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Abstract

Background: Comprehensive exams such as the Dean-Woodcock Neuropsychological Assessment System, the Global
Deterioration Scale, and the Boston Diagnostic Aphasia Examination are the gold standard for doctors and clinicians in the
preliminary assessment and monitoring of neurocognitive function in conditions such as neurodegenerative diseases and acquired
brain injuries (ABIs). In recent years, there has been an increased focus on implementing these exams on mobile devices to benefit
from their configurable built-in sensors, in addition to scoring, interpretation, and storage capabilities. As smartphones become
more accepted in health care among both users and clinicians, the ability to use device information (eg, device position, screen
interactions, and app usage) for subject monitoring also increases. Sensor-based assessments (eg, functional gait using a mobile
device’s accelerometer and/or gyroscope or collection of speech samples using recordings from the device’s microphone) include
the potential for enhanced information for diagnoses of neurological conditions; mapping the development of these conditions
over time; and monitoring efficient, evidence-based rehabilitation programs.

Objective: This paper provides an overview of neurocognitive conditions and relevant functions of interest, analysis of recent
results using smartphone and/or tablet built-in sensor information for the assessment of these different neurocognitive conditions,
and how human-device interactions and the assessment and monitoring of these neurocognitive functions can be enhanced for
both the patient and health care provider.

Methods: This survey presents a review of current mobile technological capabilities to enhance the assessment of various
neurocognitive conditions, including both neurodegenerative diseases and ABIs. It explores how device features can be configured
for assessments as well as the enhanced capability and data monitoring that will arise due to the addition of these features. It also
recognizes the challenges that will be apparent with the transfer of these current assessments to mobile devices.

Results: Built-in sensor information on mobile devices is found to provide information that can enhance neurocognitive
assessment and monitoring across all functional categories. Configurations of positional sensors (eg, accelerometer, gyroscope,
and GPS), media sensors (eg, microphone and camera), inherent sensors (eg, device timer), and participatory user-device interactions
(eg, screen interactions, metadata input, app usage, and device lock and unlock) are all helpful for assessing these functions for
the purposes of training, monitoring, diagnosis, or rehabilitation.

Conclusions: This survey discusses some of the many opportunities and challenges of implementing configured built-in sensors
on mobile devices to enhance assessments and monitoring of neurocognitive functions as well as disease progression across
neurodegenerative and acquired neurological conditions.

(JMIR Mhealth Uhealth 2020;8(6):e15517) doi: 10.2196/15517
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Introduction

In recent history, a crossover between the fields of personal
health care and mobile technology has been developed [1].
According to a 2015 US national survey on health-related apps
among mobile phone owners [2], over 58% of participants had
downloaded a health-related mobile app to focus on health,
fitness, or medical care. This suggests that people with mobile
devices not only care about their health but are also willing to
use their mobile technology to help track and monitor their
health in a multitude of ways. Similarly, a study [3] depicts both
the American Physical Therapy Association and American
Occupational Association advocating the integration of mobile
health apps and systems into clinical practice, suggesting that
mobile technology is also gaining clinical traction and relevance.
As mobile devices become more commonplace in the health
space, the formation of new and more robust health apps should
be a focus.

This paper aims to provide a systematic analysis by (1)
providing background on neurocognitive conditions, functional
areas, and their subcategories; (2) understanding mobile
technology for the purpose of updating and enhancing traditional
assessment tools; (3) discussing challenges and opportunities;
and (4) providing a description of a comprehensive mobile
assessment tool that both individuals and clinicians can use to
monitor wellness and/or decline with respect to neurocognitive
function.

In this paper, we follow the Merriam-Webster’s medical
definition of neurocognition: “of, relating to, or involving
cognitive functioning and associated structures and processes
of the central nervous system (the part of the nervous system
which in vertebrates consists of the brain and spinal cord, to
which sensory impulses are transmitted and from which motor
impulses pass out, and which supervises and coordinates the

activity of the entire nervous system).” Note that many
neurological diseases and conditions yield subsequent cognitive
impairments, and functional tests monitor both neurological
and cognitive processes. Neurocognitive allows for the
description of both.

Neurocognitive assessments are relevant and necessary for
evaluating and monitoring neurological diseases across the
categories of neurodegenerative [4], neurodevelopmental [5],
neuropsychological [6], and traumatic brain injuries (TBIs) [7]
or acquired brain injuries (ABIs) [8]. Neurodegenerative
conditions present with progressive degeneration of neurons
and neural structures. Examples include Parkinson disease,
dementia, and amyotrophic lateral sclerosis [4].
Neurodevelopmental conditions (eg, autism spectrum disorders,
Down syndrome, and attention deficit hyperactivity disorder)
come from complications in the development of the brain [5].
TBIs, such as concussions and chronic traumatic
encephalopathy, can occur in a variety of ways [7]. ABIs include
stroke and meningitis [8]. Neuropsychological conditions present
with behavioral and/or emotional changes, which could be the
result of brain damage or a traumatic experience (eg, depression,
anxiety, and post-traumatic stress disorder) [6]. Conditions
could yield similar presentations to others; however, each
category has unique onset conditions. Neurological diseases
and conditions and their presentations that may occur are shown
in Figure 1. Note that not every condition will present with all
the features of that specific disorder. Combinations of symptoms
may manifest depending on the individual; their age;
socioeconomic background; as well as the stage, severity, and
progression of the disease. Regardless of the onset conditions,
understanding the taxonomies of the variety of neurocognitive
conditions is vital for doctors and clinicians to formulate and
administer assessments for correct diagnoses, monitoring, and
rehabilitation.

Figure 1. Neurological conditions and the neurocognitive functions they may affect.

Methods

Assessment of Neurocognitive Functions
Neurocognitive functions of interest include motor, memory,
speech, language, executive function, sensory, behavioral and
psychological, sleep, and autonomic functions (Figure 1). Each
of these functions correspond generally to various regions of
the brain, as can be seen in Figure 2 along with their respective
subfunctions. However, these brain regions are multifunctional
in nature; thus, functions of interest are closely integrated with
each other, the nature of which is not currently completely
understood [9].

There are currently formal clinical tests that can be used either
for screening or assessing some of these functions of interest
depicted in Table 1. Screening assessments such as the
Mini-Mental Status Evaluation and Montreal Cognitive
Assessment provide a quick general assessment of an individual
with suspected neurocognitive impairment and identify areas
needing further comprehensive evaluation. These assessments
focus on a range of neurocognitive functions [10,11]. More
comprehensive assessments such as the Boston Diagnostic
Aphasia Examination, Dean-Woodcock Neuropsychological
Assessment System, and Neurobehavioral Functioning Inventory
aim to assess additional components or assess to a deeper extent
[12,13]. However, none of these assessments include all
functional areas of interest. A further breakdown of clinical
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screenings and assessments at the test level is shown in Table
2. In addition, Table 3 is a brief collection of studies and reviews
across categorical neurocognitive conditions, relevant
neurocognitive functions, and functional tests. Traditional testing
methods for each neurocognitive function can be understood
using Tables 2 and 3 and Figure 3.

As mobile devices are becoming more commonplace in
neurocognitive assessments, it is necessary to review device
sensors and interactions that are useful for the collection of
relevant and objective data. Although some higher-end mobile

devices may have additional on-device capabilities and/or
sensors, currently all smartphone devices have the minimum
set of capabilities listed in Table 4. Utilizing these device-based
sensors and/or interactions in the formation and configuration
of functional tasks enhances the usefulness and quality of the
data. With the increased opportunity for user participation on
their own devices and the ability of the clinician to collect and
analyze enhanced objective datasets, this becomes a robust
modality for the administration of these neurocognitive
assessments.

Figure 2. Neurocognitive breakdown into subcategories for a detailed and comprehensive assessment.

Table 1. Current tests assessing functions of interest.

AssessmentsFunctions

DWNASeNFIdBDAEcMoCAbMMSEa

XXXXXfMotor

XXXXXMemory

XXXXXSpeech

XXXXXLanguage

XXXXXExecutive

X————gSensory

XX———Behavioral

—————Sleep

XX———Autonomic

aMMSE: Mini-Mental Status Evaluation.
bMoCA: Montreal Cognitive Assessment.
cBDAE: Boston Diagnostic Aphasia Examination.
dNFI: Neurobehavioral Functioning Inventory.
eDWNAS: Dean-Woodcock Neuropsychological Assessment System.
fX denotes there is a cross-section between a clinical test and an assessment of the corresponding function.
gThere is no cross-section between a clinical test and an assessment of the corresponding function.
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Table 2. Test types and their functionalities.

ReferenceBasic functionality of testTest

[14] Recall prompted words from memory Word Recall

[15] Quantify time to recognize change in state Reaction Time

[16] Assess stability and sway in static positions Static Balance

[17] Gross motor analysis to and from static positions Sit to Stand

[18] Gross motor analysis of gait patterns Functional Gait

[19] Perform motor sequences across body location Apraxia Tests

[20] Assess ability to inhibit cognitive interference Stroop Color Word Test

[21] Recreate visual patterns or heard sequencesWechsler Memory Scale

[22] Sort cards based on changes in stimulus conditions Wisconsin Card Sorting Test 

[23] Connecting objects based on a given set of parameters Trail Making Test 

[24] Reproduce images or patterns from various prompts Bender-Gestalt Test 

[25] Orientation or manipulation of objects based on direction Spatial Orientation 

[26] Name common objects following visual cues Boston Naming Test 

[27] Repeat various syllables or sequences Syllable Repetition 

 

Table 3. Collection of relevant studies for traditional testing.

Test(s)Function(s)Participants and reviewsConditionCategoryPublication

Trail Making Test and verbal and
semantic fluency

Executive function and
speech

40 Parkinson’s disease and
45 control

Parkinson’s dis-
ease

DegenerativeBarbosa et al
[28]

Structured interviews, rating scales,
questionnaires, and behavioral obser-
vations

Emotion and behavioral
and psychological

Review of papersAlzheimer's dis-
ease and demen-
tia

DegenerativeLevenson et al
[29]

Head‐up tilt test, Valsalva maneu-
ver, deep breathing, and handgrip
test

Autonomic function
and motor

27 Parkinson’s diseaseParkinson’s dis-
ease

DegenerativeRocchi et al
[30]

Self-reporting Neurobehavioral
Functioning Inventory tool (depres-
sion, somatic, memory, attention,
communicate, aggression, and mo-
tor)

Memory, motor,
speech, sensory, execu-
tive function, and behav-
ioral and psychological

108 Post TBITBITBIaCzuba et al [13]

Catching a ball (reflex, gross motor,
and fine motor) and static balance

Motor18 Autism, 19 control in
group 1, and 22 control in
group 2

AutismDevelopmentalWhyatt et al
[31]

Spatial orientation tasks, working
memory, response, and inhibition

Executive function and
memory

Review of papersAutismDevelopmentalO’Hearn et al
[32]

Sit to Stand, standing balance, gait,
gross motor (arm), and fine motor
(hand)

MotorReview of papers (Average
of 70 subjects per trial)

StrokeABIbLanghorne et al
[33]

Speech and language and therapiesSpeech and languageReview of papers (3002
subjects)

StrokeABIBrady et al [34]

Wechsler Memory Scale Auditory
Verbal Learning Test and California
Verbal Memory Test

Speech and memoryReview of 28 studiesPTSDcPsychologicalJohnsen et al
[35]

Mood Scales, diary documentation,
and questionnaires

Sleep and emotionReview of studiesPTSD and depres-
sion

PsychologicalGoldstein et al
[36]

aTBI: traumatic brain injury.
bABI: acquired brain injury.
cPTSD: post-traumatic stress disorder.
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Figure 3. A sample view set of functional tests. WCST: Wisconsin Card Sorting Test.

Table 4. References to previous publications regarding mobile device sensors and/or capabilities to monitor neurocognitive functions of interest.

FunctionsDevice Capabilities

AutonomicSleepBehavioralSensoryExecutiveLanguageSpeechMemoryMotor

—Hoque et al
[39] and
Alqassim
et al [40]

——Yang et al
[37] and
Mathie et
al [38]

——aYang et al
[37] and
Mathie et al
[38]

Yang et al
[37] and
Mathie et al
[38]

Accelerometer

—Hoque et al
[39]

——Yang et al
[37]

——Yang et al
[37]

Yang et al
[37]

Gyroscope

————Cavallo et
al [41]

———Cavallo et al
[41]

GPS

Alqassim
et al [40]

Alqassim
et al [40]

Hossain et
al [44] and
Kim et al
[45]

—Vacher et
al [42]

Vacher et
al [42]

Rosenblum
et al [43] and
Vacher et al
[42]

Vacher et al
[42]

—Microphone

Bradley et
al [48]

—Hossain et
al [44] and
Nguyen et
al [47]

———Rosenblum
et al [43]

Zhou et al
[46]

Zhou et al
[46]

Camera

Bhatia et al
[49]

Bhatia et al
[49]

——Bhatia et al
[49]

—Bhatia et al
[49]

Bhatia et al
[49]

Bhatia et al
[49]

Timer

———Karuei et al
[51]

Kobayashi
et al [50]

Kobayashi
et al [50]

—Kobayashi et
al [50]

Kobayashi et
al [50]

Device interactions

Fries et al
[52]

Fries et al
[52]

Fries et al
[52] and
Rocchi et
al [53]

Fries et al
[52]

—————Metadata input

—Lee et al
[54] and
Zhao et al
[55]

Lee et al
[54] and
Rocchi et
al [53]

——————Lock, unlock and app
usage

aThere is no cross-section between device capabilities and corresponding functions.
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Results

Motor

Background and Subcategories
Completing motor tasks are often difficult for individuals with
neurodegenerative conditions [56,57], neurodevelopmental
conditions [31], and TBI and/or ABIs [33,58]. Motor functions
can be subcategorized into fine motor, reflexes, balance, and
gross motor. Traditional functional tests for the assessment of
motor function are shown in Tables 3 and 5. Fine motor function
testing involves the movement of the small muscle groups in
one’s hands, fingers, and wrists. Methods for testing these
movements include both written tests (eg, using pen and paper

for trail making or writing) and object manipulation and/or
interaction (eg, orienting an object in space or interacting with
cards). Reflex testing requires a quick reaction motor response
to an outside stimulus, which can be tactile, visual, and/or aural
stimulation (eg, catching an object). Balance testing examines
the user’s ability to distribute weight evenly, enabling them to
remain steady. This can be examined statically (eg, standing on
one leg) or dynamically (eg, going from a seated to a standing
position). Gross motor function testing involves the movement
of the large muscle groups for functional mobility (eg, gait).
Note that although some of the tests listed in Table 5 (eg, Spatial
Orientation Tests, the Trail Making Test, and the Wisconsin
Card Sorting Test) are not specifically motor tests, the manner
in which responses are collected allows the isolation of motor
performance metrics.

Table 5. Motor functional tests and assessment methods.

ReferenceMotor subcategories and functional tests

Fine motor

[19]Apraxia Tests

[25]Spatial Orientation Tests

[23]Trail Making Test

[22]Wisconsin Card Sorting Test

Reflex

[19]Apraxia Tests

[15]Reaction Time Tests

Balance

[19]Apraxia Tests

[16]Static Balance

[17]Sit to Stand

Gross motor

[19]Apraxia Tests

[18]Functional Gait Assessment

[25]Spatial Orientation Tests

Mobile Assessments
Mobile testing and analysis of motor functions use a variety of
human-device interactions [50] and positional (eg,
accelerometer, gyroscope, and GPS) [37,38,41], media (eg,
camera) [46], and inherent (eg, device timer) [49] sensors, as
shown in Table 4. Each motor subfunction calls for a subset of
device capabilities to gain additional concrete metrics aiding in
monitoring, diagnosis, and rehabilitation. Human-device
interactions utilize sensors to monitor the positional state of a
user’s finger during a tracing task on the screen, either via
electrical current or reflection of waves. The output of this can
be expressed as coordinates in 2-dimensional space and/or force
measurements [50]. An example includes a geometric object
(eg, circle or square) being displayed on the screen with the
user’s intention to trace the shape. Relative coordinates of the
trace path compared with the coordinates of the actual shape
provide specific objective metrics (eg, the number of times the
outline was crossed or the average distance of the trace from

the outline). Positional sensors (accelerometers and gyroscopes)
are used to capture device motion (eg, when a user moves the
device, linear and rotational motion can be assessed) [37,38].
These sensors can be helpful in enhancing object manipulation
testing (eg, having the subject manipulate the mobile device
itself), balance (eg, monitoring for the lack of linear and
rotational motion), and gross motor function (eg, placing the
device on the subject’s center of mass for gait assessment).
Gross motor function can also employ the device’s GPS
capabilities for additional positional information [41]. A device
camera can aid in the assessment of motor function both
qualitatively and quantitatively. Video analysis techniques such
as slow motion or stop-action viewing can be helpful for the
qualitative analysis of movement. Quantitative motion analysis
of exercise activities can be performed with a detailed analysis
of video recordings to analyze the subject’s movement patterns
[59]. The inherent device timer allows for temporal metrics to
be collected in conjunction with each of the previously
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mentioned metrics (eg, maximum speed, average speed, and
acceleration) [49]. Finally, the sampling rate of the device’s
sensors can be configured to collect additional data points as
needed for an objective fine-grained analysis of the motor
function.

A few mobile device apps currently being used for motor
assessment include gait feedback and activity recognition. In
gait rehabilitation and training, mobile device sensors were used
to collect metrics for the analysis of gait patterns to establish
corrective adjustments [60]. This study [60] implemented
sensory feedback based on gait metrics and monitored how that
feedback was interpreted for the change of subsequent steps.
Similarly, mobile device sensors can aid in the classification of
activities [61]. Requiring a subject to wear a smartphone on
their waist to collect accelerometer and gyroscope data while
various activities are performed allows for activity classification
metrics to be collected.

Memory

Background and Subcategories
Memory is another sector of neurocognitive assessment
prominent in neurodegenerative conditions [62,63],

neurodevelopmental conditions [64], TBIs or ABIs [65], and
neuropsychological conditions [35]. Memory analysis can be
broken down into short-term or working memory, long-term
memory, and skill memory. Natural fluctuations in memory
based on stress and/or fatigue are normal; however, continual
trends over time showing overall decline are important for the
diagnosis of diseases. Traditional functional tests regarding
memory functions are presented in Tables 3 and 6. Short-term
or working memory is the ability to maintain a small amount
of basic information for a short period. User comprehension of
a simple set of instructions, remembering visual patterns or
auditory cues, are all ways in which short-term or working
memory can be assessed. Long-term memory is the ability to
maintain information over a long period. This information can
be provided to the user via verbal, visual, or written modes.
Assessment of this information could include recalling an event
from a user’s past (eg, episodic memory) or could require the
user to memorize information for a later assessment. Skill
memory requires the individual to carry out normal functions
and/or interactions without requiring much thought (eg, riding
a bike or driving a car).

Table 6. Memory functional tests and assessment methods.

ReferenceMemory subcategories and functional tests

Short-term or working

[24]Bender-Gestalt Test

[25]Spatial Orientation Tests

[21]Wechsler Memory Scale

[22]Wisconsin Card Sorting Test

Long-term

[25]Spatial Orientation Tests

[21]Wechsler Memory Scale

[14]Word Recall Test

Skill

[19]Apraxia Tests

Mobile Assessments
Mobile testing and analysis of memory function make use of
participatory device interactions. Human-device interactions
[50], device microphones [42], and inherent [49] sensors are
used for the assessment of subfunctions of short-term and
long-term memory, as the user must engage with the device
providing information they are intended to remember (Table
4). Human-device interactions for memory function could be
used to help depict the number of times a user interacts with
the screen to gather necessary information to complete a task
for short- or long-term memory assessment. A mobile device
enhancement of a spatial orientation game, as seen in Figure 3,
comprised screen interactions notating visual cues to depict the
user flipping over a card to match an original pattern. Media
sensors with speech recognition capabilities can also be used
for both short-term and long-term memory assessments, such

as word or event recall (eg, using speech recognition for certain
keywords). Subject interactions for the assessment of skill
memory using Apraxia tests [19] may use positional [37,38] or
media [46] sensors in a similar manner to motor function (Table
4). Having the subject wear the device while completing a
physical skill task (eg, riding a bike) would yield positional
metrics for balance and gross motor function to show their
overall capability in the task. Skill memory in the form of
explaining a procedure (eg, how to make a peanut butter and
jelly sandwich) would require the device microphone or
human-device interactions. The device timer is highly important
for the assessment of memory function, helping to depict the
length of time the user takes to express retained information.

A current mobile device app for monitoring memory function
involves a memory game for rehabilitation and training,
following an ABI [66]. This game hinges on a classic card
matching concept in which the user must flip the cards over in
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pairs attempting to match all cards with their mates. Metrics
are then analyzed with respect to user interactions in the app to
track user memory.

Speech

Background and Subcategories
Speech has become increasingly useful for the purpose of
disease diagnostics. Variations in speech could be used as
indicators of neurocognitive impairments across the categories

of neurodegenerative [28], neurodevelopmental [67], and TBI
and/or ABIs [68]. References to traditional speech testing
methods are depicted in Tables 3 and 7. Speech analysis is
typically broken down into frequency measures and their
variations, stress, and repeatability. The fundamental frequencies
and variations are acoustic characteristics of speech. Stress in
speech is the degree of emphasis given a sound or syllable that
can help distinguish the meanings of words or phrases.
Repeatability in speech is the ability to replicate syllabic
sequences for quickness and accuracy metrics.

Table 7. Speech functional tests and assessment methods.

ReferenceSpeech subcategories and functional tests

Frequency

[19]Apraxia Tests

[26]Bosting Naming Test

[20]Stroop Color Word Test

Stress

[19]Apraxia Tests

[26]Bosting Naming Test

[20]Stroop Color Word Test

Repeatability

[19]Apraxia Tests

[27]Syllable Repetition Test

Mobile Assessments
References for speech analysis on a mobile device using the
device’s built-in microphone [42,43] and/or camera [43] to
gather sound recordings are shown in Table 4. When collected,
these recordings can be used to analyze additional and deeper
metrics of the speech sample. This can be expressed with
measurable hertz values (eg, fundamental frequencies and their
variations). The device’s speech recognition capabilities can be
used for the assessment of syllable repetition tests or for
evaluating what the user is saying. Each of these modes utilizes
the device’s timer for the corresponding temporal metrics of
the speech sample [49]. In the enhancement of a syllable
repetition test (eg, repeating the sequence of Pa-Ta-Ka after a
single deep breath), sensors detect metrics of accuracy (eg,
number of correct sequences said by the user), frequency (eg,
starting and ending frequencies), and time (eg, how long the
user sustained the speech pattern).

Current mobile apps for speech function include the diagnosis,
monitoring, and treatment of individuals with speech disorders
[68,69]. Many of these speech apps are best suited for user
difficulties in phonological representation, articulation, and
phonotactics.

Language

Background and Subcategories
Language is important for the assessment of phonology,
morphology, semantics, syntax, and pragmatics. Phonology is
the study of phonemes (eg, most basic speech sounds) of an

individual language. Morphology is the study of words and
other meaningful units of language. Semantics is the study of
sentence meaning. Syntax is the study of sentences and phrases
and the rules of grammar that they obey. Finally, pragmatics is
the study of sentence meanings in context. These fundamental
components of language are instrumental in assessing all
neurocognitive classifications [67,70-72]. Language assessments
look at how the user applies and arranges words, as well as
connotation and context, into conversation, presupposition,
implication, and overall systematic organization of these words
[73]. A reference for the traditional assessment of language is
given in Table 3.

Mobile Assessments
The references in Table 4 show how mobile assessments can
evaluate language using a device’s built-in microphones [42]
to gather sound recordings and speech recognition capabilities.
These recordings can be analyzed for their linguistic style at
each level of the language spectrum (eg, sentences in context
or recall based on generated cues [73]). User-device interactions
(eg, screen swipes or clicks) can be used for word ordering or
comprehension tasks [50]. By enhancing a speech-language
task (eg, picture description) on a mobile device, speech
recognition can be used to assess word ordering, tense, and
presupposition.

An example of this work in mobile language applications [74]
uses short messaging services, smartphone apps, and
gamification to enhance parental behavior that promotes
language development in children. The work in this specific
example is geared more toward parents who can implement
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interventions for their children; however, configurations for
other neurocognitive conditions can also be formed.

Executive Function

Background and Subcategories
Executive function refers to the abilities of judgment, planning,
memory, efficiency, and time management and is relevant in
the assessment of neurocognitive functioning and decline. A

decline in executive function can be seen in neurodegenerative
conditions [28,75], neurodevelopmental conditions [32], and
TBI and/or ABIs [76]. Similar to memory analysis, executive
function can fluctuate due to factors including stress and fatigue;
however, constant decline trends in executive function can be
used as an indicator for disease diagnosis. Traditional testing
modes for the purpose of executive function are referenced in
Tables 3 and 8.

Table 8. Executive function tests and assessment methods.

ReferenceExecutive function subcategories and functional tests

Judgment

[26]Boston Naming Test

[25]Spatial Orientation Tests

[20]Stroop Color Word Test

[22]Wisconsin Card Sorting Test

Planning

[23]Trail Making Test

[22]Wisconsin Card Sorting Test

Time management

[26]Bosting Naming Test

[22]Wisconsin Card Sorting Test

Efficiency

[24]Bender-Gestalt Test

[25]Spatial Orientation Tests

[20]Stroop Color Word Test

[23]Trail Making Test

Mobile Assessments
Analysis of executive functions implements human-device
interactions [50] in conjunction with positional [37,38,41],
media [42], and inherent [49] device sensors, as seen in Table
4. Similar to motor function, human-device interactions for the
purpose of executive function utilize sensors to monitor the
positional state of a user’s finger on the screen (eg, electrical
current or reflection of waves). The output of this can be
expressed as coordinates in 2-dimensional space [52], which
provides opportunities for the enhancement of planning and
efficiency tests (eg, the Trail Making Test). Positional sensors
for the capture device motion [37,38] can be used in the
enhancement of object manipulation tests (eg, having the subject
manipulate the mobile device itself). GPS positional sensors
can be used by having a person go from one place to another
and seeing how long it takes them and the route they take [41].
Media sensors, with the purpose of speech recognition in
enhancing the Boston Naming Test, can be used to collect
accuracy metrics in the subject’s discernment of images [42].
Finally, the device timer is highly important in executive
function analysis as it yields temporal metrics for the purpose
of time management, efficiency, and judgment [49].

Current monitoring of executive function on mobile devices
uses concrete tests from clinical practice, such as the Trail

Making Test [77], and more abstract tasks such as prioritization
and planning in scheduling [78]. Both methods are configurable
for mobile apps; however, different timelines and tracking
metrics are given as outcomes.

Sensory

Background and Subcategories
Evaluation of visual, tactile, and aural senses are important in
neurocognitive assessments, as these senses can be affected by
neurocognitive conditions. Autonomic dysfunctions, including
dizziness, sensation, and blurred vision, are all reasons that
these sensory components should be monitored for an
all-inclusive neurocognitive assessment. In addition, an
individual’s perception of pain, or lack of feeling, is another
sensory metric that is important to assess in neurodegenerative
conditions [79] or TBI and/or ABIs [80]. A reference for the
traditional assessment of sensory function is given in Table 3.

Mobile Assessments
Device capabilities for the monitoring of sensory function are
shown in Table 4. Reaction to visual, tactile, or aural stimuli
through participatory device interactions [51] or metadata input
[52] regarding sensory functions are common modes for the
analysis of this functional section. Mobile implementations for
these stimulus responses can be implemented using vibrational

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 6 | e15517 | p. 9http://mhealth.jmir.org/2020/6/e15517/
(page number not for citation purposes)

Templeton et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


patterns, screen display changes, or auditory sounds configured
on the device. Screen interactions or device sensors can then
be used to gauge user feedback on the signals based on
configurations. Redesigned metadata surveys and questionnaires
for the collection of user data allow the depiction of their sensory
state. Mobile devices can allow more real-time reporting of
these symptoms by allowing the user to label their pain levels
throughout the day in conjunction with information on their
current state (eg, during rehabilitation or right after sleep).

Current sensory function monitoring on mobile apps is both
quantitative [60] and qualitative [81] in nature. A study [60]
used visual, tactile, and aural feedback in conjunction with gait
rehabilitation and training. This research evaluated the influence
of sensory feedback on the gait pattern of the subject in real
time, for the purpose of clinical rehabilitation of persons with
gait abnormalities [60]. Qualitatively, self-management systems
are used in practice to assist in rehabilitation by supporting goal
setting and providing user state information and feedback [81].

Behavioral and Psychological

Background and Subcategories
Behavioral and psychological function assessment is necessary,
as neurocognitive conditions portray emotional changes after
onset. This could present with the inability to express or
understand different emotions [82] or expose changes to the
person’s outlook [29]. This is relevant to assessing multiple
capacities as emotion is an important feature of social
interactions and quality of life and well-being. A reference in
Table 3 is given for the traditional assessment of behavioral and
psychological function. 

Mobile Assessments
References on the completion of behavioral and psychological
monitoring using a device’s media (eg, camera and microphone)
sensors [44,45,47] as well as metadata input [52,53], device
lock and unlock, and app usage data [54] are provided in Table
4. Emotional state assessment can be completed using device
media sensors through the analysis of speech and/or video
samples [44,45,47]. Processing these samples, using machine
learning approaches, can assist with the classification of the
emotional state of its users. Similarly, the configuration of
device labeling allows the user to provide a more real-time
depiction of their state of being throughout the day [52,53]. The
use of metadata inputs can also help with the monitoring of
medication cycles and/or interpersonal relations in conjunction
with mood or emotional behavior. Finally, metrics on device
lock and unlock and app usage provide viable information for
the emotional state. User reliance on technology and its
correlation with interpersonal connections are relevant to
monitor in conjunction with the emotional state of the user.
Collecting these metrics directly from the user’s phone to an
assessment app makes for an overall smart system.

According to Pavliscsak et al [83], mobile health apps for the
collection of information regarding behavioral and psychological
states are highly useful and successful, in addition to standard
care measures through increased interactions. Mobile app
questionnaires about user health status, psychosocial status, and
progress toward treatment goals were implemented. Similarly,

Juengst et al [84] explored the use of mobile apps for
mood-related symptom tracking post TBI. Both studies looked
at compliance, satisfaction, and usability measures for the
validation of apps in practice. All metrics yielded high values,
supporting the collection of this information via a smartphone.

Sleep

Background and Subcategories
There are direct correlations between sleep abnormalities and
neurocognitive diseases and conditions, making sleep a valuable
component for neurocognitive analysis. This relationship occurs
for all categories: neurodegenerative, neurodevelopmental, and
neuropsychological conditions as well as TBIs or ABIs
[36,85-87]. Individuals who have abnormalities in their sleep
patterns ultimately show additional abnormalities among other
functions [36].

Mobile Assessments
The sleep-monitoring capabilities that mobile devices contain
are shown in Table 4. Positional sensors for movement in sleep
[39,40], media sensors for sleep apnea [40], and the device timer
for duration of sleep [49] are all helpful in monitoring sleep
quality. Metadata input [52], lock and unlock, and app usage
metrics [54,55] are also necessary for monitoring sleep quality.
In sleep analysis, positional sensors (eg, accelerometer and
gyroscope), measure device and subsequent user motion, or
lack thereof, for assessment metrics. Microphone usage for
breathing patterns is helpful for the monitoring of sleep apneas.
Device timers in conjunction with both allow the temporal
analysis of sleeping patterns for the evaluation of sleep. Similar
to emotion, metrics on device lock and unlock and app usage
provide viable information for sleep assessments, as user
reliance on technology may have a negative correlation with
sleep patterns [54]. Configured metadata input (eg, labeling)
from the user can allow for consistent monitoring of their sleep
over time, providing historical monitoring of sleep quality and
quantity.

There are many current mobile apps for sleep monitoring and
analysis [88]. These apps range in functionality but track total
sleep time, duration of light or deep sleep, and time awake [88].
A study [89] used explicit interaction of the subject with a
mobile app to monitor sleep duration. App functionalities
include an alarm, labeling functionalities for sleep versus awake,
and a rating system to gauge sleep quality [89]. Monitoring of
users’ sleep behavior is done through the logging of metrics
including: set alarm time, scheduled wake up time, time of day
in which the user goes to bed, number of times the alarm is
snoozed, duration of the snooze, and time of day when the alarm
is deactivated. This study [89] suggests that providing more
methods for users to track sleep behaviors increased the
awareness of their sleep patterns and induced healthier habits.

Autonomic Function

Background and Subcategories
Autonomic functions are processes that the body regulates
unconsciously (eg, heart rate, respiration, swallowing, thermal
regulation, digestion, and pupillary response). These functions
may be affected by the onset of neurological conditions [90]
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but may be the result of drug therapy side effects [91]. A
reference for the traditional assessment of autonomic function
is given in Table 3.

Mobile Assessments
References on device capabilities for the monitoring of
autonomic functions are depicted in Table 4. Device media
sensors (eg, microphone [40] and camera [48]) are useful for
monitoring functions such as breathing and pupillary response.
Metadata input [49] is helpful regarding other autonomic
functions (eg, digestion or urination) and may be relevant for
drug intervention analysis. Although some mobile phones have
heart rate sensors; Table 4 is a representation of functionalities
and sensors that most mobile phones contain. Sound and image
sample processing techniques (eg, machine learning) can be
implemented on these devices for gaining metrics on the user’s
autonomic state. Metadata input for the collection of additional
autonomic functional information, which cannot be collected
by device sensors, allows for a more comprehensive assessment
of this area.

Current mobile apps for autonomic function monitoring include
the evaluation of both breathing [92] and heart rate [93]. In a
study [92], 3 training methods were created to see which
provided the best outcomes. To establish which breathing
training method worked best, formal metrics were collected in
the following areas: skin conductance, heart rate, and respiratory
signal-to-noise ratio, whereas perceived effectiveness and
subjective preference were collected using questionnaires.
Current work for in-home monitoring of acute and chronic
cardiovascular disease uses mobile devices for both the
collection of heart rate and physical activity data sent to a mobile
phone via Bluetooth [93]. The mobile phone app is then used
for analysis and long-term storage of information to measure
progress and can be viewed by both the subject and clinician.

Discussion

Future of Mobile Neurocognitive Assessments

Devices
Current device capabilities can and should be explored for the
future of neurocognitive assessments. Employing opportunistic
approaches to monitoring (having device sensors on in the
background without the need for formalized tests) allows for
additional collection methods of objective data. An example of
this approach would use the device’s GPS sensors in the
background to gather information on daily commutes to see if
patterns change over time. Understanding device limitations is
another important aspect in this area, as data on the device
cannot be collected endlessly. Participatory, opportunistic, and
even hybridized approaches; further employment of current
device capabilities, collection of objective data (eg, sensor
metrics), and collection of additional metadata from the user,
should all be addressed for the formation of an all-encompassing
neurocognitive assessment. These mobile devices need to allow
for additional wearable and/or internet of things (IoT) devices
to interact with one another. Data fusion approaches,
maintaining overall battery and data usage on devices, protecting
user privacy, among others, are areas of concern that are

important for device advancement and the future of these mobile
neurocognitive assessments.

User Interactions
Moving neurocognitive assessments to mobile platforms for
users allows them to explore, understand, and maintain another
facet of their overall health. The ability to directly interact with
their devices for training exercises, neurocognitive assessments,
or rehabilitation purposes with regard to neurocognitive function
allows users to have a sense of control and ownership of an
important aspect of their health. Possessing these assessments
on their mobile device affords users the ability to track their
progress and see relevant longitudinal data. The functionality
of these mobile devices is intended to not only make the user
feel in control but also give the user paramount tools to assess
their neurocognitive function compared with previous clinical
versions. Concerns of the user to be addressed in the transition
to mobile devices include preserving the privacy of their
personal information and maintaining data and/or battery usage
on their devices, while having positive and simple interactions
for the assessment. These simple interactions require foresight
in the creation of mobile testing versions.

Clinician Interactions
As neurocognitive testing becomes readily available on mobile
devices, it is important to maintain clinical expertise. Clinical
challenges arise, such as how the user interprets instructions
and possible data quality and consistency issues (eg, in the cases
of different neurological states between healthy populations
and diagnosed neurologically impaired populations, test-retest
problems, language barriers, or others). Similarly, when moving
clinical assessments to mobile devices for additional sensor
data, it is important to maintain relevant metadata on how the
user feels and interprets their own symptoms, as there may be
fewer interactions with clinical professionals who would
administer questions, evaluate, and observe users. The clinician
should use these devices to monitor the user, analyze the
respective objective data, and ultimately assist in diagnosing
conditions and formulating rehabilitation programs, if necessary.
Concerns of the clinician include mobile device users diagnosing
conditions on their own, a large influx of overall data, as well
as maintaining the user’s personal information and the patient
and clinician relationship. The benefits of these systems include
the clinician’s prior review of objective and concise data, such
that they can spend more time talking with the patient about
specific or personal issues regarding their disease.

Wearables
Wearables and other functional sensing systems that work in
conjunction with mobile devices can allow for even more vital
data to be collected. Devices include, but are not limited to,
smart watches or necklaces, fitness trackers, and even
implantables. Wearables can be used in conjunction with mobile
devices, or even separately, and both methods have their benefits
and challenges. With the implementation of wearable devices
into the system, an enhanced set of data can be obtained in
addition to new information that the mobile device may not be
able to detect on its own. This is directly related to more
health-related sensors such as heart rate and oxygen saturation
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(SpO2). These data are important to be collected continually to
monitor a user’s current state, exertion levels, etc.

Another benefit of wearables is the ability to obtain more data
with additional accelerometers and gyroscopes. These additional
sensors can allow for the collection of imperative data
throughout the day, enhancing neurocognitive assessment
systems. However, with this additional data from integrated
wearables, there is a need to merge the collected data,
specifically in the case of accelerometer and gyroscope use.
Data fusion can be completed in a variety of ways, and each
functional task might call for different fusion methodologies.
For example, certain functional tasks such as motor function,
including gait, balance, and sit-to-stand tasks, would be
inherently beneficial for assessing with both mobile devices
and wearables in tandem to get a more complete look as to how
the individual moves in space. This can be seen by monitoring
both devices’ positioning in space, thus providing a proximity
component to the analysis. Other motor functional tests,
however, such as fine motor skills and some reflex tests, may
not have much of a response on the smartphone device
depending on how the user interacts with the test (eg, if the
device is lying on a table while being interacted with, the
wearable becomes the primary source of data collection). It is
imperative that data are collected on all devices when in active
use; however, one device’s dataset could provide significant
insights for certain tests. Subsequently, data fusion will be an
area of focus when multiple devices are implemented in the
same system.

Overall Challenges and Opportunities
As traditional assessments move to mobile devices, multiple
challenges arise that need to be considered and addressed.
Challenges can occur within each functional area of assessment
(eg, motor, memory, and speech). The monitoring of each
functional area or respective subfunction requires unique
configurations of a variety of device sensors. Each disease
taxonomy could call for unique configurations. For example,
children would require much different device interactions than
older populations (eg, neurodevelopmental vs neurodegenerative
conditions). Testing instructions (eg, size for visualization, lay
language styles, and memory restrictions) pose challenges for
device assessments. The formation of quality apps that are both
detailed and understandable is important for both users and
caregivers (as there are subsets of users with neurocognitive
conditions that cannot complete these tasks on their own). In
addition, as these devices are to be used outside of clinical
settings, sample quality (eg, image or sound) poses challenges
with lighting and background noise. This requires either an
isolated environment to remove potential noise or filtering
methods based on these files. In addition, distinguishing when
to use a certain collection or assessment method over another
across functional areas or combining neurocognitive functions
for multimodal analysis remains a challenge. As certain device
sensors are used across multiple functional areas, multimodal
tasks are achievable (eg, The Stroop Color Word Test for both
judgment and speech data), which reduce the administration
time for functional analysis. The design of these tests, however,
becomes more intensive as more metrics need to be collected.
In addition, there are multiple functions that occur in ways that

are, unfortunately, not easily monitorable by standalone mobile
devices (eg, sleep as the user may not have a smartphone on
their person or digestion as this process happens in a way that
is not monitorable by a smartphone’s device sensors).
Monitoring these functions requires the use of more inclusive
IoT systems (eg, using smart-home technologies or other
monitoring devices such as wearables). Other wearable
opportunities include increasing the monitoring and real-time
analysis of important features (eg, heart rate) and inclusion of
new features (eg, galvanic skin response, temperature regulation,
and pulse oximetry).

The collection of more objective data metrics is highly beneficial
for both users and clinicians. Subjective biases are reduced with
the implementation of these new impartial metrics. With the
increased opportunity for user participation in their own devices
and the ability of the clinician to collect and analyze enhanced
objective datasets, this becomes a robust modality for the
administration of these neurocognitive assessments. The use of
mobile devices for assessment allows for more continual
fine-grained monitoring and historical comparisons.

According to Furlong et al [69], there are few (approximately
3%) apps that are therapeutically beneficial for respective
function monitoring. Similarly, there are numerous health apps
in the app store that can measure some of the functions of
interest; however, no apps measure all functions [3]. Highly
specific apps for monitoring certain conditions are objectively
helpful. Robust general apps, however, should be created for
monitoring individuals before diagnosis. These general apps
should be more than just screening tools before additional
testing, but rather comprehensive apps. The formation of
multiple monitoring and testing techniques should be completed
for effectiveness comparisons. This would allow for highly
standardized comprehensive assessment suites that can then
feed into specific apps when necessary (eg, postdiagnosis or
unique user conditions). Finally, although there are both notable
challenges and opportunities proposed in this work, there are
likely additional concerns that are not discussed, but equally
important. As the relationship between mobile devices and
health care deepens, the lists of challenges and opportunities
will likely grow in tandem.

Conclusions
The relationship between mobile devices and health care for
the purpose of neurocognitive assessment is underway; however,
due to the area being relatively young and the expansive
possibilities of mobile technology, there are still numerous new
avenues to be explored and/or enhanced. Upgrading mobile
technology for these assessments and employing inherent device
capabilities and human interactions will ultimately allow for a
deeper understanding of neurological diseases. Configurations
of current mobile sensors, new assessment approaches, addition
of new sensors into the system, new expansive IoT systems,
and exploration of data fusion and deep learning techniques for
these assessments are all ways to further this adolescent
connection between health care and mobile devices, not only
to augment clinical interactions with users’ devices but also the
overall purpose of objective and comprehensive neurocognitive
assessments.
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