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Abstract

Background: Wearable trackers for monitoring physical activity (PA) and total sleep time (TST) are increasingly popular.
These devices are used not only by consumers to monitor their behavior but also by researchers to track the behavior of large
samples and by health professionals to implement interventions aimed at health promotion and to remotely monitor patients.
However, high costs and accuracy concerns may be barriers to widespread adoption.

Objective: This study aimed to investigate the concurrent validity of 6 low-cost activity trackers for measuring steps,
moderate-to-vigorous physical activity (MVPA), and TST: Geonaut On Coach, iWown i5 Plus, MyKronoz ZeFit4, Nokia GO,
VeryFit 2.0, and Xiaomi MiBand 2.

Methods: A free-living protocol was used in which 20 adults engaged in their usual daily activities and sleep. For 3 days and
3 nights, they simultaneously wore a low-cost tracker and a high-cost tracker (Fitbit Charge HR) on the nondominant wrist.
Participants wore an ActiGraph GT3X+ accelerometer on the hip at daytime and a BodyMedia SenseWear device on the
nondominant upper arm at nighttime. Validity was assessed by comparing each tracker with the ActiGraph GT3X+ and BodyMedia
SenseWear using mean absolute percentage error scores, correlations, and Bland-Altman plots in IBM SPSS 24.0.

Results: Large variations were shown between trackers. Low-cost trackers showed moderate-to-strong correlations (Spearman
r=0.53-0.91) and low-to-good agreement (intraclass correlation coefficient [ICC]=0.51-0.90) for measuring steps. Weak-to-moderate
correlations (Spearman r=0.24-0.56) and low agreement (ICC=0.18-0.56) were shown for measuring MVPA. For measuring
TST, the low-cost trackers showed weak-to-strong correlations (Spearman r=0.04-0.73) and low agreement (ICC=0.05-0.52).
The Bland-Altman plot revealed a variation between overcounting and undercounting for measuring steps, MVPA, and TST,
depending on the used low-cost tracker. None of the trackers, including Fitbit (a high-cost tracker), showed high validity to
measure MVPA.

Conclusions: This study was the first to examine the concurrent validity of low-cost trackers. Validity was strongest for the
measurement of steps; there was evidence of validity for measurement of sleep in some trackers, and validity for measurement
of MVPA time was weak throughout all devices. Validity ranged between devices, with Xiaomi having the highest validity for
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measurement of steps and VeryFit performing relatively strong across both sleep and steps domains. Low-cost trackers hold
promise for monitoring and measurement of movement and sleep behaviors, both for consumers and researchers.

(JMIR Mhealth Uhealth 2020;8(5):e16674) doi: 10.2196/16674
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Introduction

Background
Physical activity (PA) and sleep are modifiable determinants
of morbidity and mortality among adults and specifically
contribute to the development of diseases such as obesity, type
2 diabetes, cardiovascular diseases, low quality of life, and
mental health problems [1-6]. Engaging in at least 30 min of
moderate-to-vigorous physical activity (MVPA) per day, getting
between 7 and 9 hours of total sleep time (TST) per night, and
spending relatively more time on light PA rather than being
sedentary are associated with beneficial health outcomes [1-6].
A large proportion of adults do not meet the guidelines for one
or more of these behaviors [6,7]. PA and sleep are, together
with time spent on sedentary behavior (SB), codependent
behaviors: they are part of one 24-hour day, and time spent on
one behavior will impact the time spent on at least one of the
other behaviors. It is, therefore, recommended to target these
behaviors together [8].

Successful health promotion interventions rely on behavior
change techniques that address modifiable determinants of
health behavior [9]. A behavior change technique reported as
both effective [10] and highly appreciated by users [11,12] is
self-monitoring of health behavior. Self-monitoring refers to
keeping a record of the behavior that is performed [13].
Self-monitoring tools provide opportunities for self-management
of health as well as for remote activity tracking by health care
providers as part of a patient’s treatment regimen [14].
Subjective ways of self-monitoring, such as self-report using
retrospective measures (eg, diaries and questionnaires), often
come with high participant burden and reporting biases [14].
Self-reported sleep duration in sleep logs showed an
overestimation in comparison with objective measurements,
especially when sleep duration was below the recommended
health norms [15]. Activity trackers conversely offer automated,
objective, and convenient means for self-monitoring PA and
sleep. This paper focused on self-monitoring via consumer-based
activity trackers as intervention tools for PA and sleep, more
specifically by investigating the validity of low-cost trackers.
Such trackers rarely monitor SB [16,17], which is why SB,
although important in 24-hour movement behaviors, falls outside
the scope of this paper.

Activity trackers may include pedometers, smartphone-based
accelerometers, and accelerometers in advanced electronic
wearable trackers or in smartwatches. However, pedometers do
not provide information on sleep, and smartphone-based
accelerometers have shown lower accuracy when measuring
PA compared to advanced electronic wearable trackers [18],
making advanced electronic wearable trackers and smartwatches
more suitable to accurately self-monitor PA and sleep.

Smartwatches (eg, Apple Watch) offer several other functions
apart from activity tracking such as communication and
entertainment and are usually more expensive than advanced
electronic wearable trackers (eg, Fitbit Charge). Advanced
electronic wearable trackers (termed as activity trackers
hereafter) are usually wrist-or belt-worn, provide 24-hour
self-monitoring, and often include real-time behavioral feedback
or more detailed feedback shown after synchronization with
other electronic devices (eg, tablet, smartphone, or PC) [19].
Several commercial activity trackers are available to the public
and are increasingly integrated into effective intervention
programs to improve activity behaviors [20,21].

There has been an increased interest by adults in activity
trackers. For example, in Flanders, Belgium, 8% of adults owned
an activity tracker (22% owned a type of wearable, including
sports watches and smartwatches) in 2018 compared with only
2% (8% owned a type of wearable, including sports watches
and smartwatches) owning one in 2015 [22]. Characteristics of
activity trackers may impact their continued use and further
adoption. Cost is likely to be a barrier to increased adoption of
higher-end trackers [19,23]. Indeed, activity trackers appear to
be used less among adults who are less educated, unemployed
[19], and have a lower income [22]. Notably, unhealthy lifestyles
such as insufficient PA [24] and insufficient sleep duration [25]
are more prevalent among people of lower to medium
socioeconomic status (SES) than among those of higher SES.
Therefore, providing accurate, low-cost options to self-monitor
PA and sleep in their daily lives is crucial for public health, as
a lack of valid low-cost trackers may increase the health and
digital divide between lower and higher income groups in the
society. However, nonadoption of activity trackers in low SES
populations can probably not only be attributed to the high cost
of the devices but may also be a matter of priorities and
affordances. Further research in this area is necessary. Having
valid low-cost trackers not only plays a role in low SES
populations but also in the general population; cost-effective
solutions are needed for scaling up interventions in a public
health context where financial resources are limited [26]. Having
accurate, low-cost activity trackers can be expected to increase
the feasibility of scaling up interventions that rely on activity
trackers.

The unequal access to valid tools because of cost barriers is
often studied within health literacy conceptual frameworks.
Health literacy refers to having the ability and motivation to
take responsibility for one’s own health [27]. Low health literacy
has been associated with worse health outcomes [27], and
improving access to tools that can help understand their own
health behavior via self-monitoring and taking responsibility
to take care of one’s own health may improve health literacy.
There is increasing attention to expanding the health literacy
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model to electronic health (eHealth) literacy or digital health
literacy, defined as the ability of people to use emerging
technology tools to improve or enable health and health care
[28]. Digital health literacy appears to be associated with a lower
SES [29].

More specifically, the importance of accuracy of low-cost
trackers can also be understood from the technology acceptance
model that emphasizes the need for trust and perceived
usefulness, together with perceived ease of use, of a tool before
users are willing to adopt them [30].

When using activity trackers, their accuracy needs to be
established to avoid counterproductive effects, such as falsely
signaling that people are meeting guidelines and need not make
any extra efforts, whereas, in fact, these people may not reach
the sufficient sleep or PA levels [31]. Conversely, an
underestimation of actual behavior can also cause people to get
demotivated and to no longer make efforts to do better [32].
Accuracy of the tracker has also been cited by users as the
trackers’ most important characteristic [19]. To effectively use
wearable activity trackers for health self-management in daily
life, accuracy needs to be assessed in free-living settings because
laboratory-based validity studies tend to overestimate validity
[18]. The validity to measure PA in free-living conditions has
been examined for several activity trackers, such as Fitbit One,
Zip, Ultra, Classic, Flex [16-18,33-38], Misfit Shine [18], and
Withings Pulse [18]. In general, studies found the highest
validity for Fitbit trackers [18]. Most validated trackers showed
high correlations with an ActiGraph accelerometer for number
of steps [16,39,40]. MVPA is less often studied and less
accurately measured by activity trackers than step count [39].
Activity trackers showed moderate-to-strong correlations with
ActiGraph accelerometers on MVPA, with Fitbit trackers and
Withings Pulse showing the highest accuracy [39]. In addition,
for TST, several wearable activity trackers currently on the
market have been assessed for validity, including Fitbit (Flex
and Charge HR) [41-43], Withings Pulse [39,41], Basis Health
Tracker [41], Garmin [44], and Polar Loop [44]. Validity results
for TST were very divergent, ranging from low to strong
validity, with Fitbit again showing better validity [39,44]. The
accuracy of PA and/or TST depends on the position where the
tracker is worn, for example, the wrist vs the hip [33], and can
be improved by combining accelerometry with the heart rate
measurement [45,46].

The cost of the trackers in the abovementioned published
validation studies was often not reported, but their price in the
current market (at the end of January 2019) ranged from €50
(US $56) to €130 (US $146) for an unused, basic model (with
Misfit Flash as the exception at €42 [US $47]). Most trackers
that are popular in the consumer market and that are reported
on in scientific publications cost more than €50 (US $56) and
commonly more than €100 (US $112) [14]. A recent industry
report states that when spending less than US $50, users are
likely to get a product of mediocre accuracy [47], although it
is unclear whether this statement was empirically based. To our
knowledge, only 2 studies have examined the validity of
low-cost trackers. Wahl et al’s [48] study of the Polar Loop
(price in June 2019 around €60 [US $67]), Beurer AS80 (price
in June 2019 around €42 [US $47]), and Xiaomi Mi Band (price

in June 2019 around €25 [US $28]) suggested that only the Mi
Band had good validity for step count. However, this study was
conducted in a laboratory and not in free-living conditions. In
one other study, the validity of the Xiaomi Mi Band for
measuring TST was evaluated relative to a manual
switch-to-sleep-mode measurement, with positive results [49].
However, this study did not use an objective measurement tool
for comparison. We are not aware of any validation studies of
low-cost activity trackers against objective measurement
methods conducted in free-living conditions, and many of the
most commonly available low-cost trackers do not appear to
have been validated in any form.

In summary, wearable activity trackers can be a useful tool in
health promotion and remote treatment monitoring for PA and
TST. However, high costs and accuracy concerns may be
barriers to widespread adoption [50]. Assessing the validity of
low-cost trackers may play a major role at the population level
to encourage health behavior in the future and among low SES
groups who are most at risk for poor health and in need of
healthy behavior promotion. To enable activity self-monitoring
in daily life, the accuracy of low-cost wearable activity trackers
needs to be established in free-living conditions. Current
validation studies have mainly focused on wearable activity
trackers that cost above €50 (US $56).

Objectives
This study aimed to assess the validity of low-cost wearable
activity trackers among adults (≤€50 [US $56]) for the objective
measurement of PA and TST in daily life against free-living
gold standards (ActiGraph GT3X+ accelerometer and
BodyMedia SenseWear). This study was exploratory in nature
and did not have firm hypotheses regarding the validity of
specific low-cost trackers. However, it may be expected that
trackers with heart rate monitoring are more accurate than those
without heart rate monitoring. This may be because heart rate
measurement contributes to a more accurate estimate of intensity
and energy expenditure, resulting in a more accurate
discrimination between activity and nonactivity [45,46].

Methods

Participants and Procedure
A concurrent validity study among adults was designed in which
a low-cost tracker was validated against a free-living condition
standard for steps, active minutes (MVPA), and TST. A
high-cost tracker (Fitbit Charge 2) was also validated against
these gold standards, to compare with validation outcomes for
the low-cost trackers. In each participant, three 24-hour
observation days were collected for each low-cost tracker. Power
analyses (run in G*Power 3.1.9.2) suggested that to detect a
2-tailed significant correlation (H1) of 0.49 to 0.90, with 80%
power (values based on the study by Brooke et al [44]), a sample
size of between 6 and 29 was required.

A total of 20 healthy participants aged between 18 and 65 years
living in Flanders, Belgium, were recruited using convenience
sampling. Inclusion criteria were having no current physical
limitations, medical conditions, or psychiatric conditions that
may impact movement or sleep. Descriptive information
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collected on participants consisted of age, sex, self-reported
height and weight, and highest attained education. All
participants read and signed an informed consent form. The
Ethics Committee of the University Hospital of Ghent approved
the study protocol (B670201731732).

Instruments

Convergent Measure
As this is a free-living study, the ActiGraph GT3X+ (ActiGraph)
triaxial accelerometer was used as a reliable and valid reference
for measuring step count [51-53] and MVPA [54,55]. The
GT3X+ has been shown to be a valid measure of both step count
compared with direct observation (percentage error <1.5% [52];
percentage error ≤1.1% [53]; and intraclass correlation
coefficient [ICC]≥0.84 [51]) and MVPA compared with indirect
calorimetry (r=0.88) [54]. Accelerometer data were initialized,
downloaded, and processed using ActiLife version 5.5.5
software (ActiGraph). The Freedson Adult cut-points were
applied to categorize PA measured by using the ActiGraph
accelerometer (sedentary activity=0-99 counts per min, light
activity=100-1951 counts per min, moderate activity=1952-5723
counts per min, and vigorous activity ≥5724 counts per min)
[54]. A 15-second epoch was used when downloading the data.
The ActiGraph GT3X+ was fitted to the right side of the
participants’ waist in accordance with the manufacturer’s
instructions. Only days with valid data of the ActiGraph were
included in the analysis. A valid day was defined as a 24-hour
period in which at least 10 hours of data wear time were
recorded [56]. Nonwear time was analyzed as a run of zero
counts lasting more than 60 min with an allowance of 2 min of
interruptions. Using this algorithm, the risk of misclassification
of nonwear time as sedentary time was avoided [57].

The BodyMedia SenseWear (BodyMedia Inc) is a portable
multisensor device that can provide information regarding the
total energy expenditure, TST, circadian rhythm, and other
activity metrics. In this study, the SenseWear was used as the
reference for sleep duration. SenseWear has been validated as

a measure of TST compared with polysomnography (r=0.83;
SE of estimate 37.71) [58]. Data were analyzed in SenseWear
Professional 8.1 software [59]. The SenseWear was placed over
the triceps muscle on the nondominant arm between the
acromion and olecranon processes, in accordance with the
manufacturer’s instructions.

Low-Cost Activity Trackers
In total, 6 low-cost activity trackers were selected (Figure 1)
based on their price at the time of the study (≤€50 [US $56]),
their market share (eg, MyKronoz and Xiaomi), whether or not
they included a heart rate measurement and output (steps,
MVPA or active minutes, and TST), and availability from
popular web-based purchase sites in Europe where the study
was conducted. Furthermore, we tested the Fitbit Charge 2 to
also include a comparison between a low-cost activity tracker
and a validated high-cost activity tracker. Fitbit was selected
as a high-cost activity tracker because it was one of the most
popular activity trackers on the market at the start of the study
and was already validated for measuring steps, MVPA, and
TST [17]. All participants received a Wiko smartphone in loan
(Lenny 3, Android 6.0 Marshmallow, price €99.99 [US $119.80]
in June 2019) to pair the trackers with, to cancel out any
potential individual differences in smartphone pairing.

All devices measured steps and TST. Only Xiaomi, Nokia, and
also Fitbit used a specific variable that quantifies intensive forms
of PA. These 3 devices reported active minutes with no further
subdivision. As all the devices set a goal of 30 min PA per day
(similar to the MVPA recommendations for adults), it was
assumed that the measured variable corresponded to MVPA as
measured by the ActiGraph. However, specific information
regarding intensity cut-points is not publicly available. TST
was used, excluding daytime naps, for comparison with the
SenseWear that was only worn at night. Only Fitbit, VeryFit,
and Xiaomi measured the heart rate. Data were extracted using
the proprietary software for all devices, in the same fashion that
a consumer would use the software, and were visually checked
for outliers.

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 5 | e16674 | p. 4http://mhealth.jmir.org/2020/5/e16674/
(page number not for citation purposes)

Degroote et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Tracker characteristics.

Free-Living Protocol
As it was not feasible or comfortable to wear all trackers at the
same time, participants were instructed to wear one of the
low-cost devices in combination with the Fitbit tracker on their
nondominant wrist. They were also instructed to simultaneously
wear the ActiGraph on their hip during daytime and the
SenseWear on their upper arm at nighttime. Furthermore, the
participants were provided with a diary to write down the time
they put on and took off the devices. This way it could be
checked that the devices were always worn simultaneously. If
this was not the case, data of the device that was worn separately
were deleted to avoid a mismatch of the measurements.
Participants received the 6 low-cost trackers in a random order.
The position of the low-cost and high-cost tracker on the
nondominant wrist (first or second in distance from the wrist)
was varied across days. Each tracker was worn for a period of
3 consecutive days and nights. A period of 3 days and 3 nights
was chosen to balance between achieving sufficient data for the
question under study without burdening the participants.
Between 2 periods, a 1-day gap allowed for switching the
devices. During daytime, the devices were worn during all

waking hours, except during water-based activities. When
participants went to bed, they were asked to remove the
ActiGraph and put on the SenseWear instead. In Figure 2, a
typical measurement period for one device is shown.

PA or TST may differ between weekdays and weekend days.
Although this study did not intend to explain differences in PA
or TST but rather the degree of agreement between 2
measurements on any given day, a difference in how often a
tracker was measured on a certain day rather than another day
may influence validity results. For example, validity has shown
to be lower for measuring a low number of steps or high number
of steps. Our study design controlled for this potential influence
by randomly varying the days across participants on which a
particular tracker was worn. Across all data points, we would
then expect all measurement days to be relatively equally
represented, as was the case in our study. The percentage of
weekend days in total measurement days ranged between 25%
and 33%. In addition, on particular weekdays, there were very
few differences (2%-9% difference between the tracker with
the lowest number of measurements on a certain day and the
tracker with the highest number of measurements on a particular
day).
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Figure 2. An example of the measurement protocol for one period.

Statistical Analysis
Analyses were performed using IBM SPSS Statistics version
24.0 (SPSS Inc). All analyses were performed on a daily
measurement level, counting a measured day as a unit of
analysis. Analyses consisted of measures of agreement,
systematic differences, and bias and limits of agreement.
Measures of agreement (equivalence testing) included the
Spearman correlation coefficient (r) to examine the association
between steps, active minutes, and TST measured by trackers
and convergent measure (also illustrated in scatter plots). As
sleep and PA data were nonnormally distributed, (1) a Spearman
correlation, a nonparametric statistical test, was used instead of
a Pearson correlation and (2) ICC (absolute agreement, 2-way
random, single measures, 95% CI) that reflects the effect of
individual differences on observed measures. Measures of
systematic differences included mean absolute percentage errors
(MAPEs) of tracker measurements compared with those of the
convergent measure. MAPEs were calculated with the following
formula: mean difference activity tracker−convergent measure
× 100/mean gold standard. Bland-Altman plots with their
associated limits of agreement were used to examine biases
between measurements from the trackers and the convergent
measure. The following cutoff values were used to interpret the
Spearman correlation coefficient: <0.20=very weak, 0.20 to
0.39=weak, 0.40 to 0.59=moderate, 0.60 to 0.79=strong, and
0.80 to 1.0=very strong [60]. The cutoff values to interpret the
ICC were as follows: <0.60=low, 0.60 to 0.75=moderate, 0.75
to 0.90=good, and >0.90=excellent [48].

A series of linear mixed effects models with restricted maximum
likelihood estimation were used to examine the association
between steps, MVPA minutes, and TST measured by the
commercial trackers and convergent measures, accounting for
the structure of the data (repeated measures clustered within
participants). The pattern of results was similar to that obtained
from the abovementioned analyses. Data are, therefore,
presented in Multimedia Appendix 1.

Results

Descriptive Statistics
A total of 3 participants discontinued their participation in the
study: one participant dropped out at the start of the study
because of the combination of high perceived burden of the
research protocol and a busy personal schedule, and

consequently, no data were collected and analyzed from this
participant; one participant was not able to meet the protocol
toward the end of the study because of conflict with his/her
work schedule; and one participant had to end participation
because of an unexpected hospital admission (17/20, 85%
retention rate). The average age of the analyzed sample of
participants who started the study (n=19) was 37.6 (SD 13.4)
years; of 19 participants, 13 were female. The sample was highly
educated, with 17 participants having achieved a higher
education degree (academic or nonacademic). Their average

BMI was 23.5 (SD 4.4) kg/m2. Two participants were

overweight (BMI of 25-30 kg/m2), and 2 participants were obese

(BMI ≥30 kg/m2). The level of MVPA measured at baseline
with the International Physical Activity Questionnaire varied
from 10 to 351 min per day (SD 91) [61,62].

All participants owned a smartphone; 5 of 19 participants had
previous experience with wearable trackers (n=3; Fitbit). As
can be expected in a highly educated sample, they were all very
familiar with digital tools and required little assistance in
installation or usage. We did not expect any impact of
participants’ experience on the validity measurements, as (1)
these would not have a differential effect of any potential misuse
between different trackers and (2) control procedures were put
in place to prevent any misuse. Potential misuse could consist
of a wrong placement of the tracker. Participants received a
thorough briefing at the start of the study and a daily check-up
of any issues to ensure any baseline differences in familiarity
with digital tools were canceled out and to reduce the risk for
misuse. No issues with misuse were noted.

Issue of Usability With Low-Cost Trackers
In total, each device was intended to be tested for 60 days. As
one of the participants did not start, the maximum number of
potential measurement days per tracker was reduced to 57. The
number of days of available data varied per tracker because of
dropouts at the end of the study by some participants and
because of technical issues experienced with some trackers,
which resulted in fewer days of available data.

Of 57 measurement days, VeryFit had 55 (96%) measured days
for PA (lost days: 2 because of no data shown in the app) and
51 (86%) measured days for sleep (lost days: 3 because of
participant noncompliance and 3 because of no data shown in
the app). Of 57 measurement days, iWown had 52 (89%)
measured days for PA (lost days: 4 because the tracker did not
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pair and 1 because of no data shown in the app) and 51 (89%)
measured days for sleep (lost days: 4 because the tracker did
not pair and 2 because of no data shown in the app). Xiaomi
was not worn by 2 participants because of dropping out,
reducing potential measurement days to 51. Of 51 measured
days, Xiaomi had 48 (94%) measured days for PA (lost days:
2 because of participant noncompliance and 1 because of no
data shown in the app) and 44 (86%) measured days for sleep
(lost days: 6 because of participant noncompliance and 1 because
of no data shown in the app). Of 57 measured days, Nokia had
49 (86%) measured days for PA (8 lost days because of no data
shown in the app) and 46 (81%) measured days for sleep (lost
days: 8 because of no data shown in the app and 3 because of
participant noncompliance). MyKronoz was not worn by 3
participants because of dropping out; one participant accidentally
removed the data, reducing potential measurement days to 45.
Of 45 measured days, MyKronoz had 40 (89%) measurement
days for PA (5 lost days because of no data shown in the app)
and 24 (53%) for sleep (lost days: 11 because of no data shown
in the app and 10 because of participant noncompliance). Of 57
measured days, Geonaut had 37 (65%) measured days for PA
(lost days: 12 because of no data shown in the app, 9 because

of the device not pairing, and 5 because of participant
noncompliance) and 30 (53%) measured days for sleep (lost
days: 9 days because of the device not pairing, 8 because of no
data shown in the app, and 4 because of participant
noncompliance).

Participants were especially frustrated about a device not pairing,
as this meant they had to reinstall the tracker and also lost their
past activity history. Thus, VeryFit and Xiaomi showed little
data loss because of usability problems, whereas especially for
Geonaut and MyKronoz, data were lost because of usability
problems. In general, more data were lost for sleep than for PA.
Usable data in the analyses were further reduced because of
technical issues experienced with the convergent measures,
which resulted in fewer days of data for which comparisons
could be made (the number of usable data points are shown in
all tables).

Validity of Low-Cost Trackers

Physical Activity
Table 1 shows the mean steps, mean minutes of MVPA, and
the corresponding standard deviations for all trackers for
measuring steps and MVPA.

Table 1. Mean steps and minutes of moderate-to-vigorous physical activity per day measured by the low-cost trackers, Fitbit and ActiGraph.

RangeMean (SD)Number of measured daysTracker

Number of steps per day

657-19,4138026 (4352)37Geonaut

259-22,7597668 (5169)51iWown

485-24,49310,431 (4764)40MyKronoz

325-13,9765896 (3113)50Nokia

649-22,6287320 (4481)55VeryFit

369-20,8667317 (4535)48Xiaomi

451-24,6649662 (4866)307Fitbit

188-23,1218126 (4314)316ActiGraph

Number of minutes of moderate-to-vigorous physical activity per day

0-525 (12)49Nokia

0-19080 (48)46Xiaomi

0-23945 (49)305Fitbit

0-15041 (31)328ActiGraph

Agreement testing for steps diverged between the Spearman r
coefficient and ICC (Table 2). All trackers, except iWown,
showed strong (Nokia, Geonaut, VeryFit, and MyKronoz) to
very strong (Xiaomi and Fitbit) agreement with the ActiGraph
measurements based on the Spearman r coefficient (all above
0.60). On the basis of ICC, MyKronoz, iWown, and Nokia
showed low agreement (ICC<0.60), whereas Geonaut had
moderate and Xiaomi, Fitbit, and VeryFit had a good agreement
with the ActiGraph measurements (ICC=0.75-0.90). These
coefficients are in line with the interpretation of the MAPE
scores, showing the largest mean deviation from the ActiGraph

measurements for iWown (35.28%) and the smallest for the
Xiaomi tracker (17.14%).

For measuring MVPA, correlations between the MVPA
measurements of the trackers and the ActiGraph accelerometer
were weak for Nokia and Xiaomi and moderate for Fitbit (Table
2). The ICC showed low agreement for MVPA between all 3
trackers and the ActiGraph accelerometer (ICC<0.60). The
MAPE scores also indicate very large mean deviations from
the ActiGraph measurements for MVPA (>100%), which
confirm the low accuracy of the trackers for measuring MVPA.
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Table 2. Correlation coefficients, intraclass correlation coefficients, associated 95% CI of the measurements, and mean absolute percentage error scores
for measuring steps and moderate-to-vigorous physical activity.

Mean absolute percentage error (%)95% CIIntraclass correlation coefficientSpearman r (95% CI)nTracker

Steps

24.630.46 to 0.820.68a0.63a (0.31 to 0.87)36Geonaut

35.280.28 to 0.690.51a0.53a (0.16 to 0.77)50iWown

25.790.22 to 0.790.59a0.77a (0.45 to 0.95)38MyKronoz

22.620.27 to 0.740.56a0.77a (0.51 to 0.94)50Nokia

24.870.62 to 0.910.82a0.78a (0.61 to 0.89)54VeryFit

17.140.77 to 0.950.90a0.91a (0.81 to 0.97)45Xiaomi

25.730.66 to 0.930.87a0.91a (0.86 to 0.94)300Fitbit

Moderate-to-vigorous physical activity

108.17−0.10 to 0.440.180.24 (−0.11 to 0.50)16Nokia

293.29−0.08 to 0.390.150.26 (−0.08 to 0.54)45Xiaomi

114.300.48 to 0.640.56a0.56a (0.47 to 0.63)298Fitbit

aP<.001.

Correlations for steps and MVPA are illustrated in Figures 3
and 4. Scatter and deviation of the points around the line that
reflects the perfect agreement between the measurements are
larger for measuring MVPA than for measuring steps. The
largest scatter for measuring steps is found for iWown (Figure
3). On the basis of scatterplots, a careful statement on
overestimation or underestimation of the measurement of the
trackers can be made. This is based on the location of the data
points relative to the line that represents the perfect agreement
between the measurements. For Xiaomi, Nokia, and VeryFit,
the majority of the data points are located below that line,
meaning an underestimation of the number of steps. For iWown,
MyKronoz, and Fitbit, the majority of the data points are located
above the line, meaning an overestimation of the number of
steps. For Geonaut, no clear underestimation or overestimation
is visualized. A large scatter for all 3 trackers that measure
MVPA was observed, with no obvious relation between the
MVPA measurements of the trackers and the MVPA
measurements of the ActiGraph. For Nokia, an underestimation
is visualized, and for Xiaomi, however, an overestimation is
visualized. For Fitbit, no clear underestimation or overestimation
is visualized.

These findings are also visualized by using Bland-Altman plots.
Bland-Altman plots were used to visualize the differences
between the steps and MVPA measurements of the ActiGraph
accelerometer and each tracker (y-axis) against the average
number of steps or number of minutes of MVPA of the
measurements of these 2 devices (x-axis). Mean differences
with the ActiGraph accelerometer and the limits of agreement

are presented in Table 3 (illustrated in Figures 5 and 6 for steps
and MVPA, respectively). A positive value of the mean
difference indicates an underestimation of the measurements
of the tracker compared with the ActiGraph measurements,
whereas a negative value indicates an overestimation. The
systematic overestimation or underestimation (mean differences)
and the range between the upper and lower limits of the
agreement reflect the accuracy of the measurements of the
tracker compared with the measurements of the ActiGraph
accelerometer. The broader the range between the lower and
the upper limit, the less accurate the measurements are.

For measuring steps and MVPA, the table and the plots (Figures
5 and 6) all showed large limits. The Xiaomi tracker showed
the narrowest limits (7450 steps) for measuring steps, whereas
iWown showed the broadest limits (19,263 steps). These results
are in line with the interpretations of validity findings based on
the Spearman r, the ICC, and the MAPE score.

For MVPA, the ranges between the lower and upper limit of
agreement are very large, indicating a low accurate measurement
by all 3 trackers measuring MVPA. The Bland-Altman plots
showed the broadest limits for Xiaomi (207.64 min) and the
narrowest limits for Nokia (101.80 min).

Thus, several but not all low-cost trackers showed high accuracy
to measure steps. Xiaomi trackers even outperformed the Fitbit
tracker in measuring steps. However, none of the trackers
showed good accuracy to measure MVPA, including Fitbit,
which did nevertheless reach a slightly higher validity than the
low-cost trackers in measuring MVPA.
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Figure 3. Correlations between steps estimates per day from the trackers and the ActiGraph.
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Figure 4. Correlations between moderate-to-vigorous physical activity estimates per day from the trackers and the ActiGraph.

Table 3. Mean differences of activity measures with the ActiGraph accelerometer and limits of agreement of the activity trackers.

Width of the limits of agreementLimits of agreement, rangeMean difference of steps (ActiGraph−Tracker)nTracker

Steps

9311−4802 to 4509−14636Geonaut

19,263−8993 to 10,27063850iWown

7530−5563 to 1967−179838MyKronoz

11,676−4229 to 7447160950Nokia

9265−3276 to 5989135654VeryFit

7450−2713 to 4737101145Xiaomi

7737−5238 to 2499−1369300Fitbit

Moderate-to-vigorous physical activity

101.80−18.35 to 83.4532.5516Nokia

207.64−138.96 to 68.68−35.1445Xiaomi

151.59−77.07 to 74.52−1.27298Fitbit
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Figure 5. Bland-Altman plots of the trackers for measuring steps. The middle line shows the mean difference (positive values indicate an underestimation
of the wearable and negative values indicate an overestimation) between the measurements of steps of the wearables and the ActiGraph and the dashed
lines indicate the limits of agreement (1.96×SD of the difference scores).
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Figure 6. Bland-Altman plots of the trackers for measuring moderate-to-vigorous physical activity. The middle line shows the mean difference (positive
values indicate an underestimation of the wearable, and negative values indicate an overestimation) between the measurements of moderate-to-vigorous
physical activity of the wearables and the ActiGraph, and the dashed lines indicate the limits of agreement (1.96×SD of the difference scores).

Total Sleep Time
Table 4 reports the mean minutes of TST and corresponding
standard deviations for all trackers.

Spearman correlations between the TST measurements of the
trackers and the TST measurements of the SenseWear armband
show large diversity between trackers, ranging from very weak
(Geonaut) to strong (VeryFit). The ICCs, however, indicate low

agreement (ICC<0.60) between the measurements of all trackers
and the measurements of the SenseWear. This could reflect a
systematic underestimation or overestimation of TST by the
trackers, which is not evident from the Spearman r coefficient.
The MAPE scores of all trackers also indicate a large mean
deviation from the SenseWear measurements for TST, ranging
from 20.57% for Fitbit to 39.08% for Xiaomi. The correlation
coefficients, ICC values, associated 95% CI, and MAPE scores
for measuring TST are shown in Table 5.

Table 4. Mean total sleep time per day measured by the low-cost trackers, Fitbit and SenseWear.

Range (minutes)Total sleep time (minutes), mean (SD)Number of measured daysTracker

Total sleep time

110-589341 (123)30Geonaut

91-624421 (108)52iWown

70-746457 (143)24MyKronoz

247-743464 (108)46Nokia

193-614472 (59)51VeryFit

285-695495 (87)44Xiaomi

68-733414 (91)287Fitbit

112-653373 (83)147SenseWear

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 5 | e16674 | p. 12http://mhealth.jmir.org/2020/5/e16674/
(page number not for citation purposes)

Degroote et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Correlation coefficients, intraclass correlation coefficients, associated 95% CI of the measurements, and mean absolute percentage error scores
for measuring total sleep time.

Mean absolute percentage error (%)95% CIIntraclass correlation coefficientSpearman r (95% CI)nTracker

Total sleep time

26.59−0.44 to 0.520.050.04 (−0.45 to 0.60)15Geonaut

21.330.18 to 0.760.52a0.57a (0.19 to 0.84)24iWown

38.15−0.07 to 0.740.40a0.45 (−0.22 to 0.86)14MyKronoz

38.63−0.10 to 0.630.30a0.66b (0.30 to 0.88)14Nokia

30.73−0.11 to 0.610.260.73b (0.48 to 0.83)24VeryFit

39.08−0.13 to 0.450.130.21 (−0.34 to 0.68)21Xiaomi

20.570.28 to 0.600.46b0.57b (0.40 to 0.69)134Fitbit

aP<.05.
bP<.001.

The correlations for TST are also illustrated in Figure 7. This
figure visualizes the large discrepancy between the Spearman
correlation coefficient and the ICC, specifically evident for
Nokia and VeryFit. Although a clear relation is visible between
the measurements (Spearman r), almost all data points are above
the line that represents the perfect agreement between the
measurements. This indicates a systematic overestimation of
the TST measurements of Nokia and VeryFit compared with

the convergent measure. Figure 7 also shows the largest scatter
for MyKronoz.

Bland-Altman plots for TST revealed the smallest limits for
VeryFit (263.39 min) and the broadest limits for Geonaut
(558.25 min). These results are in line with the findings based
on the Spearman r coefficient and the scatter of the data points.
The mean differences with the SenseWear armband
measurements and the limits of agreement are presented in Table
6 and illustrated in Figure 8.
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Figure 7. Correlations between total sleep time estimates from the trackers and the SenseWear.
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Table 6. Mean differences of total sleep time measures with the SenseWear and limits of agreement of the activity trackers.

Width of the limits of agreement
(minutes)

Limits of agreement, rangeMean difference of total sleep time (SenseWear−smartwatch)nTracker

558.25−234.19 to 324.0644.9315Geonaut

368.85−221.22 to 147.63−36.7924iWown

496.53−330.55 to 165.98−82.2914MyKronoz

374.52−293.72 to 80.80−106.4624Nokia

263.39−229.32 to 34.07−97.6324VeryFit

486.52−355.40 to 131.12−112.1421Xiaomi

354.14−213.9 to 140.16−36.91134Fitbit
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Figure 8. Bland-Altman plots of the trackers for measuring total sleep time. The middle line shows the mean difference (positive values indicate an
underestimation of the wearable and negative values indicate an overestimation) between the measurements of total sleep time of the wearables and the
SenseWear, and the dashed lines indicate the limits of agreement (1.96×SD of the difference scores).

Thus, low-cost trackers showed low (eg, Geonaut and Xiaomi)
to strong (eg, VeryFit) correlations to measure TST, with some
trackers such as VeryFit and Nokia systematically
overestimating TST. Fitbit showed low (based on ICC) to
moderate (based on the Spearman r coefficient) validity to
measure TST and was outperformed by VeryFit to measure
TST on all indicators of accuracy.

Discussion

Principal Findings
This study examined the validity of low-cost trackers (≤€50
[US $56]) for measuring adults’ steps, moderate-to-vigorous
PA, and TST in free-living conditions. In general, the low-cost
trackers were most accurate in the measurement of steps,
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somewhat accurate for the measurement of sleep, and lacked
validity for the measurement of MVPA time. Validity ranged
widely between the various low-cost trackers tested. The
performance of the best of the low-cost trackers approached or
even exceeded that of the Fitbit Charge 2 (the high-cost
comparison tracker), whereas the worst of the low-cost trackers
had weak validity. Notably, VeryFit 2.0 performed relatively
strongly across both sleep and steps domains, whereas the
Xiaomi Mi Band 2 appeared to have the highest validity for the
measurement of steps.

The finding that many of the low-cost trackers are accurate for
measuring steps is promising, given that steps is the metric
reported by users of trackers as being of most interest [63]. We
found that the low-cost trackers were most accurate for
measuring steps in comparison with sleep and minutes of
MVPA. This order for validity (ie, measuring steps more
accurately than measuring sleep and in turn more accurately
than measuring MVPA) is consistent with findings for these
metrics in high-cost trackers [39], although in our study, the
low-cost trackers demonstrated weak-to-moderate validity for
MVPA minutes (Spearman r ranged from 0.24 to 0.56), whereas
previous research in high-cost trackers has suggested
moderate-to-strong validity (eg, Ferguson et al’s [39] study of
high-cost trackers reported Pearson r ranging from 0.52 to 0.91).
It is possible that some of the differences between the reference
values for MVPA derived from the ActiGraph accelerometers
and the values recorded by the low-cost trackers may have
originated from a measurement error associated with the
reference device. Furthermore, a possible explanation for the
weak-to-nil validity found in our study could be that the PA
variables measured by the low-cost trackers were not explicitly
identified as MVPA. However, because all devices had set a
goal of 30-min PA per day (similar to the MVPA
recommendations for adults), we assumed that the measured
variable corresponded to MVPA as measured by the ActiGraph
accelerometer. Nevertheless, specific information regarding
algorithm intensity cut-points was not provided and publicly
available from these low-cost trackers. Therefore, the
discrepancies in this study may be a result of both definitional
and measurement problems (eg, sensitivity algorithm). In this
regard, it may be very useful in the future, when manufacturers
provide more insight into the cut-points and algorithms that
were used to translate the raw data into useful information (such
as steps and minutes of MVPA).

Although research-grade accelerometers are the closest we have
to a gold standard for the measurement of MVPA in free-living
conditions, the MVPA values derived from them can vary by
the order of magnitude depending on parameters such as epoch
length and cut-points [64]. Furthermore, wear position has an
impact on the validity of MVPA. Studies comparing the validity
of research-grade accelerometers at different body locations
consistently show that the hip position is more accurate than
the wrist [65]. Despite the recognized superior validity of
hip-worn accelerometers and trackers, over the past 5 years or
so, there has been a shift for both consumer trackers and
research-grade accelerometers to increasingly be designed for
wrist wear, presumably because of improved logistics, such as
comfort and convenience. This clear shift in the market

highlights that validity should not be considered the be-all and
end-all. Issues such as usability, compliance, and adherence are
also important, although they tend to receive less attention in
the scientific literature.

Evidence for the validity of the low-cost trackers for the
measurement of sleep duration was mixed. Some trackers
performed quite strongly. For example, the top performing
tracker, VeryFit 2.0, demonstrated a Spearman r of 0.73 for
TST compared with the reference device (SenseWear), which
was actually superior to the Fitbit Charge HR (r=0.57).
However, the Bland-Altman analyses revealed that VeryFit 2.0
tended to overestimate sleep by around 1.5 hours per night
compared with the reference device. If this overestimation was
consistent, it could be argued that the data might still be useful
for self-monitoring changes in sleep over time. However, the
Bland-Altman 95% limits of agreement spanned a range of 263
min, suggesting that the extent of overestimation varied
considerably on different administrations. It, therefore, seems
questionable whether the sleep estimates derived from VeryFit
2.0 are accurate enough to help a user meaningfully
monitor/change their sleeping patterns.

The finding that low-cost trackers have strong validity for
measuring steps and some validity for measuring sleep is likely
to be of interest to public health researchers and clinicians alike.
There is considerable interest in using activity trackers to
intervene on lifestyle activities, with a recent meta-analysis
finding positive evidence for short-term effectiveness but less
evidence for sustained effects [66]. There is well-recognized
usage attrition associated with activity trackers over time. For
example, a 2017 study gave entry-level Fitbit trackers to 711
users and found that approximately 50% of participants had
stopped using them at 6 months and 80% had stopped by 10
months [67]. The most common reasons for not using Fitbit
was technical failure or difficulty (57%), losing the device
(13%), or forgetting to wear it (13%). Nonetheless, low-cost
devices fill an important gap in the consumer market between
the high-cost activity trackers that are prohibitively expensive
to provide to clinical or research cohorts at scale (unless sizable
funding is available) but likely to be more aesthetically pleasing
and acceptable to wearers than traditional pedometers [19,63].
The findings of this study, which highlight the Xiaomi Mi Band
2 and VeryFit 2.0 devices as having acceptable validity, are
therefore helpful. We bought the trackers as individual buyers
on the consumer market. Researchers intending to use these in
large-scale research cohorts may purchase these at an even lower
cost in bulk. Another promising feature of VeryFit 2.0 is that
it has an application programming interface (API) that allows
software developers to create custom software that can be
integrated directly with the tracker (ie, data from the tracker
can be sent automatically to the custom software). There is a
growing trend for eHealth and mobile health research to use
Fitbit and Garmin API [68-70]. Therefore, validated low-cost
trackers with APIs offer new data collection and intervention
possibilities.

Our study included trackers with and without heart rate
measurements. All trackers with the highest validity included
heart rate measures, whereas those without showed lower
validity. However, we cannot conclude from this study that the
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heart rate function increased validity. Studies testing the same
model with and without the heart rate function and assessing
the validity of the heart rate measurement in itself would be
needed to make this claim. The price of included trackers ranged
from around €25 (US $28) to approximately €50 (US $55). The
prices of the most accurate types, VeryFit 2.0 and Xiaomi Mi
Band 2, are situated in the middle of this range (€30-€40 [US
$33-US $44]). This yields two models that are very attractive
and accessible to the general public. Thus, price may not be the
determining factor in the validity of the trackers: more expensive
within this range is not necessarily better. On the contrary, we
cannot conclude that price plays no role and that trackers even
less expensive than those included here (<€25 [US $28]) may
also be valid. Indeed, a study on pedometers provided for free
as gadgets with cereal boxes found that those were not valid
[71].

Although validity evidence from this study for low-cost devices
measuring steps, MVPA, and TST is not unequivocally good
across the devices, user experience is also extremely important.
A device that has high validity may not necessarily have a
positive user experience. Future research examining the user
experience of low-cost trackers (eg, focusing on issues such as
functionality, reliability, and ease of use, both of the device
itself and its accompanying app) will be valuable. Our
preliminary experiences suggest that the user experience of the
low-cost trackers may be less positive than that of the high-cost
trackers (eg, we tended to experience fewer technical issues
with Fitbit trackers than with the other devices in this study).
It can be assumed that the higher price of the high-cost trackers
is partly determined by the investments made by the
manufacturer to improve the user experience and to better
develop the app supporting the tracker. Moreover, the low-cost
activity trackers appear most valid for measuring steps.
Pedometers that count steps are available at an even lower cost,
but unlike activity trackers, they offer little additional
functionality (eg, feedback, information, and social support) in
an accompanying app and are considered less usable by people
than activity trackers [72-74]. Further work to explore these
issues more rigorously and in greater depth is warranted.

Strengths and Limitations
A strength of our study is that it is the first to scrutinize the
validity of low-cost trackers addressing an important gap in the
scientific literature to date. Methodological strengths of the
study are the relatively large number of devices that were tested
using the same methodology (allowing a direct comparison of
the devices’ performance), the devices that tested multiple
metrics (steps, MVPA, and sleep), and that efforts were made
to minimize bias, for example, by randomizing the order in
which participants wore the devices. Limitations included that
our sample was relatively young and healthy. On the basis of
previous literature, it seems likely that validity for measuring
steps is likely to be somewhat lower in older and clinical
populations (eg, obese) [75]. As already noted, our reference
devices were research-grade accelerometers with known validity
limitations of their own. Therefore, they represent convergent
validity rather than criterion validity, and there is a risk that we
may be underestimating the low-cost trackers’ true validity. A
further limitation is that this is a fast-moving field with new
devices continually entering and exiting the market. In
particular, since our study started, the Xiaomi MiBand 2 is
replaced by its successor, the MiBand 3. Therefore, it would be
beneficial that future research continuously investigates the
validity of new low-cost trackers and other emerging devices.
Furthermore, having an insight into the used algorithms and
used cutoffs would be beneficial.

Conclusions
This study was the first to examine the validity of low-cost
trackers. It found that validity was strongest for the measurement
of steps; there was some evidence of validity for the
measurement of sleep, whereas validity for the measurement
of MVPA time was weak. Validity ranged between devices,
with Xiaomi having the highest validity for the measurement
of steps and VeryFit performing relatively strongly across both
sleep and steps domains. The tested low-cost trackers hold
promise for the cost-efficient measurement of movement
behaviors. Further research investigating the user experience
of low-cost devices and their accompanying apps is needed
before these devices can be confidently recommended.
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Parameter estimates from linear mixed effects models examining the association between commercial trackers and ActiGraph
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