the 2-sample Kolmogorov-Smirnov
goodness-of-fit statistical hypothesis test to determine whether
the distributions are statistically significantly different, assessing
statistical significance at the P=.05 level. The null hypothesis
was that the samples are drawn from the same underlying
distribution. In all cases, we aimed to assess whether there were
statistically significant pairwise differences between the three
groups.

Statistical Association Between Patterns and Groups
We computed pairwise statistical associations between the
summarized patterns and groups to quantify differences.
Specifically, we computed point-biserial correlation coefficients
and used the standard empirical rule of thumb approach that
correlations with a magnitude larger than 0.3 are statistically
strong [47,48].

Data Accessibility
Requests for access to the data can be made to EW, but the data
cannot be placed into a publicly accessible repository.

Source Code Availability
The MATLAB source code for the computation of the
actigraphy patterns will be made available on the first author’s
website [49].

Results

Self-Reported Sleep: Sleep Questionnaire and Sleep
Diary
People with PTSD reported more severe subjective sleep
disturbances (higher total PSQI scores) compared with both
trauma controls and controls (Figure 1). The PSQI was
statistically significantly different between PTSD participants
and nontraumatized controls (P<.001), and also between PTSD
participants and traumatized controls (P<.001). There was no
statistically significant difference in terms of PSQI between
traumatized controls and nontraumatized controls (P=.73). In
the PTSD group, 91% (38/42) of the participants had clinically
marked sleep problems at baseline (total PSQI>5).
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Figure 1. Histogram of the total Pittsburgh Sleep Quality Index scores for the three cohorts in the study. PSQI: Pittsburgh Sleep Quality Index; PTSD:
posttraumatic stress disorder.

Detection of Sleep Onset and Offset With Automatic
Algorithms Compared With Sleep Diary Data
Visual inspection of the sleep diaries and comparison with the
actigraphy data revealed that a few participants recorded sleep
times that differed considerably compared with the standard
sedentary activity typically observed in actigraphy data: this
may highlight inherent limitations of sleep diaries [20].
Therefore, we wanted to exclude participants where the
difference was markedly clear that it seemed possible that the
sleep diary entry was not reliable. This was assessed by visual
inspection of the actigraphy data and superimposing
self-reported sleep entries. In total, 17 out of the 113 participants
were excluded from this assessment: 7 due to lack of valid sleep
diary entries for at least three days, 1 due to fewer than 3 days
of valid actigraphy data, and 9 due to consistent major
disagreement between actigraphy and self-reported sleep entries
(also see Multimedia Appendix 1). We clarify that by sleep
onset, we used the time that participants recorded as falling
asleep (not the time they reported as going to bed or starting
trying to sleep, in most cases, there was a couple of minutes
difference known as sleep onset latency).

The agreement of the automatic algorithms against the
participants’ sleep diaries in terms of sleep onset and sleep offset
is summarized in Table 3. For convenience, we summarize the
statistical distributions of the errors (differences in minutes
between the algorithmic estimates and sleep diaries) in the form
median (IQR). Furthermore, Figure 2 presents the error density
plots comparing side-by-side the estimated sleep onset and sleep
offset of the new proposed sleep detection algorithm and the
sleep detection algorithm by van Hees et al [29], against the
sleep diaries that are used as ground truth. We remark that the
proposed sleep detection algorithm generalizes sufficiently well
for both the nontraumatized controls and the PTSD participants.
Overall, the new sleep detection algorithm appears to be very
accurate and highly competitive against van Hees’s algorithm,

which has been used in some previous studies. As expected, the
results are, in general, more accurate for the nontraumatized
control group; the PTSD group appears considerably more
challenging, likely due to the nature of the disorder affecting
sleep, resulting in more irregular patterns, which may complicate
sleep detection. Both algorithms can detect sleep offset
(wake-up) more accurately than sleep onset. This indicates that
people exhibit greater activity in the morning compared with
before bedtime, which intuitively verifies what we would have
expected.

To facilitate direct comparison of the two competing sleep
detection algorithms across all samples, we also provide scatter
plot results in Figure 3. The algorithm proposed in this study is
compared with the algorithm suggested by van Hees et al [29],
which had been developed for the programming language R (R
Core Team, R Foundation for Statistical Computing). We used
standard default settings in the GGIR package developed by
van Hees. For both the sleep detection algorithm by van Hees
and the sleep detection algorithm in this study, the sleep diary
data were used only to compare findings. Subsequently, we also
present Bland-Altman plots to assess the agreement between
the new proposed sleep detection algorithm and the sleep
detection algorithm by van Hees [29] (see Figure 4).

Finally, we provide a visual illustration in Figure 5, comparing
the algorithm developed by van Hees et al [29] and the algorithm
in this study for a randomly selected participant. We observe
that the proposed algorithm appears to match very well the
participant’s self-reported onset and offset in the sleep diary.
We remark that in 2 of the nights during the week this
participant was monitored, the algorithm detected awakenings
(illustrated with noncontinuous transparent green over the course
of the night, indicating broken sleep). The participant had
reported awakenings on those 2 nights, although the timings of
those awakenings were not recorded. We provide further details
about the subplots presented in Figure 5 in the next section.
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Table 3. Comparison of actigraphy algorithms in accurately detecting sleep: difference in minutes between the algorithms’estimates and the participants’
self-reports (sleep diaries).

Proposed sleep detection algorithm in this studyvan Hees et al [29] sleep detection algorithmaCohort

Sleep offset, median (IQR)Sleep onset, median (IQR)Sleep offset, median (IQR)Sleep onset, median (IQR)

2 (30.25)−12.5 (51)22.5 (106)−56 (112)Nontraumatized controls

10 (46.75)−18 (50)35.5 (95.5)−81 (147)Traumatized controls

10 (45.25)−34 (78.25)41.5 (122.5)−78 (131.25)PTSDb participants

aFor the algorithm of van Hees et al [29], we used their implementation in the GGIR R package. The results indicate minutes of sleep onset difference
and sleep offset difference between the actigraphy algorithm and the ground truth for the purpose of validation (sleep diary). For details on the distributions
of the errors, see Figure 2.
bPTSD: posttraumatic stress disorder.

Figure 2. Error density plots comparing side-by-side the estimated sleep onset and sleep offset of the proposed sleep detection algorithm and the sleep
detection algorithm by van Hees et al against the sleep diaries, which are used as ground truth. These findings are summarized in Table 3. PTSD:
posttraumatic stress disorder.
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Figure 3. Scatter plots depicting the errors (in minutes) in terms of sleep detection onset and offset across the 3 cohorts for the proposed sleep algorithm
against the algorithm proposed by van Hees et al. PTSD: posttraumatic stress disorder.
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Figure 4. Bland-Altman plots to assess the agreement between the new proposed sleep detection algorithm and the sleep detection algorithm proposed
by van Hees et al.

Figure 5. Illustrative indicative example comparing the new sleep detection algorithm with the algorithm proposed by van Hees et al and contrasting
findings against the participants’ sleep diary entries (focus on the last subplot). Transparent green indicates the detected sleep times using the proposed
algorithm, transparent blue (from midway to top of the plot) indicates the ground truth from the sleep diary, and transparent sienna (from bottom to
midway in the last plot) indicates the detected sleep by the algorithm of van Hees et al for comparison. Transparent light brown indicates nonwear times.

Data Visualization and Objective Outcomes
We present indicative plots for a PTSD participant to illustrate
how data can be presented to visualize patterns. Figure 6 shows
the data summary plot presenting the raw data, Figure 7 presents
the actogram, and Figure 8 illustrates the activity using a color
scale. To protect participant anonymity, we have changed the
dates in these illustrations.

There are several important insights to be gained by visualizing
the raw data in Figure 5: (1) during sleep, the movement is
considerably reduced compared with the rest of the day and
there are a few large noted changes across 2 axes usually
(indicating an occasional, relatively long arm movement during
sleep), (2) during sleep the temperature is elevated compared
with the rest of the day, (3) we can observe the continuity of
activity and sedentary periods during the day, we observe light
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exposure, which is known to have a strong influence on
circadian rhythms (in addition, light can be used to support
monitoring wake-ups during the night, eg, to detect toilet visits).
The automatically assessed sleep times coincide almost perfectly
with the participant’s self-reported sleep diary across all 6 days
in Figure 4 (this participant did not provide an entry for the 7th
day in the diary). Further examples and detailed results on the
comparison of the sleep detection algorithm against sleep diaries
and the sleep detection algorithm of van Hees et al [29] are
provided in Multimedia Appendix 1.

The actogram in Figure 7 is useful for visualizing the long-term
regularity and potential shift changes in activity. Using the sleep

annotation (here automatically deduced), we determined the
regularity of sleep timings. We also observed movements during
sleep, which can be used to quantify sleep quality.

The colored actogram in Figure 8 complements the standard
actogram: visualizing the active times of subsequent days once
again provides insight into pattern regularity, which can be
useful for extracting circadian rhythm patterns. The extracted
patterns in the study were motivated in part by visualizing
multiple plots of the form presented in Figures 6-8 from the
three cohorts.

Figure 6. Indicative summary of the collected data for one of the posttraumatic stress disorder participants in the study: 3D acceleration (x, y, z axes),
temperature, and light. The first row, movement, is a summary metric of the triaxial acceleration (see text for details). The vertical transparent light
green color indicates the automatically assessed sleep times; the transparent light brown color indicates nonwear times. The top midway transparent
blue indicates sleep diary entries (which can be used as proxy ground truth). PTSD: posttraumatic stress disorder.

Figure 7. Indicative actogram for one of the posttraumatic stress disorder participants in the study (same participant as in Figure 6). The data on the
second half (24:00 to 48:00 hours) of each horizontal plot are repeated as the first (00:00 to 24:00 hours) data on each subsequent horizontal plot; the
aim was to have a continuity beyond midnight for the participant. The vertical transparent light green color indicates the automatically assessed sleep
times; the transparent light brown color indicates nonwear times. PTSD: posttraumatic stress disorder.
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Figure 8. Indicative colored actogram for one of the PTSD participants in the study (same participant as in Figures 6 and 7) to represent activity over
10-min windows. The vertical transparent brown color indicates automatically assessed nonwear times. PTSD: posttraumatic stress disorder.

Group Differences
Ultimately, each of the extracted patterns characterizes each
day, that is, for each participant, we typically have a 49×6
(extracted 49 patterns for 6 days). We summarize these patterns
in terms of the mean (SD) values for each pattern to characterize
each participant. Table 4 summarizes the statistical distributions
of the summarized patterns for the three cohorts, along with
pairwise comparisons between cohorts. The direction of the
effects can be inferred from the signs of the correlation
coefficients: negative signs in the correlations indicate that the
summarized pattern generally exhibits lower scores for the first
group in the comparison. Overall, we observed that the PTSD

cohort exhibited some statistically strong (|R|>0.3) differences
compared with the nontraumatized control group. For example,
the sleep entropy appears to be a good differentiator between
PTSD and the nontraumatized control group. Descriptive
statistics of the patterns shown in Table 4 for each of the three
groups are presented in Multimedia Appendix 1. The direction
of the effect can be inferred from the sign of the correlation
coefficient.

In Multimedia Appendix 1, we present additional plots to convey
a visual impression on indicative differences between a PTSD
participant, a traumatized control participant, and a
nontraumatized control participant.

Table 4. Indicative pairwise statistical comparisons and correlations of the summarized patterns (features) across the three cohorts.

Correlations (point biserial correlation coefficient)Statistical comparisons (P values)Pattern

Trauma vs PTSDControl vs PTSDControl vs traumaTrauma vs PTSDControl vs PTSDaControl vs trauma

0.210.330.22.06.005 c.06IV2b

0.016−0.32−0.34.88.005.002Sleep entropy

0.160.300.14.16.01.25Awakenings total
minutes

0.210.270.12.06.03.33Number wake ups

0.210.260.10.05.03.41WASOd total min-
utes

aPTSD: posttraumatic stress disorder.
bIV2: intraday variability (1440 min).
cStatistically significant associations (at the P=.05 level) are italicized. We present five indicative summarized patterns that exhibit the largest correlation
magnitudes for the binary comparisons between groups. The negative signs in the correlations indicate that the summarized pattern generally exhibits
lower scores for the first group in the comparison. Correlations with a magnitude over 0.3 are considered statistically strong. Further details are presented
in Multimedia Appendices 1 and 2 (Multimedia Appendix 2 presents all the investigated variables).
dWASO: wake after sleep onset.

Discussion

Principal Findings
Sensor-based at-home monitoring is rapidly emerging with the
proliferation of wearables. Wearables provide a convenient
platform for chronic condition management, facilitating detailed

longitudinal assessment across diverse metrics, including
activity, sleep, and circadian rhythm patterns. This study
demonstrated the potential of using raw triaxial acceleration,
light, and temperature data to gain insight into weekly patterns
of activity and sleep in the participants’ everyday life. We
illustrated compact approaches to visualize annotated data
modalities and proposed a novel algorithmic approach to
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estimate sleep onset and offset (including awakenings) that
appears to be very accurate against sleep diaries.

We emphasize that the extent of our claim regarding the
accuracy of the new sleep detection algorithm is that it replicates
reasonably accurately the sleep diaries, which is a proxy for the
true sleep onset and sleep offset. Any automated sleep detection
algorithm validated on sleep diaries implicitly relies on having
accurate labels to report performance and would ideally need
to be benchmarked against PSG. We decided to exclude 9
participants from further analysis due to consistent major
disagreement between actigraphy and self-reported sleep diary
entries following visual inspection of the data summary plots
(see Multimedia Appendix 1).

Importantly, some of the actigraphy algorithms were sensitive
in showing distinguishable patterns for participants with PTSD
compared with nontraumatized controls, which were in line
with the self-reported sleep disturbances. These results are
summarized in Table 4 and Multimedia Appendix 1. For
example, sleep-based features (awakenings, WASO minutes)
may provide a useful objective indicator of the degree of
restlessness experienced by PTSD patients during sleep.
Similarly, the intraday variability (IV2) differentiates well PTSD
from nontraumatized controls, possibly indicating bursts of
activity in PTSD throughout the day, whereas nontraumatized
controls exhibited less activity variability within each day on
average. Collectively, these findings are well reflected in the
PTSD literature, where PTSD patients are known to have
difficulty with sleep, nightmares, and variable sleep [7-10],
attributes which are quantified here by the different sleep-related
actigraphy metrics. The results provide further important insight
into the quality of objective sleep in PTSD. The objective sleep
differences are consistent with actigraphy studies that have
found differences (such as increased wake after sleep) between
people with PTSD and healthy controls [8,50] and between
trauma survivors with and without PTSD [51]. However,
objective sleep duration did not differ between groups, consistent
with some [27], but not all previous actigraphy studies [50].
Therefore, this study adds to the tentative understanding of the
nature of sleep disturbances in PTSD by means of the quantified
disturbances in the reported patterns and highlights possible
targets for potential intervention to further improve comorbid
problems during therapy.

We remark that the results reported in Table 4 have not been
corrected for multiple comparisons (eg, some researchers use
the Bonferroni correction). These corrections are used to reduce
type I errors (rejecting the null hypothesis when it is true) but
have the important side effect of introducing type II errors
(accepting the null hypothesis when it is false). This has urged
researchers to suggest that effect sizes, correlation coefficients,
and other metrics should be used to support research findings
[51]. Here, we report the point biserial correlations for the
extracted patterns, some of which appear to denote statistically
strong associations (|R|>0.3).

The empirical rules and thresholds for the sleep detection
algorithm were originally developed by the first author using
his own Geneactiv data (n=1, collected for over 4 years) to
correctly match onset, offset, and awakenings. From an

algorithmic developer’s perspective, using one’s own data has
the distinct advantage of cross-referencing activities, knowing
the exact underlying ground truth across multiple days
(including naps, awakenings, days of bad sleep, etc) and
observing the recorded actigraphy signals. The thresholds of
the algorithm were adjusted using a small subset (n<10) of the
dataset described in this study, but we purposefully did not
formally explore in detail optimizing thresholds to correctly
match sleep diary entries to avoid overfitting. Ultimately, the
sleep detection algorithm proposed in this study will need to be
further validated in new cohorts to demonstrate how well it
generalizes. The proposed sleep detection algorithm has
functionality to detect awakenings, as illustrated in Figure 5.
However, we do not have the self-reported onset and offset
timings of awakenings; therefore, unfortunately, this is
something we could not properly test and validate. Further work
is required to demonstrate the potential of the proposed sleep
detection algorithm in correctly detecting awakenings and
comparing findings against self-reports or preferably PSG.
Typically, algorithms developed to process actigraphy signals
rely on hard thresholds (including the algorithm by van Hees
et al [29]). It is possible that the thresholds chosen for the sleep
detection algorithm proposed here might need to be refined in
a different cohort (or with a different sensor recording actigraphy
signals).

We believe that the colored actogram is a novel, convenient
representation to understand longitudinal patterns of behavior.
It serves as an intuitive summary of activity levels, potentially
highlighting breaks in patterns. In principle, it could also be
used as a composite for multiple participants, for example, to
visually compare cohorts and identify whether at an aggregate
level, there are some consistent patterns of behavior.

Comparison With Prior Work
The topic of automatically detecting sleep using wrist-worn
devices has recently attracted attention [29]. However, the
algorithms developed by van Hees et al [29] have not been
validated in a group that exhibits considerable sleep problems
[29], which is of particular importance in clinical assessment
of mental disorders [12]. The new algorithmic approach
proposed here to detect sleep has been developed with the aim
of being sensitive to cohorts exhibiting perturbed sleep like
PTSD and for extracting sleep patterns. In Multimedia Appendix
1, we provided indicative examples of this new approach, and
in Table 3 and Figure 2, we demonstrate its competitiveness
compared with the algorithm developed by van Hees et al [29].
Nevertheless, we remark that the sleep diaries used to assess
sleep onset and wake-up times in this study are inherently
limited and subject to participant self-report bias [20]. Therefore,
although the current results are extremely promising, more
rigorous validation is required to establish the validity of the
new sleep detection algorithm against PSG and ideally in a
larger sample, including diverse sleep pathologies. PSG provides
the objective ground truth for sleep onset, sleep offset, and
awakenings: the actigraphy-based patterns extracted computed
by GGIR or any algorithmic package cannot be considered as
PSG validated. Hence, the focus of using PSG is primarily to
assess and compare the accuracy of competing sleep detection
algorithms (ideally tested on both healthy controls and people
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with different sleep disorders). The subsequent computation of
sleep-based patterns is heavily dependent on accurate sleep
estimates.

High-end equipment has been previously used to provide
objective assessment of activity and sleep in mental disorders
assessment, including PTSD [52]. PSG is the gold standard for
sleep assessment and remains the only accurate approach to
gain insight into the actual sleep architecture [32]. However,
PSG relies on the use of expensive specialized equipment, and
is logistically costly as assessment requires multiple hours of
dedicated time by a sleep-certified expert [24]. Standard PSG
also requires the participant’s physical presence in the clinic;
however, some recent studies have demonstrated the potential
of home-based PSG recordings [53]. Similarly, the ActivPAL
monitor is considered the gold standard in free-living conditions
for step-counting, time spent in sitting/lying, standing, and
walking postures [54]. However, it is designed to be worn at
the thigh, fixed with a special adhesive pad, and hence is not
very practical for long-term use. These difficulties motivate the
use of alternative, easy-to-use, more affordable sensors, and
wrist-worn watches are prime candidates in that respect. The
data in this study were collected using the Geneactiv watch,
which has attracted considerable interest across different
research groups worldwide [36,42]. A similar popular
wrist-worn device that was used, for example, in the UK
Biobank study [25], Axivity AX3, has been shown to provide
equivalent signal vector magnitude output with Geneactiv [55];
hence, the developed algorithms should, in principle, be directly
applicable in studies where that device was used, crucially in
the UK Biobank. Similar devices that provide access to the raw
triaxial accelerometer data might require some cross-device
calibration; otherwise, the developed framework should
generalize well. Some older actigraphy devices used counts
instead of raw acceleration signals and hence tools used to be
device specific; although a relatively recent study provides for
backward compatibility [42], the trend is moving toward tools
that capitalize on the raw actigraphy data.

Summarizing the 3D accelerometry signals in a vector is crucial
and is a required preprocessing step in advance of computing
the actigraphy patterns (eg, IS, IV, etc). There are many different
approaches reported in the research literature but no unique
single best way to summarize the activity [38,39]. For example,
the Euclidean Norm Minus One [38] is sensitive to calibration
errors. Other approaches often rely on short-term windows [39]
aiming to smoothen accelerometry fluctuations owing to internal
accelerometer noise and hence might not effectively capture
transient movements. The proposed approach in this study for
the computation of the movement as an accelerometry summary,
aims to address inherent accelerometer noise fluctuations by
effectively operating on successive differences in the raw 3D
accelerometer data before computing the Euclidean distance.
We tentatively argue that this instantaneous-based approach
rather than using local windows might have some advantages
in terms of mitigating inherent accelerometer noise. Further
work is required to assess whether there is any superior approach
toward summarizing 3D accelerometry signals, for example,
against a gold standard.

Alternatively, someone might use the subsequent computation
of patterns (such as IS, IV, etc) working on each of the different
accelerometry summaries (which are used as a preprocessing
step) and assess how those patterns might be associated with a
clinical outcome. This effectively draws parallels with the
feature selection problem in data analytics, lacking ground truth
of which are the true features and which are predictive of an
outcome; researchers apply feature selection algorithms and
feed different classifiers. On the basis of the classification
performance, they can assess which feature selection algorithms
perform best in a given problem [56,57]. We emphasize that
for this approach to be valid and generalizable, researchers
would need to perform comparisons across different datasets,
ideally associating the extracted features with different
outcomes. It is also possible that there are different combinations
of accelerometry summaries and computation of patterns that
work best; future work would be needed to investigate this in
more detail.

Limitations
The primary limitations of this study are (1) the lack of PSG
data to validate findings and (2) the study duration of 7 days.
With long-term data, more detailed markers of weekly and
monthly activity, sleep, and circadian rhythm variability could
be developed and further explored. Participants adhered well
and wearing the watch was not reported as disconcerting by any
participant, which suggests that longer term monitoring may be
viable in accordance with a recent study in the UK BioBank
[25]. The sample size was sufficiently large for the exploratory
aims of this study; nevertheless, larger cohorts might provide
better insight into the nature of PTSD. Verification of the
developed algorithm for sleep estimation (including awakenings)
against PSG would be important in future studies to confirm
sleep and wake detection, and further clarify the results.
Similarly, we do not have detailed daily self-reported outcome
measures (eg, daily mood self-reports as we had used
longitudinally in related previous research [18,58,59]) other
than the sleep diaries, which could have been associated with
actigraphy-extracted patterns and hence further validate the
developed algorithms.

The sleep detection algorithm proposed in this study capitalizes
on the accelerometry and ambient light modalities; the latter is
useful for differentiating sedentary activity and sleep. However,
this suggests that the current version of the sleep detection
algorithm would not be backwards compatible with devices that
only record accelerometry signals. With the sophistication of
wearables, additional modalities are becoming available (such
as heart rate) and could be harnessed to potentially further
improve sleep detection.

More generally, the light sensor modality should be used
carefully in the analysis when developing algorithmic tools:
lack of detected light does not necessarily indicate that someone
is in a dark room. The wrist sensor may hide under a long sleeve,
for example, in long-sleeved clothes or pajamas. There may
also be abrupt changes in the detected light signal, if the sensor
is temporarily visible (or vice-versa blocked).

The study participants wore the standard Geneactiv (Geneactiv
Original). The temperature sensor is encased within the
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waterproof housing of the watch; hence, the recorded
temperature depends on how tightly the participants wear the
watch: the sensor actually measures a mixture of body and room
temperatures. In addition, during the night, temperature changes
may (at least partly) indicate that a person has moved their hand
above or under the blanket. The wrist temperature recorded has
been primarily useful to detect nonwear times and to assess
within-person changes, but not for between-person comparison.
Researchers wishing to compare recorded temperatures between
participants may want to explore a device that provides direct
skin temperature recordings such as the Geneactiv Sleep variant
[60]. Therefore, the use of the raw temperature measurements
in this study should be interpreted very tentatively. For example,
the increase in the recorded temperature during sleep seen in
Figure 5 is likely a reflection of environmental temperature
increase rather than an increase in the wrist temperature of the
participant.

Conclusions
We envisage the developed algorithmic framework laying the
foundation for using actigraphy analysis in different settings
where raw wrist-worn triaxial accelerometer data are available,
aiming to monitor healthy and pathological cohorts
longitudinally. We encourage research colleagues to use and
expand on the user-friendly MATLAB source code provided
in this study to facilitate actigraphy data visualization and
analysis. Among mental health conditions, applications to
depression are of interest given that low levels of activity and
poor sleep are characteristics of the disorder. Future research
could investigate extracting additional patterns from the raw
signals, potentially complementing it with additional modalities
such as heart rate and geolocation, which are embedded in some
recent devices. We are currently exploring the potential of using
and extending the objective measures provided in this study to
monitor longitudinal PTSD behavior, therapy effects, and
long-term recovery.
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