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Abstract

Background: Wearables have been gaining increasing momentum and have enormous potential to provide insightsinto daily
life behaviors and longitudinal health monitoring. However, to date, there is still alack of principled algorithmic framework to
facilitate the analysis of actigraphy and objectively characterize day-by-day data patterns, particularly in cohorts with sleep
problems.

Objective: This study aimed to propose a principled algorithmic framework for the assessment of activity, sleep, and circadian
rhythm patterns in people with posttraumatic stress disorder (PTSD), a mental disorder with long-lasting distressing symptoms
such asintrusive memories, avoidance behaviors, and sleep disturbance. In clinical practice, these symptoms aretypically assessed
using retrospective self-reportsthat are proneto recall bias. The aim of this study wasto devel op objective measures from patients
everyday lives, which could potentially considerably enhance the understanding of symptoms, behaviors, and treatment effects.

Methods: Using awrist-worn sensor, we recorded actigraphy, light, and temperature data over 7 consecutive days from three
groups. 42 people diagnosed with PTSD, 43 traumatized controls, and 30 nontraumatized controls. The participants al so completed
adaily sleep diary over 7 days and the standardized Pittsburgh Sleep Quality Index questionnaire. We devel oped anovel approach
to automatically determine sleep onset and offset, which can also capture awakenings that are crucial for assessing sleep quality.
Moreover, weintroduced anew intuitive methodol ogy facilitating actigraphy exploration and characterize day-by-day dataacross
49 activity, deep, and circadian rhythm patterns.

Results: Wedemonstrate that the new sleep detection algorithm closely matchesthe sleep onset and offset against the participants
sleep diaries consistently outperforming an existing open-access widely used approach. Participants with PTSD exhibited
considerably more fragmented sleep patterns (asindicated by greater nocturnal activity, including awakenings) and greater intraday
variability compared with traumatized and nontraumatized control groups, showing statistically significant (P<.05) and strong
associations (|R[>0.3).

Conclusions: This study lays the foundation for objective assessment of activity, sleep, and circadian rhythm patterns using
passively collected data from a wrist-worn sensor, facilitating large community studies to monitor longitudinally healthy and
pathological cohorts under free-living conditions. These findings may be useful in clinical PTSD assessment and could inform
therapy and monitoring of treatment effects.
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Introduction

Background

Posttraumatic stress disorder (PTSD) isamental disorder with
lifetime prevalenceranging from 1.9%[1] to 8.8%[2]. However,
these figures are considerably exacerbated in conflict, torture,
and rape survivors|[3,4]. PTSD may develop following exposure
to atraumatic event, which is defined as exposure to actual or
threatened death, serious injury, or sexual violence in the
Diagnostic and Statistical Manual of Mental Disorders 5th
edition (DSM-5) [5]. It is characterized by four symptom
categories: (1) re-experiencing symptoms associated with the
trauma, which include intrusive memories of the event, (2)
avoidance of stimuli associated with the trauma, (3) negative
alterationsin cognition and mood, and (4) aterationsin arousal.

Sleep disturbances have been termed the hallmark of PTSD [6]
but are still poorly understood. They often have achronic course
and are among the most distressing symptoms|[7]; theseinclude
difficulties falling and staying asleep [8] and nightmares [9].
Poor sleep has been associated with daytime PTSD symptom
exacerbation and severity [10,11], indicating a potentialy
vicious maintenance cycl e between deep disturbancesand PTSD
symptoms [11], and highlights the importance of investigating
deep to potentially inform targeted treatment [12]. Crucially,
from the perspective of this study, the monitoring environment
for symptom assessment is critical: PTSD patients report
sleeping better in lab settingsthan at home[13], where problems
are more commonly detected [14,15]. This emphasizes the
importance of conducting community studies under free-living
conditions instead of lab-based assessments. Moreover, given
that PTSD is a chronic condition, it would be desirable to
develop low-cost monitoring systemsthat could provideinsight
into the patient’s daily behaviors longitudinally; ideally, such
systems would require minimum input from participants.

Longitudinal monitoring of mental disorders is typicaly
achieved using the patient-reported outcome measures (PROMs),
where participants are prompted to complete standardized
validated questionnaires capturing generic or disease-specific
symptoms[16-18]. For example, deep disturbancesare common
in mental disorders such as depression and PTSD and cause
considerable distress and disability. Sleep diaries are
recommended as the gold standard for subjective prospective
deep monitoring [19]. Sleep diaries are typically completed
over 1 week, asking participantsto report the following (among
others): time to bed, how long it took to fall asleep, length and
number of awakenings, wake-up time, and sleep quality [19].
However, sleep diaries are inherently limited by relying on an
individual's ability to estimate their own sleep times [20];
similar to PROMs, they may be subject to recall bias[21].

Therefore, athough self-assessments have merit, they are by
nature subjective and may not be easily comparable across
individuals [22]. On the other hand, objective monitoring of
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daily behaviors may offer an additional dimension to
understanding pathologies (here, PTSD) using passively
collected data. In addition to overcoming the aforementioned
problems, sensor data can be streamlined and facilitate direct
comparison across participants. There have been considerable
developments in the wearable sensor market over the last 5
years,; in particular, wrist-worn sensors are widely available and
are becoming increasingly affordable. Some have functionalities
such as displaying time and communicating with smartphones
to convey natifications; in short, these devices are becoming
attractive beyond a research exercise, and they are generaly
embraced by the public. Although many companies have a
business model where they employ proprietary algorithms and
only offer access to processed data (eg steps, number of stairs,
and sleep characteristics such as sleep onset and sleep offset),
there are some devices that offer access to the raw actigraphy
(3D acceleration) data, often complemented with additional
modalities such as light, temperature, and heart rate. Overall,
theraw signalsfrom the wrist-worn sensor provide arich source
of information and researchers can develop algorithmstailored
to the application at hand (often fusing different modalities).
For example, actigraphy can be used to objectively quantify
physical activity, which can be used as a biomarker for
well-being [23]. Although it is currently not possible to obtain
accurate estimates of sleep architecture and sleep stages using
actigraphy, it provides a good measure of general Sleep
characteristicsincluding sleep efficiency, total leeptime, sleep
onset latency, and awakenings after sleep onset times [24].
Recent work emphasi zes parti cipant adherence and the potential
of using wrist-worn accelerometers to collect actigraphy data
inlarge-scale population studies[25]. Actigraphy has been used
in people with PTSD [10,26] and has shown consistency with
deep diary reportsin a PTSD population [27].

Unfortunately, the research literature discussing algorithmic
tools to process the raw actigraphy data is limited and
fragmented; there is no agreed data-processing protocol and
frequently, actigraphy analysis is completed manually relying
on visual inspection. This is because studies often have very
different focus in terms of applications, for example, to assess
general physical activity [25,28] or sleep timings[29], and itis
still early daysfor trying to standardize the commonly extracted
features to characterize actigraphy data. Most studies focus on
developing and validating actigraphy agorithms using only
healthy control cohorts. However, it has been shown across a
range of applications that developed algorithms on healthy
controls may fail to generalize sufficiently well in cohorts with
pathol ogies [30-32].

Objectives

This study offers a principled framework summarizing many
of the known algorithms and introducing new algorithmic
approaches to extract potentially useful information from the
actigraphy data. Although the application of thisstudy isPTSD,
the developed methodology is generic and, in principle,
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applicable to settings where actigraphy data are available. To
the best of our knowledge, thisis the first study to investigate
alarge set of activity, sleep, and circadian rhythm patterns using
arelatively large number of both healthy controls and a mental
disorders group where participants commonly exhibit severely
fragmented sleep and sleep disturbances.

The aims of this study were to (1) develop an automated
approach to accurately determine sleep onset, sleep offset, and
awakenings from passively collected data using a wrist-worn
sensor targeting a cohort in which deep is often disturbed,
validating findings against participants deep diaries; (2) explore
differences in these sleep characteristics under free-living
conditions between PTSD participants, traumatized controls,
and nontraumatized controls, and (3) methodologically
contribute toward a large set of activity, sleep, and circadian
rhythm patterns to objectively characterize daily behaviors and
develop asimpleto use packageto facilitate actigraphy analysis
in MATLAB (The MathWorks Inc).

Methods

Study Cohort

The study cohort comprised 115 participants: 30 nontraumatized
controls, 43 trauma-exposed without PTSD, and 42 with PTSD.
Inclusion criteriafor all groups were as follows. aged between
18 and 65 years, could read and writein English, had no history
of or current bipolar or psychosis, no current substance or

Table 1. Demographic information for the study participants (N=115).
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alcohol dependence, and if they were taking psychotropic
medication they had been on a stable dose for at least two
months. Additional inclusion criteriafor the PTSD group were
atraumatic event experience as defined by Criterion A of the
DSM-5[5] and a current diagnosis of PTSD. Inclusion criteria
for the control group were no experience of a Criterion A
traumatic event and no current mental health problems. Inclusion
criteria for the trauma control group were a Criterion A
traumatic event experience but not meeting the criteria for a
current diagnosisof PTSD. Table 1 summarizesthe demographic
characteristics of the study cohort. The groups were age and
gender matched, and among trauma survivors (n=85), there was
no differencein traumatype (interpersonal vsnoninterpersonal)
between PTSD and trauma controls.

The study received National Health Service (NHS) ethical
approval from the South-Central Oxford C Research Ethics
Committee (Ref 14/SC/0198). Recruitment began in June 2014
and ended in April 2016. Control and traumatized control
participants were recruited via advertisements within the
University of Oxford on the departmental website and online
community forumsin Oxford. The Clinical-Administered PTSD
Scale [33], the gold standard for the assessment of PTSD
symptom severity, was conducted by EW or JS to establish a
PTSD diagnosisaccording to DSM-5[5] criteria. All participants
completed a sleep questionnaire at trial onset and, over the
course of aweek, wore awrist-worn device and kept a detailed
deep diary (see details below).

Demographics Nontraumatized controls (n=30)  Trauma exposed controls (n=43)  Posttraumatic stress disorder (n=42)
Age (years), mean (SD) 31.17 (10.38) 34.02 (14.01) 32.51(9.93)
Females, n (%) 23(76.7) 31(72.1) 26 (61.9)
Traumatype®, n (%)
Interpersonal N/AP 14 (32.6) 20 (47.6)
Not interpersonal N/A 29 (64.4) 22 (52.4)
Time since trauma (years)®, mean  N/A 10.12 (10.18) 8.23(9.71)

(SD)

#Trauma type and characteristics are only for trauma survivors (n=85).
BN/A: not applicable.

“Time since trauma was cal culated as the time (years) from trauma to study participation date.

Sleep Questionnaire: Pittsburgh Sleep Quality Index

Sleep quality was assessed using the standardized Pittsburgh
Sleep Quality Index (PSQI) questionnaire [34]. The PSQI isa
self-report assessment comprising 19 items that are mapped
onto seven components (each scored in the range 0 to 3): (1)
subjective deep quality, (2) eep latency, (3) sleep duration,
(4) habitual sleep efficiency, (5) sleep disturbances, (6) use of
deeping medication, and (7) daytime dysfunction. The sum of
the 7 subscale component scores generates the total score,
known as total PSQI, which has a range of 0 to 21; scoring
above 5 is used as a standard threshold to indicate poor sleep
[34]. The study participants self-assessed the occurrence of
deep disturbances over the previous month on a scale from 0
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(not during the last month) to 3 (3 or more times a week) for
each item. PSQI was collected oncein this study and serves as
an overall indication of sleep quality.

Sleep Diary

A sleep diary was used to prospectively monitor participants
deep over 7 days. Participants completed the diary in the
morning answering questions about their sleep the previous
night. Specifically, they recorded time they got into bed, time
they started trying to sleep, sleep onset duration and wake-up
time, and number of awakenings (including approximate times),
known as wake after sleep onset (WASO). We clarify that by
deep onset, we used the time that participants recorded asfalling
asleep (ie, time they switched the lights out and started trying
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to dleep plus reported sleep onset latency). The sleep diary
followed recommendations for sleep research [20] and for the
prospective self-monitoring of sleep [19].

Wrist-Worn Device

Participants wore a triaxia accelerometer (Geneactiv,
Activinsights Ltd) on their nondominant wrist for 7 days,
coinciding with the sleep diary recording. A recent study
endorsed recording at least six nights of standard actigraphy
measurementsfor areliable measure of self-reported sleep [35].
The device recorded 3D acceleration data at a sampling rate of
100 Hz with a dynamic range of +8 g (g is a gravity unit, 1
0=9.81 m/second?) and 12-hit resolution. In addition to triaxial
acceleration, light (Lux) and wrist temperature (°C) were
recorded. We obtained actigraphy data from 113 participants
(the missing data were from 2 PTSD participants).

M ethodsto Process Data

Thefollowing sections describe the methodol ogy used to process
the wrist-worn data and statistical toolsto compare cohorts.

Calibration and Data Preprocessing

Accelerometers convert mechanical forceinto electrical signals;
in practice, they require calibration to ensure that their outputs
are directly comparable. Electrical signals are considered a
linear function of the acceleration, involving an offset and a
gain factor. In some of the older devices, researchers devel oped
algorithms to compute the calibration values [36]; for the
Geneactiv used in this study, the manufacturer provides the
offset and the gain factor for the 3 axes for each device. We
applied the standard calibration procedure using the
manufacturer provided offset and gain factors.

Subsequently, the data were resampled at 10 Hz to simplify
further processing. Before extracting data patterns, we
automatically detected nonwear times, so that these segments
could be excluded from the analysis. The nonwear times were
determined following a similar process to Zhou et a [37],
marking nonwear periodslasting at least 15 min. The argument
is that shorter nonwear periods are unlikely to have a marked
effect on the results and attempting to determine very short
nonwear times would increase the number of segments
mistakenly assigned to be nonwear times.

Data Visualization and Exploration

We produced three main plot types to facilitate visualization
and exploration of the dataz (1) Data summary plot,
simultaneoudly presenting all the raw signal modalities collected
(3D acceleration, temperature, and light); (2) Actogram, where
stacked plots depict activity over 24 or 48 consecutive hours
(inthelatter case, thereisa24-hour overlap between successive
plots) on successive days; (3) Colored actogram, which islike
an actogram, but here we express the average level of activity
on a 10-min window using a color scale to facilitate direct
comparison of activity across days.

A critical intermediate step before further visualization and
processing of the data requires summarizing the raw triaxial
data. Previous research suggests that there are different
approaches but no unique single best way to summarize the
activity [38,39]. Here, we define two simple summary measures
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to achieve this, the movement and the xyz variation variables,
which are both expressing activity in 1-min time windows for
time-efficient processing and visualization. The movement
variable is defined as the square root of the sum of the squared
successive differences of the triaxial acceleration data. Thisis
similar to the standard Euclidean distance using the 3D data,
with the additional twist that successive differences of the raw
acceleration entries are used for each of the 3 axes. We have
found that empirically thisled to morevisually appealing results
as we are interested more in the changes of position in the 3D
space. The movement variableis used to efficiently summarize
the data and is the key variable we use to succinctly present
activity. We aso summarize the raw actigraphy data by
introducing the xyz variation, which we defined as the rolling
10-min median of successive 1-min acceleration differences
with a 90% overlapping window.

We have overlaid the nonwear duration timesand sleep duration
time (see the following section for details) with transparent
color in the data summary plot and the actogram. The data
summary plotswere further annotated using the sleep diary data
provided by the participants. In al cases, the aim wasto identify
trends in the data and devel op an intuitive understanding of the
continuity and stability of the emerging patterns.

Automatically Detecting Sleep

Previous research has proposed methodsto automatically detect
sleep using actigraphy, but these are typically evaluated only
on healthy controls. Intuitively, we can consider that sleep can
be fundamentally determined using actigraphy dataon the basis
of sustained inactivity. Different algorithms proposed in the
literature essentialy differ on how inactivity is quantified and
the use of empirical thresholds, for example, see [29,40,41].
We remark that the | atter two approaches were devel oped using
counts, a proprietary device-specific estimate of activity.
Although there has been arelatively recent attempt to provide
backward compatibility with count-based schemes [42], in
principle, it would be better to develop approaches using the
raw actigraphy data as suggested by van Hees et a [29]. van
Hees et al [29] proposed quantifying angular arm movement
and assigning time segments to denote sleep when the angle is
lower than 5 degrees for 5 successive minutes or more.

The deep detection agorithm proposed in this study is
somewhat more sophisticated. First, we computed the time
segments that are considered sleep candidates on the basis of
the following empirical rules that must be jointly true:

« The rolling 10-min median movement variable is lower
than 0.07.

«  Therolling 5-min average xyz variation is lower than 0.1.

« Therolling 5-min average light is lower than 30 Lux.

Subsequently, we used a postprocessing approach where sleep
candidate segments of at least 30 min in duration were joined
if they differed by up to 30 min (to form a continuous sleep
candidate segment). The intervening period was recorded as an
awakening and used to characterize deep. Finaly, all sleep
candidate segments less than 2 hours were removed (the
threshold might be shortened if wewere interested in capturing
accurately shorter deep during the day, at the risk that sedentary
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activity might be mislabeled as sleep). The proposed sleep
detection approach requires the availability of ambient light
data (some older actigraphy devices do not collect ambient
light), but we have found that including this additional modality
overcomes problems with sedentary activity which might
otherwise be mislabeled as sleep.

Evaluation of Sleep Detection Accuracy

Lacking polysomnography (PSG), which is the gold standard
method for thorough assessment in sleep medicineto determine
sleep and sleep architecture [32], we evaluated the accuracy of
the proposed sleep detection algorithm using the participants’
sleep diaries. We aimed to demonstrate its competitiveness
against the algorithm by van Hees et al [29] (which had been
previously validated against PSG). For the algorithm of van
Hees et al [29], we used their implementation in the GGIR
package [43]. Inall cases, we report the difference between the
algorithm’s estimate and the ground truth for the purpose of
validation (deep diary).

http://mhealth.jmir.org/2020/4/e14306/
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Characterizing Activity, Sleep, and Circadian Rhythm

The detailed equations for the computation of the extracted
patterns are provided in Multimedia Appendix 1. The patterns
along with a short description are summarized in Table 2. We
remark that the categorization of the features into three groups
(activity, dleep, and circadian rhythm) is for reporting
convenience, and different categorization approachesor feature
membership into these categories are possible. For example,
M10, L5, RA, IS, and IV characterize diurnal rhythm behaviors
and could be assigned to the circadian rhythm category, as some
previous studies have suggested [44,45]. The computation of
the features can be achieved using any preprocessing approach
that summarizesthe raw actigraphy datainto avector. Here, we
used the movement variable. Alternative approaches using other
variables that summarize the 3D actigraphy datawould also be
possible; we defer further elaboration regarding preprocessing
for the Discussion.
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Table 2. Summary of activity, sleep, and circadian rhythm patterns used in this study.

Diurna skewness
Percentiles diurnal activity
% nocturnal activity (% NA)
IS1

1S2

V1

V2

V3

Activity TKEO diurnal

Activity ratio TKEO

Activity RMSSD

Activity ratio RMSSD

CMSE

Sleep

Sleep onset
Sleep offset
Sleep duration

Number wake-up

Wake after sleep onset (WASO) minutes

Sleep entropy
Percentiles sleep activity

Awakenings total minutes

Circadian rhythm

Sleep temperature zenith
Sleep temperature zenith time
Sleep temperature nadir
Sleep temperature nadir time
Sleep temperature range
Sleep onset phase

Category® and pattern Description
Activity
M10 Average activity for the 10 most active hours
M10 time Start time of 10 most active hours
L5 Average activity for the 5 least active hours
L5time Start time of 5 least active hours
RA Relative amplitude of most and least active hours
MDA Mean diurnal activity (rise time to bed time)
MNA Mean nocturnal activity
MA Mean activity with diurnal and nocturnal components

Skewness of the probability distribution of diurnal activity

5, 25, 50, 75, 95 percentiles of diurnal activity

Ratio of nocturnal activity over sum 24-hour activity
Interday stability using 1-hour windows

Interday stability using 1-hour windows with 30-min overlap
Intraday variability (24 hours)

Intraday variability (1440 min)

Intraday variability (24 hours with 30-min overlap)

Computing the diurnal activity variability using the Teager-Kaiser Energy Operator
(TKEO)

Ratio of diurnal activity variability against overall activity variability evaluated using
TKEO

Computing the diurnal activity variability using the root mean squared successive differ-
ences (RMSSD)

Ratio of diurnal activity variability against overall activity variability evaluated using
RMSSD

Composite multiscale entropy, evaluating the complexity of the time series at 5, 30, 60,
120 min

Time starting sleep

Wake up time

Duration of main (nocturnal) sleep

Number of wake-up periods during sleep

Minutes awake interrupting sleep

Entropy of the activity during sleep (variability of activity during sleep)
5, 25, 50, 75, 95 percentiles of activity during sleep

Total number of minutes awakenings lasted for each automatically detected nocturnal
sleep

Maximum temperature during sleep

Time of maximum temperature during sleep
Minimum temperature during sleep

Time of minimum temperature during sleep
Range of temperature during sleep

Successive differences in sleep onset timing

http://mhealth.jmir.org/2020/4/e14306/
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Category® and pattern Description
Sleep offset phase Successive differences in deep offset timing

Cosinor: MESOR
Cosinor: Amplitude

Cosinor: Phase

Cosinor model: average measure of rhythm
Cosinor model: amplitude of fitted sinusoid

Cosinor model: phase of fitted sinusoid

8For algorithmic details, see Multimedia Appendix 1. Overall, we have 49 extracted patterns (counting the percentiles and the CM SE entries separately).
We remark that the categorization of the patterns into the three groups (activity, sleep, and circadian rhythm) is for reporting convenience.

Activity

Accelerometers have been traditionally used to quantify physical
activity, with an increasing number of wearables and smartphone
apps capitalizing on the accel eration signals. Thereisagrowing
body of research literature on characteristics that can be
extracted from raw actigraphy to quantify activity. Further
details regarding the algorithmic expressions for the activity
patterns extracted in this study are found in Multimedia
Appendix 1.

Sleep

We developed a new approach to detect sleep, which was
presented in the section Automatically Detecting Seep.
Subsequently, we extracted patternsto quantify nocturnal sleep,
including awakenings, disturbances, and periods of excessive
activity during sleep, which are of clinical interest in PTSD.
The algorithmic details for the sleep patterns are presented in
Multimedia Appendix 1.

Circadian Rhythm

Given thereported chronic course of deep problemsand general
long-term effectsin daily life, we can use the actigraphy, light,
and temperature data to extract circadian rhythm disturbances,
that is, processes with 24-hour oscillations. Theterm circadian
rhythm, strictly speaking, refers to endogenous, entrainable
processes; chronobiologists prefer the use of the more general
term diurnal rhythm to describe self-sustained, repeated
processes with 24-hour oscillations when their endogenous
nature cannot be confirmed. Given that we are extracting both
temperature and activity patterns, we will use the former
expression as an umbrellaterm for simplicity.

A standard approach isto measure core temperature and identify
minimum and maximum values over consecutive days [46].
Here, we only have access to wrist temperature, but we wanted
to test whether there were any intrinsic differences observed in
PTSD. Moreover, we computed differences in terms of the
activity phase and sleep phases over consecutive days.
Algorithmic details of the extracted circadian rhythm patterns
are presented in Multimedia Appendix 1.

Statistical Analysis

This section describes the statistical tools used to visualize and
compare the findings across the three cohorts.

http://mhealth.jmir.org/2020/4/e14306/

Density Plots and Statistical Hypothesis Testing

We computed the densities of the extracted patterns using
histograms for discrete random variables and using kernel
density estimation with Gaussian kernelsfor continuous random
variables. For discrete random variables, we used the chi-square
test to determine whether the distributions are statistically
significantly different at P=.05 level. For continuous random
variables, we used the 2-sample Kolmogorov-Smirnov
goodness-of-fit statistical hypothesis test to determine whether
thedistributionsare statistically significantly different, ng
statistical significance at the P=.05 level. The null hypothesis
was that the samples are drawn from the same underlying
distribution. In all cases, we aimed to assesswhether therewere
statistically significant pairwise differences between the three
groups.

Statistical Association Between Patterns and Groups

We computed pairwise statistical associations between the
summarized patterns and groups to quantify differences.
Specifically, we computed point-biseria correlation coefficients
and used the standard empirical rule of thumb approach that
correlations with a magnitude larger than 0.3 are statistically
strong [47,48].

Data Accessibility

Requests for access to the data can be made to EW, but the data
cannot be placed into apublicly accessible repository.

Sour ce Code Availability

The MATLAB source code for the computation of the
actigraphy patterns will be made available on the first author’'s
website [49].

Results

Self-Reported Sleep: Sleep Questionnaire and Sleep
Diary

People with PTSD reported more severe subjective sleep
disturbances (higher total PSQI scores) compared with both
trauma controls and controls (Figure 1). The PSQI was
statistically significantly different between PTSD participants
and nontraumatized controls (P<.001), and also between PTSD
participants and traumatized controls (P<.001). There was no
statistically significant difference in terms of PSQI between
traumatized controls and nontraumatized controls (P=.73). In
the PTSD group, 91% (38/42) of the participants had clinically
marked sleep problems at baseline (total PSQI>5).
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Figure 1. Histogram of thetotal Pittsburgh Sleep Quality Index scores for the three cohortsin the study. PSQI: Pittsburgh Sleep Quality Index; PTSD:

posttraumatic stress disorder.
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Detection of Sleep Onset and Offset With Automatic
Algorithms Compared With Sleep Diary Data

Visual inspection of the sleep diaries and comparison with the
actigraphy data revealed that a few participants recorded sleep
times that differed considerably compared with the standard
sedentary activity typically observed in actigraphy data: this
may highlight inherent limitations of dleep diaries [20].
Therefore, we wanted to exclude participants where the
difference was markedly clear that it seemed possible that the
sleep diary entry was not reliable. This was assessed by visual
inspection of the actigraphy data and superimposing
self-reported sleep entries. Intotal, 17 out of the 113 participants
were excluded from this assessment: 7 dueto lack of valid sleep
diary entriesfor at least three days, 1 due to fewer than 3 days
of valid actigraphy data, and 9 due to consistent major
disagreement between actigraphy and self-reported sleep entries
(also see Multimedia Appendix 1). We clarify that by sleep
onset, we used the time that participants recorded as falling
asleep (not the time they reported as going to bed or starting
trying to sleep, in most cases, there was a couple of minutes
difference known as sleep onset latency).

The agreement of the automatic algorithms against the
participants slegp diariesinterms of sleep onset and sleep offset
is summarized in Table 3. For convenience, we summarize the
statistical distributions of the errors (differences in minutes
between the algorithmic estimates and sleep diaries) intheform
median (IQR). Furthermore, Figure 2 presentsthe error density
plots comparing side-by-side the estimated sleep onset and sleep
offset of the new proposed sleep detection algorithm and the
sleep detection algorithm by van Hees et a [29], against the
sleep diaries that are used as ground truth. We remark that the
proposed sl eep detection a gorithm generalizes sufficiently well
for both the nontraumati zed controls and the PTSD participants.
Overdll, the new sleep detection algorithm appears to be very
accurate and highly competitive against van Hees's algorithm,

http://mhealth.jmir.org/2020/4/e14306/

which hasbeen used in some previous studies. As expected, the
results are, in general, more accurate for the nontraumatized
control group; the PTSD group appears considerably more
challenging, likely due to the nature of the disorder affecting
sleep, resulting in moreirregular patterns, which may complicate
sleep detection. Both algorithms can detect Sleep offset
(wake-up) more accurately than sleep onset. Thisindicates that
people exhibit greater activity in the morning compared with
before bedtime, which intuitively verifies what we would have
expected.

To facilitate direct comparison of the two competing sleep
detection algorithms across all samples, we also provide scatter
plot resultsin Figure 3. The algorithm proposed in thisstudy is
compared with the algorithm suggested by van Hees et a [29],
which had been devel oped for the programming language R (R
Core Team, R Foundation for Statistical Computing). We used
standard default settings in the GGIR package developed by
van Hees. For both the sleep detection algorithm by van Hees
and the sleep detection algorithm in this study, the sleep diary
datawere used only to compare findings. Subsequently, we also
present Bland-Altman plots to assess the agreement between
the new proposed sleep detection algorithm and the sleep
detection algorithm by van Hees [29] (see Figure 4).

Finally, we provide avisual illustration in Figure 5, comparing
the algorithm devel oped by van Hees et al [29] and the algorithm
in this study for a randomly selected participant. We observe
that the proposed algorithm appears to match very well the
participant’s self-reported onset and offset in the sleep diary.
We remark that in 2 of the nights during the week this
participant was monitored, the algorithm detected awakenings
(illustrated with noncontinuous transparent green over the course
of the night, indicating broken sleep). The participant had
reported awakenings on those 2 nights, although the timings of
those awakeningswere not recorded. We provide further details
about the subplots presented in Figure 5 in the next section.
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Table3. Comparison of actigraphy algorithmsin accurately detecting sleep: differencein minutes between the algorithms' estimates and the participants

self-reports (sleep diaries).

Cohort

van Hees et al [29] sleep detection algorithm?®

Sleep onset, median (IQR)

Sleep offset, median (IQR)

Proposed sleep detection agorithm in this study

Sleep onset, median (IQR)  Sleep offset, median (IQR)

Nontraumatized controls

Traumatized controls

PTSD? participants

-56 (112)
-81 (147)
-78 (131.25)

22.5 (106)
35.5 (95.5)
415 (122.5)

-125 (51)
-18 (50)
-34 (78.25)

2(30.25)
10 (46.75)
10 (45.25)

8For the algorithm of van Hees et al [29], we used their implementation in the GGIR R package. The results indicate minutes of sleep onset difference
and dleep off set difference between the actigraphy agorithm and the ground truth for the purpose of validation (sleep diary). For details on the distributions

of the errors, see Figure 2.

bpTSD: posttraumatic stress disorder.

Figure2. Error density plots comparing side-by-side the estimated sleep onset and sleep offset of the proposed sleep detection algorithm and the sleep
detection algorithm by van Hees et a against the sleep diaries, which are used as ground truth. These findings are summarized in Table 3. PTSD:
posttraumatic stress disorder.
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Figure3. Scatter plots depicting the errors (in minutes) in terms of sleep detection onset and offset across the 3 cohortsfor the proposed sleep algorithm
against the algorithm proposed by van Hees et a. PTSD: posttraumatic stress disorder.
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Figure4. Bland-Altman plots to assess the agreement between the new proposed sleep detection algorithm and the sleep detection algorithm proposed

by van Hees et al.
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Figure5. lllustrative indicative example comparing the new sleep detection algorithm with the algorithm proposed by van Hees et al and contrasting
findings against the participants' sleep diary entries (focus on the last subplot). Transparent green indicates the detected sleep times using the proposed
algorithm, transparent blue (from midway to top of the plot) indicates the ground truth from the sleep diary, and transparent sienna (from bottom to
midway in thelast plot) indicates the detected sleep by the algorithm of van Hees et al for comparison. Transparent light brown indicates nonwear times.
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Data Visualization and Objective Outcomes

We present indicative plots for a PTSD participant to illustrate
how data can be presented to visualize patterns. Figure 6 shows
the datasummary plot presenting theraw data, Figure 7 presents
the actogram, and Figure 8 illustrates the activity using a color
scale. To protect participant anonymity, we have changed the
dates in these illustrations.
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There are several important insightsto be gained by visualizing
the raw data in Figure 5: (1) during sleep, the movement is
considerably reduced compared with the rest of the day and
there are a few large noted changes across 2 axes usualy
(indicating an occasional, relatively long arm movement during
deep), (2) during sleep the temperature is elevated compared
with the rest of the day, (3) we can observe the continuity of
activity and sedentary periods during the day, we observe light
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exposure, which is known to have a strong influence on
circadian rhythms (in addition, light can be used to support
monitoring wake-ups during the night, eg, to detect toil et visits).
The automatically assessed deep times coincide almost perfectly
with the participant’s self-reported sleep diary across all 6 days
in Figure 4 (this participant did not provide an entry for the 7th
day in the diary). Further examples and detailed results on the
comparison of the sleep detection algorithm against deep diaries
and the deep detection algorithm of van Hees et a [29] are
provided in Multimedia Appendix 1.

Theactogramin Figure 7 isuseful for visualizing thelong-term
regularity and potential shift changesin activity. Using the sleep

Tsanaset a

annotation (here automatically deduced), we determined the
regularity of deep timings. We also observed movements during
dleep, which can be used to quantify sleep quality.

The colored actogram in Figure 8 complements the standard
actogram: visualizing the active times of subsequent days once
again provides insight into pattern regularity, which can be
useful for extracting circadian rhythm patterns. The extracted
patterns in the study were motivated in part by visualizing
multiple plots of the form presented in Figures 6-8 from the
three cohorts.

Figure6. Indicative summary of the collected data for one of the posttraumatic stress disorder participantsin the study: 3D acceleration (X, y, z axes),
temperature, and light. The first row, movement, is a summary metric of the triaxial acceleration (see text for details). The vertical transparent light
green color indicates the automatically assessed sleep times; the transparent light brown color indicates nonwear times. The top midway transparent
blue indicates sleep diary entries (which can be used as proxy ground truth). PTSD: posttraumatic stress disorder.
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Figure 7. Indicative actogram for one of the posttraumatic stress disorder participants in the study (same participant as in Figure 6). The data on the
second half (24:00 to 48:00 hours) of each horizontal plot are repeated as the first (00:00 to 24:00 hours) data on each subsequent horizontal plot; the
aim was to have a continuity beyond midnight for the participant. The vertical transparent light green color indicates the automatically assessed sleep
times; the transparent light brown color indicates nonwear times. PTSD: posttraumatic stress disorder.
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Figure 8. Indicative colored actogram for one of the PTSD participants in the study (same participant asin Figures 6 and 7) to represent activity over
10-min windows. The vertical transparent brown color indicates automatically assessed nonwear times. PTSD: posttraumatic stress disorder.
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Group Differences

Ultimately, each of the extracted patterns characterizes each
day, that is, for each participant, we typically have a 49x6
(extracted 49 patternsfor 6 days). We summarize these patterns
interms of the mean (SD) valuesfor each pattern to characterize
each participant. Table 4 summarizesthe statistical distributions
of the summarized patterns for the three cohorts, along with
pairwise comparisons between cohorts. The direction of the
effects can be inferred from the signs of the correlation
coefficients: negative signsin the correlations indicate that the
summarized pattern generally exhibits lower scoresfor thefirst
group in the comparison. Overall, we observed that the PTSD

cohort exhibited some statistically strong (JR>0.3) differences
compared with the nontraumatized control group. For example,
the sleep entropy appears to be a good differentiator between
PTSD and the nontraumatized control group. Descriptive
statistics of the patterns shown in Table 4 for each of the three
groups are presented in Multimedia Appendix 1. The direction
of the effect can be inferred from the sign of the correlation
coefficient.

In Multimedia Appendix 1, we present additional plotsto convey
avisual impression on indicative differences between a PTSD
participant, a traumatized control participant, and a
nontraumatized control participant.

Table 4. Indicative pairwise statistical comparisons and correlations of the summarized patterns (features) across the three cohorts.

Pattern Statistical comparisons (P values) Correlations (point biserial correlation coefficient)
Control vstrauma  control vs PTSD? TraumavsPTSD  Control vstrauma  Control vsPTSD  Traumavs PTSD

[P .06 005°¢ .06 0.22 0.33 0.21

Sleep entropy .002 .005 .88 -0.34 -0.32 0.016

Awakeni ngstota .25 .01 .16 0.14 0.30 0.16

minutes

Number wake ups .33 .03 .06 0.12 0.27 0.21

WASO total min- 4L .03 .05 0.10 0.26 021

utes

3PTSD: posttraumatic stress disorder.
BV 2: intraday variability (1440 min).

Cstatistically significant associations (at the P=.05 level) areitalicized. We present fiveindicative summarized patterns that exhibit the largest correlation
magnitudes for the binary comparisons between groups. The negative signs in the correlations indicate that the summarized pattern generally exhibits
lower scoresfor thefirst group in the comparison. Correlations with amagnitude over 0.3 are considered statistically strong. Further details are presented
in Multimedia Appendices 1 and 2 (Multimedia Appendix 2 presents all the investigated variables).

WA SO: wake after sleep onset.

Discussion

Principal Findings

Sensor-based at-home monitoring is rapidly emerging with the
proliferation of wearables. Wearables provide a convenient
platform for chronic condition management, facilitating detailed

http://mhealth.jmir.org/2020/4/e14306/
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longitudinal assessment across diverse metrics, including
activity, sleep, and circadian rhythm patterns. This study
demonstrated the potential of using raw triaxial acceleration,
light, and temperature datato gain insight into weekly patterns
of activity and deep in the participants' everyday life. We
illustrated compact approaches to visualize annotated data
modalities and proposed a novel agorithmic approach to
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estimate sleep onset and offset (including awakenings) that
appears to be very accurate against sleep diaries.

We emphasize that the extent of our claim regarding the
accuracy of the new dleep detection algorithmisthat it replicates
reasonably accurately the sleep diaries, which isaproxy for the
true sleep onset and sleep offset. Any automated sleep detection
algorithm validated on sleep diariesimplicitly relies on having
accurate labels to report performance and would ideally need
to be benchmarked against PSG. We decided to exclude 9
participants from further analysis due to consistent major
disagreement between actigraphy and self-reported sleep diary
entries following visual inspection of the data summary plots
(see Multimedia Appendix 1).

Importantly, some of the actigraphy algorithms were sensitive
in showing distinguishable patterns for participants with PTSD
compared with nontraumatized controls, which were in line
with the self-reported sleep disturbances. These results are
summarized in Table 4 and Multimedia Appendix 1. For
example, sleep-based features (awakenings, WASO minutes)
may provide a useful objective indicator of the degree of
restlessness experienced by PTSD patients during sleep.
Similarly, theintraday variability (1V2) differentiateswell PTSD
from nontraumatized controls, possibly indicating bursts of
activity in PTSD throughout the day, whereas nontraumatized
controls exhibited less activity variability within each day on
average. Collectively, these findings are well reflected in the
PTSD literature, where PTSD patients are known to have
difficulty with sleep, nightmares, and variable deep [7-10],
attributeswhich are quantified here by the different deep-related
actigraphy metrics. The results provide further important insight
into the quality of objective sleepin PTSD. The objective sleep
differences are consistent with actigraphy studies that have
found differences (such asincreased wake after sleep) between
people with PTSD and healthy controls [8,50] and between
trauma survivors with and without PTSD [51]. However,
objective deep duration did not differ between groups, consistent
with some [27], but not al previous actigraphy studies [50].
Therefore, this study adds to the tentative understanding of the
nature of sleep disturbancesin PTSD by means of the quantified
disturbances in the reported patterns and highlights possible
targets for potential intervention to further improve comorbid
problems during therapy.

We remark that the results reported in Table 4 have not been
corrected for multiple comparisons (eg, some researchers use
the Bonferroni correction). These corrections are used to reduce
type | errors (rejecting the null hypothesis when it is true) but
have the important side effect of introducing type Il errors
(accepting the null hypothesiswhen it isfalse). This has urged
researchersto suggest that effect sizes, correlation coefficients,
and other metrics should be used to support research findings
[51]. Here, we report the point biserial correlations for the
extracted patterns, some of which appear to denote statistically
strong associations (|R[>0.3).

The empirica rules and thresholds for the sleep detection
algorithm were originally developed by the first author using
his own Geneactiv data (n=1, collected for over 4 years) to
correctly match onset, offset, and awakenings. From an

http://mhealth.jmir.org/2020/4/e14306/
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algorithmic developer’s perspective, using one's own data has
the distinct advantage of cross-referencing activities, knowing
the exact underlying ground truth across multiple days
(including naps, awakenings, days of bad sleep, etc) and
observing the recorded actigraphy signals. The thresholds of
the algorithm were adjusted using a small subset (n<10) of the
dataset described in this study, but we purposefully did not
formally explore in detail optimizing thresholds to correctly
match sleep diary entries to avoid overfitting. Ultimately, the
sleep detection algorithm proposed in this study will need to be
further validated in new cohorts to demonstrate how well it
generalizes. The proposed sleep detection algorithm has
functionality to detect awakenings, as illustrated in Figure 5.
However, we do not have the self-reported onset and offset
timings of awakenings;, therefore, unfortunately, this is
something we could not properly test and validate. Further work
is required to demonstrate the potential of the proposed sleep
detection algorithm in correctly detecting awakenings and
comparing findings against self-reports or preferably PSG.
Typically, algorithms developed to process actigraphy signals
rely on hard thresholds (including the algorithm by van Hees
et al [29]). It is possible that the threshol ds chosen for the sleep
detection algorithm proposed here might need to be refined in
adifferent cohort (or with adifferent sensor recording actigraphy
signas).

We believe that the colored actogram is a novel, convenient
representation to understand longitudinal patterns of behavior.
It serves as an intuitive summary of activity levels, potentially
highlighting breaks in patterns. In principle, it could aso be
used as a composite for multiple participants, for example, to
visually compare cohorts and identify whether at an aggregate
level, there are some consistent patterns of behavior.

Comparison With Prior Work

The topic of automatically detecting sleep using wrist-worn
devices has recently attracted attention [29]. However, the
algorithms developed by van Hees et a [29] have not been
validated in a group that exhibits considerable sleep problems
[29], which is of particular importance in clinical assessment
of mental disorders [12]. The new agorithmic approach
proposed here to detect sleep has been devel oped with the aim
of being sensitive to cohorts exhibiting perturbed sleep like
PTSD and for extracting deep patterns. In Multimedia A ppendix
1, we provided indicative examples of this new approach, and
in Table 3 and Figure 2, we demonstrate its competitiveness
compared with the algorithm devel oped by van Hees et a [29].
Nevertheless, we remark that the sleep diaries used to assess
sleep onset and wake-up times in this study are inherently
limited and subject to participant self-report bias[20]. Therefore,
although the current results are extremely promising, more
rigorous validation is required to establish the validity of the
new sleep detection algorithm against PSG and ideally in a
larger sample, including diverse deep pathol ogies. PSG provides
the objective ground truth for sleep onset, sleep offset, and
awakenings: the actigraphy-based patterns extracted computed
by GGIR or any algorithmic package cannot be considered as
PSG validated. Hence, the focus of using PSG is primarily to
assess and compare the accuracy of competing sleep detection
algorithms (ideally tested on both healthy controls and people
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with different sleep disorders). The subseguent computation of
sleep-based patterns is heavily dependent on accurate sleep
estimates.

High-end equipment has been previously used to provide
objective assessment of activity and sleep in mental disorders
assessment, including PTSD [52]. PSG isthe gold standard for
sleep assessment and remains the only accurate approach to
gain insight into the actual sleep architecture [32]. However,
PSG relies on the use of expensive specialized equipment, and
is logistically costly as assessment requires multiple hours of
dedicated time by a sleep-certified expert [24]. Standard PSG
also requires the participant’s physical presence in the clinic;
however, some recent studies have demonstrated the potential
of home-based PSG recordings [53]. Similarly, the ActivPAL
monitor is considered the gold standard in free-living conditions
for step-counting, time spent in sitting/lying, standing, and
walking postures [54]. However, it is designed to be worn at
the thigh, fixed with a specia adhesive pad, and hence is not
very practical for long-term use. These difficulties motivate the
use of alternative, easy-to-use, more affordable sensors, and
wrist-worn watches are prime candidates in that respect. The
data in this study were collected using the Geneactiv watch,
which has attracted considerable interest across different
research groups worldwide [36,42]. A similar popular
wrist-worn device that was used, for example, in the UK
Biobank study [25], Axivity AX3, has been shown to provide
equivalent signal vector magnitude output with Geneactiv [55];
hence, the devel oped algorithms should, in principle, bedirectly
applicable in studies where that device was used, crucialy in
the UK Biobank. Similar devicesthat provide accessto the raw
triaxial accelerometer data might require some cross-device
calibration; otherwise, the developed framework should
generalize well. Some older actigraphy devices used counts
instead of raw acceleration signals and hence tools used to be
device specific; although arelatively recent study provides for
backward compatibility [42], the trend is moving toward tools
that capitalize on the raw actigraphy data.

Summarizing the 3D accelerometry signalsin avector iscrucial
and is a required preprocessing step in advance of computing
the actigraphy patterns(eg, IS, 1V, etc). There are many different
approaches reported in the research literature but no unique
single best way to summarizethe activity [38,39]. For example,
the Euclidean Norm Minus One [38] is sensitive to calibration
errors. Other approaches often rely on short-term windows[39]
aiming to smoothen accelerometry fluctuations owing to internal
accelerometer noise and hence might not effectively capture
transient movements. The proposed approach in this study for
the computation of the movement as an accel erometry summary,
aims to address inherent accelerometer noise fluctuations by
effectively operating on successive differences in the raw 3D
accelerometer data before computing the Euclidean distance.
We tentatively argue that this instantaneous-based approach
rather than using local windows might have some advantages
in terms of mitigating inherent accelerometer noise. Further
work isrequired to assesswhether thereisany superior approach
toward summarizing 3D accelerometry signals, for example,
against agold standard.
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Alternatively, someone might use the subsequent computation
of patterns (such as|S, 1V, etc) working on each of the different
accelerometry summaries (which are used as a preprocessing
step) and assess how those patterns might be associated with a
clinica outcome. This effectively draws parallels with the
feature sel ection problem in dataanal ytics, lacking ground truth
of which are the true features and which are predictive of an
outcome; researchers apply feature selection algorithms and
feed different classifiers. On the basis of the classification
performance, they can assess which feature sel ection algorithms
perform best in a given problem [56,57]. We emphasize that
for this approach to be valid and generalizable, researchers
would need to perform comparisons across different datasets,
ideally associating the extracted features with different
outcomes. It isal so possiblethat there are different combinations
of accelerometry summaries and computation of patterns that
work best; future work would be needed to investigate thisin
more detail.

Limitations

The primary limitations of this study are (1) the lack of PSG
data to validate findings and (2) the study duration of 7 days.
With long-term data, more detailed markers of weekly and
monthly activity, sleep, and circadian rhythm variability could
be developed and further explored. Participants adhered well
and wearing the watch was not reported as di sconcerting by any
participant, which suggeststhat longer term monitoring may be
viable in accordance with a recent study in the UK BioBank
[25]. The sample size was sufficiently large for the exploratory
aims of this study; nevertheless, larger cohorts might provide
better insight into the nature of PTSD. Verification of the
developed algorithm for degp estimation (including awakenings)
against PSG would be important in future studies to confirm
sleep and wake detection, and further clarify the results.
Similarly, we do not have detailed daily self-reported outcome
measures (eg, daily mood self-reports as we had used
longitudinally in related previous research [18,58,59]) other
than the sleep diaries, which could have been associated with
actigraphy-extracted patterns and hence further validate the
developed algorithms.

The sleep detection algorithm proposed in this study capitalizes
on the accelerometry and ambient light modalities; the latter is
useful for differentiating sedentary activity and sleep. However,
this suggests that the current version of the sleep detection
algorithm would not be backwards compatible with devicesthat
only record accelerometry signals. With the sophistication of
wearables, additional modalities are becoming available (such
as heart rate) and could be harnessed to potentialy further
improve sleep detection.

More generaly, the light sensor modality should be used
carefully in the analysis when developing algorithmic tools:
lack of detected light does not necessarily indicate that someone
isinadark room. Thewrist sensor may hide under along deeve,
for example, in long-sleeved clothes or pajamas. There may
also be abrupt changesin the detected light signd, if the sensor
istemporarily visible (or vice-versa blocked).

The study participants wore the standard Geneactiv (Geneactiv
Original). The temperature sensor is encased within the
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waterproof housing of the watch; hence, the recorded
temperature depends on how tightly the participants wear the
watch: the sensor actually measures amixture of body and room
temperatures. In addition, during the night, temperature changes
may (at least partly) indicate that a person has moved their hand
above or under the blanket. The wrist temperature recorded has
been primarily useful to detect nonwear times and to assess
within-person changes, but not for between-person comparison.
Researcherswishing to compare recorded temperatures between
participants may want to explore a device that provides direct

Tsanaset a

Conclusions

We envisage the developed agorithmic framework laying the
foundation for using actigraphy analysis in different settings
where raw wrist-worn triaxial accelerometer data are available,
aiming to monitor healthy and pathologica cohorts
longitudinally. We encourage research colleagues to use and
expand on the user-friendly MATLAB source code provided
in this study to facilitate actigraphy data visualization and
analysis. Among mental health conditions, applications to
depression are of interest given that low levels of activity and

skin temperature recordings such asthe Geneactiv Sleep variant
[6Q]. Therefore, the use of the raw temperature measurements
inthis study should beinterpreted very tentatively. For example,
the increase in the recorded temperature during sleep seen in
Figure 5 is likely a reflection of environmenta temperature
increase rather than an increase in the wrist temperature of the
participant.

poor sleep are characteristics of the disorder. Future research
could investigate extracting additional patterns from the raw
signals, potentially complementing it with additional modalities
such as heart rate and geol ocation, which are embedded in some
recent devices. We are currently exploring the potential of using
and extending the objective measures provided in this study to
monitor longitudina PTSD behavior, therapy effects, and
long-term recovery.
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